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A GROUPOID GENERALISATION OF LEAVITT PATH ALGEBRAS

LISA ORLOFF CLARK, CYNTHIA FARTHING, AIDAN SIMS, AND MARK TOMFORDE

Abstract. Let G be a locally compact Hausdorff étale groupoid whose unit space is
totally disconnected. We show that the collection A(G) of locally-constant, compactly
supported complex-valued functions on G is a dense ∗-subalgebra of Cc(G) and that it is
universal for algebraic representations of the collection of compact open bisections of G.
We also show that if G is the groupoid associated to a row-finite graph or k-graph with
no sources, then A(G) is isomorphic to the associated Leavitt path algebra or Kumjian-
Pask algebra. We prove versions of the Cuntz-Krieger and graded uniqueness theorems
for A(G).

1. Introduction

A ring R is said to have invariant basis number if any two bases (i.e., R-linearly inde-
pendent spanning sets) of a free left R-module have the same number of elements. Many
familiar rings (e.g., fields, commutative rings, left-Noetherian rings) have invariant basis
number, but there are many examples of noncommutative rings that do not. A ring R
without invariant basis number is said to have module type (m,n) if m < n are natu-
ral numbers chosen minimally with Rm ∼= Rn as left R-modules. In the 1940’s, Leavitt
constructed algebras Lm,n with module type (m,n) for all pairs of natural numbers with
m < n [14, 15]. The Lm,n are now known as the Leavitt algebras, and when m = 1, the
Leavitt algebra L1,n is the unique nontrivial unital complex algebra generated by elements
x1 . . . xn and y1, . . . , yn such that

∑n
i=1 xiyi = 1 and yixj = δi,j1 for all i, j ≤ n. In the

1970’s, independent of Leavitt’s work and motivated by the search for C∗-algebraic ana-
logues of Type III factors, Cuntz defined a class of C∗-algebras On, one for each integer
n ≥ 2, which are generated by elements s1, . . . , sn satisfying

∑n
i=1 sis

∗
i = 1 and s∗i si = 1

for all i (it follows that s∗i sj = δi,j1 for all i, j ≤ n). A consequence of the uniqueness of
L1,n is that it is isomorphic to the dense ∗-subalgebra of On generated by s1, . . . , sn via
an isomorphism that carries each xi to si and each yi to s∗i .

Shortly after Cuntz’s work, Cuntz and Krieger generalised Cuntz’s results to describe
a class of C∗-algebras OA associated to binary-valued matrices A [7]. At about the same
time, Enomoto and Watatani provided a very elegant description of these Cuntz-Krieger
algebras in terms of the directed graphs encoded by the matrices. Nearly twenty years
later, Kumjian, Pask, Raeburn, and Renault developed the class of C∗-algebras now
known as graph C∗-algebras [13], as a far-reaching generalisation of the Cuntz-Krieger
algebras patterned on Enomoto and Watatani’s approach. Each graph C∗-algebra is
described in terms of generators associated to the vertices and edges in the graph subject to
relations encoded by connectivity in the graph. The Cuntz algebra On corresponds to the
graph with one vertex and n edges. A remarkable assortment of important C∗-algebraic
properties of a graph C∗-algebra can be characterised in terms of the structure of the graph

2010 Mathematics Subject Classification. 16S99 (Primary); 16S10, 22A22 (Secondary).
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2 LISA ORLOFF CLARK, CYNTHIA FARTHING, AIDAN SIMS, AND MARK TOMFORDE

(see [18] for a good overview). Shortly afterwards, Kumjian and Pask introduced a sort
of higher-dimensional graph [11], now known as a k-graph, and an associated class of C∗-
algebras, as a flexible visual model for the higher-rank Cuntz-Krieger algebras discovered
by Robertson and Steger [22]. When k = 1, a k-graph is essentially a directed graph, and
Kumjian and Pask’s C∗-algebras coincide with the graph C∗-algebras of [13].

In the early 2000’s, the algebraic community became interested in the similarity be-
tween the constructions of Leavitt and Cuntz and the potential for the graph C∗-algebra
template to provide a broad class of interesting new algebras. Following the lead of [13],
Abrams and Aranda Pino associated Leavitt path algebras to a broad class of directed
graphs. The Leavitt path algebra of a directed graph is the universal algebra whose pre-
sentation in terms of generators and relations is essentially the same as that of the graph
C∗-algebra. Moreover, the graded uniqueness theorem for Leavitt path algebras implies
that the C∗-algebra of a directed graph is a norm completion of its Leavitt path algebra
[4], [25]. Further generalising Leavitt path algebras, Aranda Pino, (J.) Clark, an Huef,
and Raeburn recently constructed a class of algebras associated to k-graphs, which they
call Kumjian-Pask algebras [3].

A very powerful framework for constructing C∗-algebras is the notion of a groupoid C∗-
algebra. Renault’s structure theory for groupoid C∗-algebras [21] is exploited in [13] where
structural properties of the graph C∗-algebra are deduced by showing that the graph C∗-
algebra is isomorphic to a groupoid C∗-algebra and then tapping into Renault’s results
[21]. The same approach was taken in [11] to establish important structural properties of
k-graph C∗-algebras: the C∗-algebra of a k-graph is defined in terms of generators and
relations, but its structure is analysed by identifying it with a groupoid C∗-algebra.

In this paper, from a sufficiently well-behaved groupoid G, we construct a complex
algebra A(G) with the following properties:

(1) A(G) has a natural description as a universal algebra (Theorem 3.10);
(2) A(G) is isomorphic to a dense subalgebra of the groupoid C∗-algebra C∗(G)

(Proposition 4.2); and
(3) given a k-graph Λ, if G = GΛ is the groupoid corresponding to Λ as in [11]

(Proposition 4.3), then A(G) is isomorphic to the Kumjian-Pask algebra KPC(Λ).
In particular, if E is a directed graph and G = GE is the graph groupoid associated
to E, then A(G) is isomorphic to the Leavitt path algebra LC(E).

In [24], Steinberg defines a groupoid algebra KG for an arbitrary commutative ring K
with unit and shows that KG is a quotient of an associated inverse semigroup algebra.
We show that the algebra A(G) is identical to KG for K = C (the complex numbers).1

Our approach is different from that of [24] and our universal property and uniqueness
theorems (see below) provide new tools for studying KG and the inverse semigroup alge-
bras associated to them in the case where K = C; it would be interesting to investigate
versions of these theorems for general K.

The Cuntz-Krieger uniqueness theorem and gauge-invariant uniqueness theorem are
important tools in the study of graph C∗-algebras. Versions of these theorems have been
established for many generalisations of Cuntz-Krieger algebras [6, 9, 11, 12, 13, 19, 20].
For Leavitt path algebras, the graded uniqueness theorem is the analogue of the gauge-
invariant uniqueness theorem. The first version of this graded uniqueness theorem was

1We would like to thank Steinberg who brought this to our attention after reading an earlier version
of this paper.
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a corollary to Ara, Moreno, and Pardo’s characterisation [2, Theorem 4.3] of the graded
ideals in a Leavitt path algebra. It was first stated explicitly by Raeburn who proved both
the graded uniqueness theorem and Cuntz-Krieger uniqueness theorem for Leavitt path
algebras of row-finite graphs with no sinks and over fields equipped with a positive definite
∗-operation [4, Theorem 1.3.2 and Theorem 1.3.4]. Tomforde extended these results to
Leavitt path algebras of arbitrary graphs over arbitrary fields in [25, Theorem 4.8 and
Theorem 6.8], and later proved the two uniqueness theorems for Leavitt path algebras of
arbitrary graphs over a ring [26, Theorem 5.3 and Theorem 6.5]. Aranda Pino, (J.) Clark,
an Huef, and Raeburn subsequently proved versions of these theorems for Kumjian-Pask
algebras [3]. In Section 5 we prove versions of the Cuntz-Krieger uniqueness theorem
(Theorem 5.1) and the graded uniqueness theorem (Theorem 5.4) for A(G). We also give
an example of a groupoid satisfying our hypothesis that is not necessarily the groupoid
of a k-graph.

Our aim in defining and initiating the analysis of A(G) is twofold: (1) to provide a broad
framework for future generalisations of Leavitt path algebras from other combinatorial
structures; and (2) to make available the powerful toolkit of groupoid analysis to study
these algebras. In addition, we hope this will provide a new and useful perspective on
the interplay between algebra and analysis at the interface between Leavitt path algebras
and graph C∗-algebras.

2. Preliminaries

A groupoid is a small category with inverses. We write G(2) ⊆ G × G for the set of
composable pairs in G; we write G(0) for the unit space of G, and we denote by r and s
the range and source maps r, s : G→ G(0). So (α, β) ∈ G(2) if s(α) = r(β). For U, V ⊆ G,
we define

(2.1) UV := {αβ : α ∈ U, β ∈ V, and r(β) = s(α)}.

A topological groupoid is a groupoid endowed with a topology under which r and s are
continuous, the inverse map is continuous, and such that composition is continuous with
respect to the relative topology on G(2) inherited from G×G.

Recall that if G is a groupoid, then an open bisection of G is an open subset U ⊆ G such
that r|U and s|U are homeomorphisms. We will work exclusively with locally compact,
Hausdorff groupoids which are étale in the sense that the source map s : G → G(0) is a
local homeomorphism. The range map is then a local homeomorphism as well. If G is
étale then G(0) is open in G and G admits a Haar system consisting of counting measures.
The following also appears as [8, Proposition 4.1].

Lemma 2.1. Let G be a locally compact, Hausdorff, étale groupoid. Suppose that G(0) is
totally disconnected. Then the topology on G has a basis of clopen bisections. Moreover,
if G is locally compact and Hausdorff, then G has a basis of compact open bisections.

Proof. Proposition 2.8 of [21] implies that G has a basis of open bisections. For each
γ ∈ G, let U be an open bisection containing γ. Since r is an open map there exists
a basic clopen neighbourhood X of r(γ) such that X ⊆ r(U). Then XU = {h ∈ U :
r(h) ∈ X} = U ∩ r−1(X) is homeomorphic to X by choice of U and in particular is a
clopen bisection containing γ. If G is also locally compact, then U may be chosen to be
precompact. Hence the clopen subset XU is a compact open bisection. �
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Notation 2.2. For the remainder of this paper, Γ will denote a discrete group, G will
denote a locally compact, Hausdorff, étale groupoid with totally disconnected unit space,
and c will denote a continuous cocycle from G to Γ (that is, c carries composition in G
to the group operation in Γ).

By Lemma 2.1, with Γ, G and c as above, G has a basis of compact open bisections.
Since G is Hausdorff, compact subsets of G are closed. We will use this fact frequently
and without further comment.

Remark 2.3. These hypotheses might sound very restrictive, but, for instance, every k-
graph groupoid satisfies them (see, for example, [9]).

Remark 2.4. Let U be a compact open subset of a topological space X. Let F be a
finite cover of U by compact open subsets of U . For each nonempty H ⊆ F , let VH :=(⋂

H
)
\
(⋃

(F \H)
)
. Since each V ∈ F is compact and open, so is each VH . In particular,

since F is finite, so is K := {H ⊆ F : H 6= ∅, VH 6= ∅}, and

U =
⊔
H∈K VH

is an expression for U as a finite disjoint union of nonempty compact open sets such that
for each W ∈ K we have W ⊆ V for at least one V ∈ F , and such that whenever W ∈ K
and V ∈ F satisfy W 6⊆ V , we have W ∩ V = ∅. We refer to this as the disjointification
of the cover F of U .

Throughout this paper, unless stated otherwise, all algebras are taken to be complex
∗-algebras, and all representations are assumed to preserve adjoints.

3. The algebra A(G)

Definition 3.1. Let X be a topological space. A function f : X → Y is locally constant
if for every x ∈ X there exists a neighbourhood U of x such that f |U is constant.

Observe that if f : X → C is locally constant then it is automatically continuous, and
the support of f is clopen in X.

Definition 3.2. Let G be a locally compact, Hausdorff, étale groupoid with totally dis-
connected unit space. We define A(G) to be the compex vector space

A(G) = {f ∈ Cc(G) : f is locally constant}
with pointwise addition and scalar multiplication.

The following lemma shows that A(G) is precisely the algebra CG of [24, Definition 4.1].
(In fact, Definition 3.2 agrees precisely with the definition of CG given in the preprint
version of [24] — see [23, Definition 3.1] — and then the following Lemma is [23, Propo-
sition 3.3].)

Lemma 3.3. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space. If U is the basis of all compact open subsets of G,
we have A(G) = span{1U : U ∈ U}.

Proof. For any U ∈ U , the function 1U is locally constant, and hence span{1U : U ∈
U} ⊆ A(G). We must show that A(G) ⊆ span{1U : U ∈ U}. Fix f ∈ A(G). Since
f is locally constant and U is a basis, for each α ∈ supp(f), there is a neighbourhood
Uα ∈ U of α such that f |Uα is constant. Since supp(f) is clopen, we may assume that
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Uα ⊆ supp(f). Since supp(f) is compact there is a finite subset F ⊆ {Uα}α∈supp f such
that supp(f) =

⋃
F . Let K be the disjointification of F discussed in Remark 2.4. Since

f is constant on each V ∈ F and each W ∈ K is a subset of some V ∈ F , the function
f is constant on each W ∈ K. Hence, writing f(W ) for the unique value taken by f on
W ∈ K, we have f =

∑
W∈K f(W )1W . �

Definition 3.4. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. For n ∈ Γ
we write Gn := c−1(n). We write An(G) for the subset of A(G) consisting of functions
whose support is contained in Gn. We say that a subset S of G is graded if the cocycle
c is constant on S. If S ⊆ Gn, we say that S is n-graded. For each n ∈ Γ we write
Bco
n (G) for the collection of all n-graded compact open bisections of G. We write Bco

∗ (G)
for
⋃
n∈ΓB

co
n (G).

Lemma 3.5. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. We have
A(G) = span{An : n ∈ Γ} ⊆ Cc(G). Every f ∈ A(G) can be expressed as f =

∑
U∈F aU1U

where F is a finite subset of Bco
∗ (G) whose elements are mutually disjoint and a : U 7→ aU

is a function from F to C.

Proof. We have A(G) ⊇ span{An : n ∈ Γ} because each An consists of locally constant
functions. For the reverse inclusion, fix f ∈ A(G). Since Γ is discrete and c is continuous,
each Gn is clopen. Since supp(f) is compact, there is a finite collection N ⊆ G such that
supp(f) ⊆

⋃
n∈N Gn. For n ∈ N let fn denote the pointwise product f1Gn . Then fn is

locally constant and continuous because 1Gn and f are. We then have f =
∑

n∈N fn ∈
span{An : n ∈ Γ}.

Let f ∈ A(G). By Lemma 3.3, there is a finite set K0 of compact open sets and an
assignment W 7→ dW of scalars to the elements of K0 such that f =

∑
W∈K0

dW1W . Let

K := {W ∩Gn : W ∈ K0, n ∈ Γ,W ∩Gn 6= ∅}.
Since Γ is discrete and c is continuous, each Gn is open. Since each W ∈ K0 is compact,
K is finite. Each V ∈ K is graded; we write c(V ) for the unique value taken by c on V .
For each V ∈ K, let

bV =
∑

W∈K0,W∩Gc(V )=V

dW

Then f =
∑

V ∈K bV 1V .
Let F be the disjointification of K. Each U ∈ F is graded because F is a refinement of

K. For U ∈ F , define

aU =
∑

V ∈K,U⊆V

bV .

Then f =
∑

U∈F aU1U is the desired expression. �

Recall that given a locally compact, Hausdorff, étale groupoid G such that s : G→ G(0)

is a local homeomorphism, and given f, g ∈ A(G) ⊆ Cc(G), the functions f ∗ and f ∗ g are
given by

f ∗(γ) = f(γ−1)(3.1)

(f ∗ g)(γ) =
∑

r(α)=r(γ)

f(α)g(α−1γ).(3.2)
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Proposition 3.6. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. Under the
operations (3.1) and (3.2), A(G) is a Γ-graded ∗-algebra with graded subspaces An as
described in Definition 3.4.

Remark 3.7. For us, an involution on a ∗-algebra over C is always conjugate linear.

Remark 3.8. We do not assume that Γ is abelian so we will write the group operation
multiplicatively.

Proof. That A(G) is a complex algebra follows from [24, Proposition 4.6]. We must
verify that A(G) is a ∗-algebra and that A(G) is graded. The An are mutually linearly
independent because the Gn are disjoint and restriction of functions gives a vector-space
isomorphism of each An onto the space of locally constant functions on Gn. Observe that
the ∗-operation is a conjugate-linear involution on A(G) and takes An to An−1 . Next we
will show that the multiplication defined on A(G) is a graded multiplication. If f ∈ Am
and g ∈ An, then if (f ∗ g)(γ) 6= 0 we have f(α) 6= 0 and g(α−1γ) 6= 0 for some α with
r(α) = r(γ). In particular, c(α) = m, and c(α−1γ) = n forcing c(γ) = mn (because
c(γ) = c(αα−1γ) = c(α)c(α−1γ)). Hence supp(f ∗ g) ⊆ Gmn. �

We finish this section by presenting of A(G) as a universal algebra.

Definition 3.9. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. Let B be an
algebra over C. A representation of Bco

∗ (G) in B is a family {tU : U ∈ Bco
∗ (G)} ⊆ B

satisfying

(R1) t∅ = 0;
(R2) tU tV = tUV for all U, V ∈ Bco

∗ (G); and
(R3) tU + tV = tU∪V whenever U and V are disjoint elements of Bco

n (G) for some n such
that U ∪ V is a bisection.

The following theorem gives an alternative formulation of [23, Theorem 3.11].

Theorem 3.10. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. Then {1U :
U ∈ Bco

∗ (G)} ⊆ A(G) is a representation of Bco
∗ (G) which spans A(G). Moreover, A(G)

is universal for representations of Bco
∗ (G) in the sense that for every representation {tU :

U ∈ Bco
∗ (G)} of Bco

∗ (G) in an algebra B, there is a unique homomorphism π : A(G)→ B
such that π(1U) = tU for all U ∈ Bco

∗ (G).

Proof. The collection {1U : U ∈ Bco
∗ (G)} certainly satisfies (R1) and (R3), and it satis-

fies (R2) by [24, Proposition 4.5 (3)]. That this family spansA(G) follows from Lemma 3.5.
Let B be a complex algebra and let {tU : U ∈ Bco

∗ (G)} be a representation of Bco
∗ (G) in

B. We must show that there is a homomorphism π : A(G)→ B satisfying π(1U) = tU for
all U ∈ Bco

∗ (G); uniqueness follows from the previous paragraph. We begin by showing
that

(3.3)

∑
U∈F tU = t⋃F for n ∈ Γ and finite F ⊆ Bco

n (G) consisting of mutually

disjoint bisections such that
⋃
F ∈ Bco

n (G).

Let F ⊆ Bco
n (G) be a finite collection of mutually disjoint bisections such that

⋃
F is a

bisection. We claim that r(U)∩ r(V ) = ∅ for distinct U, V ∈ F . To see this, fix x ∈ r(U).
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There exists α ∈ U such that r(α) = x, and this α is the unique element of
⋃
F whose

range is x because
⋃
F is a bisection. Since U ∩ V = ∅, we have α 6∈ V and hence

x 6∈ r(V ). So the sets r(U) where U ∈ F are mutually disjoint as claimed. Thus each
U ∈ F satisfies U = r(U)(

⋃
F ). A standard induction extends (R3) to finite collections

of mutually disjoint compact open subsets of G(0). Combining this with (R2), we obtain

t⋃F = tr(
⋃
F )t

⋃
F =

∑
U∈F

tr(U)t
⋃
F =

∑
U∈F

t
r(U)
(⋃

F
) =

∑
U∈F

tU .

We show next that the formula
∑

U∈F aU1U 7→
∑

U∈F aU tU is well-defined on linear
combinations of indicator functions where F ⊆ Bco

∗ (G) is a finite collection of mutually
disjoint bisections. It will follow from Lemma 3.5 that there is a unique linear map
π : A(G) → B such that π(1U) = tU for each U ∈ Bco

∗ (G). Fix f ∈ A(G) and suppose
that ∑

U∈F aU1U = f =
∑

V ∈H bV 1V

where each of F and H is a finite set of mutually disjoint elements of Bco
∗ (G). We must

show that ∑
U∈F aU tU =

∑
V ∈H bV tV .

Since the Gn are mutually disjoint, for each n ∈ Γ we have∑
U∈F∩Bco

n (G)

aU1U = f |Gn =
∑

V ∈H∩Bco
n (G)

bV 1V ,

so we may assume that F,G ⊆ Bco
n (G) for some n ∈ Γ.

Let K = {U ∩ V : U ∈ F, V ∈ H,U ∩ V 6= ∅}. Then each W ∈ K belongs to
Bco
n (G). Moreover, for U ∈ F we have U =

⊔
{W ∈ K : W ⊆ U}. Hence (3.3) gives

tU =
∑

W∈K,W⊆U tW for each U ∈ F ; a similar decomposition holds for tV for each V ∈ H.
Therefore ∑

U∈F

aU tU =
∑
U∈F

∑
W∈K,W⊆U

aU tW =
∑
W∈K

( ∑
U∈F,W⊆U

aU

)
tW ,

and similarly ∑
V ∈F

bV tV =
∑
W∈K

( ∑
V ∈F,W⊆V

bV

)
tW .

Fix W ∈ K. It suffices now to show that
∑

U∈F,W⊆U aU =
∑

V ∈F,W⊆V bV . By definition
of K, the set W is nonempty, so let α ∈ W . Then for U ∈ F , we have α ∈ U =⇒
W ∩ U 6= ∅ =⇒ W ⊆ U . Since α ∈ W , this implies that α ∈ U ⇐⇒ W ⊆ U . Hence

f(α) =
∑
U∈F

aU1U(α) =
∑

U∈F, α∈U

aU =
∑

U∈F,W⊆U

aU .

a similar calculation shows that
∑

V ∈F,W⊆V bV = f(α) as well. So there is a linear map

π : A(G)→ B such that π(1U) = tU for all U ∈ Bco
∗ (G).

We must check that π is a homomorphism. To see that π is multiplicative, fix f, g ∈
A(G). Express f =

∑
U∈F aU1U and g =

∑
V ∈H bV 1V where F and H are finite subsets

of Bco
∗ (G), and calculate:

π(fg) = π
((∑

U∈F

aU1U

)(∑
V ∈H

bV 1V

))
= π

(∑
U∈F

∑
V ∈H

aUbV 1U1V

)
.
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Since [24, Proposition 4.5 (3)] gives 1U1V = 1UV for all U, V , we then have

π(fg) = π
(∑
U∈F

∑
V ∈H

aUbV 1UV

)
=
∑
U∈F

∑
V ∈H

aUbV tUV .

Each tUV = tU tV by (R2), so

π(fg) =
∑
U∈F

∑
V ∈H

aUbV tU tV =
(∑
U∈F

aU tU

)(∑
V ∈H

bV tV

)
= π(f)π(g)

as required. �

4. A(G) is dense in C∗(G)

Since our aim is to produce algebras associated to totally disconnected, locally compact,
Hausdorff groupoids whose relationship to the groupoid C∗-algebra is analogous to that
of Leavitt path algebras to graph C∗-algebras, we show in this section that the subalgebra
A(G) of Cc(G) is dense in the full (and hence also the reduced) C∗-algebra of G. We could
prove this as in [13, Proposition 4.1] or [24, Proposition 6.7] by using the Stone-Weierstrass
theorem, but a direct argument takes about the same amount of effort.

We first prove a technical lemma.

Lemma 4.1. Let G be a locally compact, Hausdorff, étale groupoid with totally discon-
nected unit space. Fix a compact open bisection U of G and suppose that f ∈ Cc(G) is
supported on U . Fix ε > 0. There exists a finite set V of nonempty compact open bisec-
tions of G such that U =

⊔
V and such that for each V ∈ V, we have |f(α) − f(β)| ≤ ε

for all α, β ∈ V .

Proof. For each γ ∈ U let Uγ be a compact open neighbourhood of γ such that Uγ ⊆ U
and |f(α)−f(γ)| < ε/2 for all α ∈ Uγ. Since U is compact, there is a finite subset F of U
such that {Uγ : γ ∈ F} covers U . Let V be the disjointification of the Uγ as in Remark 2.4.
Fix V ∈ V . Then there exists γ ∈ F such that V ⊆ Uγ, and then for α, β ∈ V , we have
|f(α)− f(β)| ≤ |f(α)− f(γ)|+ |f(γ)− f(β)| < ε. �

To state the next proposition, we recall from [21] that for a locally compact, Hausdorff,
étale groupoid G, the I-norm on Cc(G) is defined as follows. For f ∈ Cc(G), let

‖f‖I,r := sup
u∈G(0)

{ ∑
r(α)=u

|f(α)|
}

and ‖f‖I,s := sup
u∈G(0)

{ ∑
s(α)=u

|f(α)|
}
.

Then the I-norm of f is ‖f‖I := max{‖f‖I,r, ‖f‖I,s}. The I-norm dominates each of the
universal norm, the reduced norm, and the uniform norm on Cc(G). (See [21] for further
details.)

Proposition 4.2. Let Γ be a discrete group, G a locally compact, Hausdorff étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. With notation
as above, A(G) is dense in Cc(G) under each of the reduced norm, the universal norm,
the I-norm, and the uniform norm.

Proof. Since the I-norm dominates the other three norms, it suffices to prove the result
for the I-norm. Fix f ∈ Cc(G) and ε > 0. Since f has compact support, supp(f) can
be written as a finite union of elements of Bco

∗ (G). So we can write f =
∑n

i=1 fi where
each fi is supported on an element of Bco

∗ (G). For each i, apply Lemma 4.1 to supp(fi)
to obtain a cover Ui of the support of fi by disjoint compact open bisections such that for
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U ∈ Ui, we have |fi(α)− fi(β)| ≤ ε/n for all α, β ∈ Ui. For each i ≤ n and each U ∈ Ui,
fix zi,U ∈ f(U), so |fi(α)− zi,U | ≤ ε/n for all α ∈ U . Then let gi :=

∑
U∈Ui zi,U1U for all

i ≤ n and define g :=
∑n

i=1 gi ∈ A(G). We have

‖f − g‖I ≤
n∑
i=1

‖fi − gi‖I .

Fix i ≤ n. It suffices to show that ‖fi − gi‖I ≤ ε/n. Fix u ∈ G(0). Since fi is supported
on a bisection, there is at most one α ∈ s−1(u) ∩ supp(fi). If there is no such α, then∑

s(α)=u |(fi − gi)(α)| = 0 and we are done. So suppose that α ∈ s−1(u) ∩ supp(fi).

Then there is a unique U0 ∈ Ui such that α ∈ U0. Therefore
∑

s(α)=u |(fi − gi)(α)| =

|fi(α)− zi,U0| ≤ ε/n. Since u ∈ G(0) was arbitrary, we conclude that ‖fi− gi‖I,s ≤ ε/n. A
symmetric argument gives ‖(fi−gi)(α)‖I,r ≤ ε/n. Hence ‖fi−gi‖I ≤ ε/n as required. �

Proposition 4.3. Suppose that Λ is a row-finite, k-graph with no sources and that GΛ is
the corresponding k-graph groupoid. Then A(GΛ) as constructed above is isomorphic to
the Kumjian-Pask algebra KP(Λ,C).

Proof. By [11, Corollary 3.5], tλ := 1Z(λ,s(λ)) determines a Cuntz-Krieger Λ-family in
C∗(G). In particular, there is a Kumjian-Pask family ([3, Definition 3.1]) for Λ determined
by tλ = 1Z(λ,s(λ)) and tλ∗ = 1Z(s(λ),λ) for all λ ∈ Λ. It follows from the universal property
of KP(Λ,C) that there is a homomorphism φ : KP(Λ,C)→ A(GΛ) which carries each sλ
to tλ and each sλ∗ to tλ∗ .

By [3, Theorem 3.4] the algebra KP(Λ,C) is spanned by the elements tµtν∗ where
µ, ν ∈ Λ with s(µ) = s(ν), and the Z-grading of KP(Λ,C) carries each sµsν∗ to d(µ)−d(ν).
So to see that φ is graded, it suffices to show that it preserves the grading of each sµsν∗ ,
which it does since

φ(sµsν∗) = 1Z(µ,ν) = 1{(µx,d(µ)−d(ν),νx):x∈Λ∞,r(x)=s(µ)} ∈ Ad(µ)−d(ν).

Since each Z(v) is nonempty, φ(pv) 6= 0 for each v ∈ E0. Thus the graded uniqueness
theorem for Kumjian-Pask algebras [3, Theorem 4.1] implies that φ is injective.

It remains to show that φ is surjective. By Lemma 3.3, A(GΛ) is spanned by the
functions 1U where U ranges over all compact open bisections in GΛ. Let U be a compact
open bisection. Since the grading is continuous and U is compact, we can write 1U as
the finite sum

∑
U∩Gn 6=∅ 1U∩Gn where each U ∩ Gn is a graded compact open bisection.

So fix n ∈ Nk and a compact open n-graded bisection V . It suffices to show that 1V ∈
span{1Z(µ,ν) : s(µ) = s(ν)}. Because V is compact and the sets Z(µ, ν) form a basis for
the topology on GΛ [11, Proposition 2.8], we can write V =

⋃
(µ,ν)∈F Z(µ, ν) for some finite

set F ⊆ {(µ, ν) ∈ Λ × Λ : s(µ) = s(ν)}. Since V is n-graded, we have d(µ) − d(ν) = n
for all (µ, ν) ∈ F . Let p :=

∨
(µ,ν)∈F d(µ). Then for each (µ, ν) ∈ F we have Z(µ, ν) =⋃

{Z(µα, να) : α ∈ s(µ)Λp−d(µ)}. Let H := {(µα, να) : (µ, ν) ∈ F, α ∈ s(µ)Λp−d(µ)}.
Then Z(η, ζ) ∩ Z(η′, ζ ′) = ∅ for distinct (η, ζ), (η′, ζ ′) ∈ H, so V =

⊔
(η,ζ)∈H Z(η, ζ).

Hence 1U =
∑

(η,ζ)∈H 1Z(η,ζ), and it follows that φ is surjective. �

Remark 4.4. When k = 1 in the preceding proposition, Λ is the path category of the
directed graph E = (Λ0,Λ1, r, s) and, in this case, the proposition specialises to the
statement that A(G) is isomorphic to the Leavitt path algebra of [1].
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5. The uniqueness theorems

Interestingly, in the situation of groupoids, the graded uniqueness theorem is a corollary
of the natural generalisation of the Cuntz-Krieger uniqueness theorem. This in turn is
essentially Renault’s structure theorem for the reduced C∗-algebra of a groupoid in which
the units with trivial isotropy are dense in the unit space. This condition has been referred
to, variously, as “topologically free”, “topologically principal”, “essentially free.”

Given a unit u, it is standard to denote the isotropy subgroup {α ∈ G : r(α) = s(α) =
u} by either G(u) or Gu

u. Here we have chosen the more suggestive notation uGu, which
is in keeping with the notation established in (2.1). Likewise, we write Gu for s−1(u).

Theorem 5.1. Let G be a locally compact, Hausdorff, étale groupoid with totally discon-
nected unit space. Suppose that {u ∈ G(0) : uGu = {u}} is dense in G(0). Let π : A(G)→
B be a ∗-homomorphism into a complex ∗-algebra B. Suppose that ker(π) 6= {0}. Then
there is a compact open subset K ⊆ G(0) such that π(1K) = 0.

Remark 5.2. To see why the hypothesis that the units with trivial isotropy are dense is
needed in Theorem 5.1, consider the situation where G = Z/2Z regarded as a groupoid
with one unit 0. Then A(G) is the group algebra Cδ0 + Cδ1, and the map π : A(G)→ C
such that π(δ0) = π(δ1) = 1 is a ∗-homomorphism of A(G) which is not injective, but
which restricts to an injective representation of Cc(G

(0)) = Cδ0. A related construction
applies for arbitrary G — see [5, Proposition 4.4].

To prove Theorem 5.1, we need a technical lemma.

Lemma 5.3. Let G be a locally compact, Hausdorff, étale groupoid. Fix α ∈ G and
a precompact neighbourhood V of α. Suppose that r(α)Gs(α) = {α}. Then there exist
neighbourhoods X of r(α) and Y of s(α) such that XV Y is a precompact open bisection.

Proof. Suppose, to the contrary, that for every neighbourhood X of r(α) and every neigh-
bourhood Y of s(α), XV Y fails to be a bisection. Let U be an open bisection containing
α. Fix a fundamental sequence of neighbourhoods (Yi)

∞
i=1 of s(α), and for each i, let

Xi := r(UYi), so that (Xi)
∞
i=1 forms a fundamental sequence of neighbourhoods of r(α).

Since each XiV Yi fails to be a bisection, for each i there exist βi, γi ∈ XiV Yi with βi 6= γi
such that either s(βi) = s(γi) or r(βi) = r(γi) for all i. The sequence

(
(βi, γi)

)∞
i=1

belongs
to the precompact set V×V , so by passing to a subsequence and relabelling we may assume
that βi → β and γi → γ. Since the Xi and Yi are fundamental sequences of neighbour-
hoods, it follows that r(βi), r(γi) → r(α) and s(βi), s(γi) → s(α). Since r, s : G → G(0)

are continuous and G(0) is Hausdorff, r(β) = r(α) = r(γ) and s(β) = s(α) = s(γ). By
hypothesis, s(α)Gr(α) = {α}, so we have β = γ = α. Since U is a neighbourhood of α,
we then have βi, γi ∈ U for large i. Fix i such that βi, γi ∈ U . Then βi 6= γi but either
r(βi) = r(γi) or s(βi) = s(γi), contradicting that U is a bisection. �

Proof of Theorem 5.1. Fix f ∈ ker(π) \ {0}. Since s is a local homeomorphism, it is
an open map, and since f is locally constant, we deduce that s(supp(f)) ⊆ G(0) open.
Because {u ∈ G(0) : uGu = {u}} is dense in G(0), there exists u ∈ s(supp(f)) such that
uGu = {u}. Fix α ∈ supp(f) with s(α) = u. Then r(α)Gs(α) = α(α−1Gu) ⊆ α(uGu) =
{α}.

By Lemma 5.3, there exist compact open neighbourhoods X of r(α) and Y of s(α)
such that X supp(f)Y is a bisection containing α. Because r and s are continuous,
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X supp(f)Y = r−1(X) ∩ supp(f) ∩ s−1(Y ) is compact. Since f is locally constant,
X supp(f)Y is also open and there exist subneighbourhoods X0 ⊆ r(X supp(f)Y ) of r(α)
and Y0 ⊆ s(X supp(f)Y ) of s(α) such that X0 supp(f)Y0 is a compact open bisection and
f(β) = f(α) for all β ∈ X0 supp(f)Y0.

We have 1X0 , 1Y0 ∈ A(G). By Lemma 3.3, f may be written as a linear combination
of characteristic functions of compact open bisections. [24, Proposition 4.5 (3)] together
with bilinearity of multiplication implies that for β ∈ G,

(1X0 ∗ f ∗ 1Y0)(β) = 1X0(r(β))f(β)1X0(s(β)) = 1X0 supp(f)Y0(β)f(β) = 1X0 supp(f)Y0(β)f(α).

Thus f0 := 1X0 ∗ f ∗ 1Y0 = f(α)1X0 supp(f)Y0 . Since π(f) = 0, we have π(f0) = 0. We
have (X0 supp(f)Y0)−1(X0 supp(f)Y0) = Y0 because X0 supp(f)Y0 is a bisection. [24,
Proposition 4.5 (3)] implies that

f ∗0 ∗ f0 = |f(α)|21(X0 supp(f)Y0)−1(X0 supp(f)Y0) = |f(α)|21Y0 .

Hence K := Y0 satisfies π(1K) = 1
|f(α)|2π(f ∗0 ∗ f0) = 0 as required. �

Our graded uniqueness theorem now follows from a bootstrapping argument.

Theorem 5.4. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. Suppose that
{u ∈ G(0) : uGeu = {u}} is dense in G(0). Let B be a complex ∗-algebra and let π :
A(G) → B be a graded ∗-homomorphism. Suppose that ker(π) 6= {0}. Then there is a
compact open subset K ⊆ G(0) such that π(1K) = 0.

Proof. We first claim that there exists nonzero f ∈ Ae such that π(f) = 0. To see this,
observe that since ker(π) 6= 0, there exists g ∈ ker(π) \ {0} such that π(g) = 0. Since g
is an element of the graded algebra A(G), g can be expressed as a finite sum of graded
components g =

∑
h∈F gh where F ⊆ Γ and each gh ∈ Ah. Now π(g) =

∑
h∈F π(gh) = 0,

and each π(gh) ∈ Bh because π is a graded homomorphism. Because the graded subspaces
of B are linearly independent, it follows that each π(gh) = 0. Since g 6= 0, there exists
k ∈ F such that gk 6= 0. By Lemma 3.5, we can write gk as

∑
V ∈K aV 1V where K is a

finite set of mutually disjoint elements of Bco
k (G). Note that g∗k =

∑
V ∈K aV 1V −1 ; define

f := g∗k ∗ gk. We claim that f ∈ Ae \ {0} and π(f) = 0. To see this, first notice that

f =
(∑
V ∈K

aV 1V −1

)
∗
( ∑
W∈K

aW1W

)
=
∑

V,W∈K

aV aW1V −1 ∗ 1W =
∑

V,W∈K

aV aW1V −1W

by [24, Proposition 4.5 (3)]. Now, because each V ∈ K is a subset of Gk, each V −1W ⊆
Gk−1k = Ge, and thus f ∈ Ae as claimed. We have π(f) = 0 because π(gk) = 0.

To show that f is nonzero, fix α ∈ Gk such that g(α) 6= 0. Since the elements of K are
mutually disjoint, there is a unique Vα ∈ K such that α ∈ Vα, and then aVα = g(α) 6= 0.
Since s is a local homeomorphism, Gs(α) is a discrete space. Write Cc(Gs(α)) for the
space of finitely supported functions from Gs(α) to C and for each β ∈ Gs(α) let δβ
denote the point-mass at β so that Cc(Gs(α)) = span{δβ : β ∈ Gs(α)}. For f ∈ Cc(G),
let ρ(f) be the linear map on Cc(Gs(α)) determined by

ρ(f)δβ =
∑

s(α)=r(β)

f(α)δαβ.

Let (· | ·) be the standard inner product on Cc(Gs(α)), that is (f |g) =
∑

β f(β)g(β). Since

the elements of K are mutually disjoint,
(
ρ(1V )δs(α) | ρ(1W )δs(α)

)
= 0 for distinct V,W ∈
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K. A calculation shows that for V ∈ K and β, γ ∈ Gs(α), we have (δβ|ρ(1V −1)δγ) =
(ρ(1V )δβ|δγ). Hence(

ρ(f)δs(α) | δs(α)

)
=
(
ρ(gk)δs(α) | ρ(gk)δs(α)

)
=
∑

V,W∈K

aV aW
(
ρ(1W )δs(α) | ρ(1V )δs(α)

)
=

∑
V ∈K,

s(α)∈s(V )

|aV |2 ≥ |aVα|2.

Hence ρ(f) 6= 0 which forces f 6= 0.
By hypothesis {u ∈ G(0) : uGeu = {u}} is dense in G(0). By definition, Ae is equal

to the space of locally constant, continuous, compactly supported functions on Ge, so we
may apply Theorem 5.1 to see that π|Ae : Ae → B annihilates 1K for some compact open

K ⊆ G
(0)
e = G(0). �

Corollary 5.5. Let Γ be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → Γ a continuous cocycle. Suppose that
{u ∈ G(0) : uGeu = {u}} is dense in G(0). Let B be a Γ-graded complex algebra and let
{tU : U ∈ Bco

∗ (G)} be a representation of Bco
∗ (G) in B. Suppose that tU ∈ Bn whenever

U ∈ Bco
n (G) and that tK 6= 0 for each compact open K ⊆ G(0). Then the homomorphism

π : A(G)→ B obtained from Theorem 3.10 is injective.

Proof. Since each A(G)n is spanned by {1U : U ∈ Bco
n (G)}, the homomorphism π is

graded. Since π(1K) = tK 6= 0 for all compact open K ⊆ G(0), it follows from Theorem 5.4
that ker(π) = {0}. �

Remark 5.6. Suppose that G is a locally compact, Hausdorff, étale groupoid with totally
disconnected locally compact unit space such that {u ∈ G(0) : uGu = {u}} is dense in
G(0). We may apply Corollary 5.5 with c the trivial cocycle to prove that A(G) is the
unique algebra generated by nonzero elements {tU : U is a compact open bisection of G}
satisfying

(1) t∅ = 0;
(2) tU tV = tUV for all compact open bisections U, V ; and
(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections whose

union is a bisection.

Remark 5.7. In the proof of Theorem 5.4, to see that the function g∗k ∗ gk was nonzero, we
really just checked that its image under Renault’s left-regular representation of G associ-
ated to the unit s(α) is nonzero. However, since we are not working in a C∗-completion,
we can do everything at the level of linear algebra rather than on Hilbert space. We could
instead have appealed to the C∗-identity by regarding A(G) as a subalgebra of Cr(G),
but chose a more elementary argument: our argument is essentially that used by Renault
to show that the reduced norm is positive definite on Cc(G).

Remark 5.8. Recall from [9] that if Λ is a finitely aligned k-graph, then the k-graph
groupoid GΛ is totally disconnected and locally compact, and carries a Zk-grading such
that {u ∈ G(0) : uGeu = {u}} is dense in G(0). So our graded uniqueness theorem applies
to A(GΛ) for any finitely aligned k-graph. Likewise, Remark 5.6 suggests a Cuntz-Krieger
uniqueness theorem for A(GΛ). But in practise the relations described in Definition 3.9
and Remark 5.6 are much harder to verify than those of [3, Definition 3.1].
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We do not, at this stage, have any invariants at our disposal to decide whether, given
groupoids G and G′ satisfying our hypotheses, the algebras A(G) and A(G′) are or are
not isomorphic. It would be very interesting to develop computable algebraic invariants
of A(G) for this purpose, but it is beyond the scope of this paper.

However, as an indication that our construction is more flexible the construction of
Kumjian-Pask algebras in [3], we describe a class of groupoids that satisfy our hypotheses
but do not obviously arise from k-graphs.

Example 5.9. Let T : X → X be a surjective local homeomorphism of a totally discon-
nected, compact, Hausdorff space X. Define T 0 := id and for k ≥ 2 let T k := T ◦ · · · ◦ T
be the k-fold self-composite of T . Let G be the Deaconu-Renault groupoid defined in [10,
Section 3]. So

G = {(x, n, y) ∈ X × Z×X : T k(x) = T l(y), n = k − l}.
Let G(0) be the subset {(x, 0, x) : x ∈ X}, which we identify with X in the obvious
way. The range and source maps are given by r(x, n, y) = x and s(x, n, y) = y. Hence
triples (x1, n1, y1) and (x2, n2, y2) are composable if and only if x2 = y1, in which case
(x1, n1, y1)(x2, n2, y2) := (x1, n1 + n2, y2). The inverse of (x, n, y) is (y,−n, x). For open
subsets U, V ⊆ X and k, l ≥ 0 such that T k|U and T l|V are homeomorphisms and T k(U) =
T l(V ), define

Z(U, V, k, l) := {(x, k − l, y) ∈ G : x ∈ U, y ∈ V }.
Then

{Z(U, V, k, l) : U, V ⊆ X are compact open, k, l ≥ 0,

T k|U and T l|V are homeomorphisms and T k(U) = T l(V )}
is a basis of compact open sets for a topology on G under which it becomes a locally
compact, Hausdorff groupoid with totally disconnected unit space X. Fix (x, n, y) ∈ G
and k, l such that k − l = n and T k(x) = T l(y). The source map on G restricts to
a homeomorphism on each basic open set Z(U, V, k, l) so is a local homeomorphism.
Moreover, the map c : G → Z defined by c((x, n, y)) = n is a cocycle and is continuous
because each basic open set belongs to some c−1(n). Hence (G, c) satisfies our hypotheses,
and A(G) is a sensible candidate for the Leavitt algebra of (X,T ).
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