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Genomewide linkage scan of schizophrenia in a large multicenter pedigree
sample using single nucleotide polymorphisms

Abstract

A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families.
After all quality control checks, the analysis of 707 European-ancestry families included 1615 affected and
1602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839
unaffected individuals. Multipoint linkage analysis with correction for marker-marker linkage disequilibrium
was carried out with 5861 single nucleotide polymorphisms (SNPs; Illumina version 4.0 linkage map).
Suggestive evidence for linkage (European families) was observed on chromosomes 8p21, 8q24.1, 9934 and
12q24.1 in nonparametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage
allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on
chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for
linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-LOD support
interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci
might exist in the region. In this era of genomewide association and deep resequencing studies, consensus
linkage regions deserve continued attention, given that linkage signals can be produced by many types of
genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a
region.
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Abstract

A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia
families. After all quality control checks, the analysis of 707 European-ancestry families included
1,615 affected and 1,602 unaffected genotyped individuals, and the analysis of all 807 families
included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with
correction for marker-marker linkage disequilibrium was carried out with 5,861 single nucleotide
polymorphisms (SNPs; Illumina 4.0 linkage map). Suggestive evidence for linkage (European
families) was observed on chromosomes 8p21, 8924.1, 9934 and 12g24.1 in non-parametric and/
or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for
intersite heterogeneity, genomewide significant evidence for linkage was observed on
chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1.

Contact: Douglas F. Levinson, M.D., Department of Psychiatry, Stanford University, 701 Welch Rd. Suite A-3325, Palo Alto, CA
94305 (650-724-2827, fax 650-724-3263, dflev@stanford.edu).



Holmans et al.

Page 2

Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21,
with a one-lod support interval that does not include the candidate gene NRG1, suggesting that
one or more other susceptibility loci might exist in the region. In this era of genomewide
association and deep resequencing studies, consensus linkage regions deserve continued attention,
given that linkage signals can be produced by many types of genomic variation, including any
combination of multiple common or rare SNPs or copy number variants in a region.
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Genome; Human; Genotype; Humans; Schizophrenia/*genetics; Genetic Predisposition to
Disease; *Linkage (Genetics)

Introduction

Two major methods are currently available to scan the genome to detect disease
susceptibility loci: genomewide linkage studies (GWLS) and genomewide association
studies (GWAS). We report here on a GWLS of eight samples of families with multiple
cases of schizophrenia (SCZ) using a dense map of single nucleotide polymorphism (SNP)
markers, and the companion paperl reports on a meta-analysis of thirty-two SCZ GWLS
including the eight samples studied here.

GWLS uses hundreds or thousands of DNA markers to detect the broad regions (millions of
base pairs) within which there are most likely to be disease susceptibility loci, based on the
pattern of within-family correlations between marker alleles and disease. GWAS uses
hundreds of thousands of SNPs that tag (serve as proxies for) most of the common SNPs in
the genome, to identify small regions (tens of thousands of base pairs) likely to harbor
susceptibility variants. GWAS can detect loci with much weaker genetic effects if they are
due to common SNPs. For common, genetically complex disorders, GWAS have proven
more successful than GWLS in producing robust and well-replicated associations.2
However, there are genetic effects for which GWLS can be more powerful, including loci
with multiple rare pathogenic mutations in different families, or several different
susceptibility loci in the same region.

The present study is a collaboration of seven research groups using pedigree samples
collected by each group3™11 plus a publicly-available samplel2, totalling over 800
pedigrees with ill individuals in constellations that are informative for linkage analysis. We
previously carried out a set of studies of candidate linkage regions.13716 We now report on
a new genomewide linkage scan of the entire sample. Whereas previously around 70% of
these families had been included in published linkage scans using microsatellite
markers3:5:6:10:11:17719, we have now scanned all available families using a set of almost
6,000 SNP markers genotyped with high accuracy, extracting on average around 90% of the
possible linkage information from these pedigrees. In analyses of 707 European-ancestry
pedigrees, significant linkage accounting for cross-site heterogeneity was observed on
chromosome 10p, and suggestive evidence for linkage on chromosomes 8p, 8q and 12q, as
well 9g when non-European families were included.

Materials and Methods

Subjects

The sample is described in Tables 1 and 2. Recruitment by each research group has been
previously described.3712 Here, affected cases included probands with DSM-IIIR diagnoses
of SCZ and relatives with SCZ or schizoaffective disorder, which co-segregates with SCZ in
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families20 and is often not differentiated reliably from SCZ.21 Consensus diagnoses were
based on information from semi-structured interviews, psychiatric records and family
informants.

Genotyping was carried out at the Center for Inherited Disease Research (CIDR) using the
Illumina GoldenGate assay22 to analyze the Illumina version 4 linkage marker set of 6,008
SNPs. SNPs were excluded by CIDR (N=53) based on internal quality control (QC) criteria,
and by the investigators (N=36) for more than 3 parent-child inheritance errors or deviation
from Hardy-Weinberg equilibrium at p < 0.001, leaving 5,861 autosomal or X chromosome
SNPs for analyses. deCODE23 map locations were provided by Illumina. There were 0.09%
missing genotypes, 0.12% Mendelian inconsistencies prior to QC checks (0.00138% in the
analyzed SNPs), and 0.002% discordant genotypes in 224 blind duplicate specimens. There
were 132 DNAs excluded for poor performance in genotyping of a preliminary forensic
panel or the full SNP panel; and 60 for inconsistency with reported sex, Mendelian
inconsistencies greater than 0.5% or sample call rates less than 98%.

Pedigree relationship analyses

Pairwise identity-by-descent (IBD) proportions were analyzed for all pairs of subjects using
PLINK24, and differences between specified and actual relationships within families were
analyzed using PREST.25 As a result, 50 DNAs were excluded to resolve pairs of identical
specimens, 3 families were excluded because genotypic relationships did not fit the family
and 8 because the same family was found in two different samples (JHU-NIMH, JHU-ENH,
ENH-NIMH or Cardiff-VCU). Pedigree structures were also corrected (e.g., half-sib vs. full-
sib relationships) as required.

Because of the high accuracy of genotyping with a dense SNP map that facilitated analysis
of relationships, and the enlarged samples, the present data replace previous analyses of
candidate regions by this collaboration for this narrow phenotypic model.13716

Assignment of families to ancestry subsamples

Families were assigned to predominantly European (EUR), African-American or African-
European (AFR), or “other” (OTH) groups based on STRUCTURE26 analysis of 49
independent autosomal SNPs which had large allele frequency differences between
ancestries (0.5-0.69 EUR vs. AFR, 0.3-0.47 for EUR vs. OTH) in this sample based on
investigator-reported ancestries, or based on public databases. EUR or AFR families had an
estimated 70% or more ancestry from that group, otherwise the family was considered OTH.
Members of these groups had a mean 98% or 96% ancestry, respectively, from that group.
Analyses were carried out for EUR families and then for ALL families (using allele
frequencies estimated separately for EUR, AFR and OTH groups27).

Statistical analyses

The planned primary multipoint linkage analysis of EUR families used the Spy,rs Statistic
(ZLikelihoodratio @nd its Kong-Cox equivalent lod score28 under the exponential model)
computed with MERLIN29 using MERLIN’s correction for LD within clusters of markers
based on a threshold of r2 greater than 0.05 for consecutive pairs of markers30. Prior to
analyses, unlikely genotypes were detected and excluded using MERLIN.31

Additional analyses included: (1) Spaspsanalysis of ALL families using ALLEGRO 2.032
(analyzing each ancestry subset with it own allele frequencies) with a “no-LD map” of 4,365
autosomal and X chromosome SNPs with no marker-marker r2 greater than 0.05 (because
ALLEGRO cannot correct for LD); (2) the Kong-Cox exponential Sy, statistic which
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gives more weight to larger families (results were similar and are not shown here, but are
included in online supplementary files); (3) parametric heterogeneity lod score (hlod)
analysis under dominant (risk allele frequency = 0.05; penetrances = 0, 0.001 and 0.001) and
recessive (risk allele frequency = 0.1, penetrances = 0, 0 and 0.001) models, using MERLIN
for EUR and ALLEGRO (and the no-LD map) for ALL families; (3) logistic regression
analysis of IBD sharing33+34 to assess heterogeneity across sites, linkage while accounting
for heterogeneity, effects of parent-of-origin of each allele and of sex of the affected pair
(M-M, M-F, F-F), and interactions between linkage regions (see online Supplementary
Table 5 for description).

Thresholds for significant (0.05 or fewer peaks expected genomewide per genome scan) and
suggestive (less than 1 peak per scan) evidence for linkage were determined by simulation
for nonparametric and parametric analyses analysis using data generated under the
assumption of no linkage. “Peaks” were defined as local maxima at least 30 cM from
another peak. The empirical threshold for parametric analysis was corrected for two tests by
taking the maximum result of the dominant and recessive analyses of simulated replicates at
each point.

All genotypic data for this study will be made available to qualified scientists by the NIMH
Center for Genetic Studies (nimhgenetics.org).

Nonparametric and parametric linkage analyses

The empirical lod or hlod thresholds for suggestive linkage were 1.94 for nonparametric and
2.21 for parametric tests, or 3.26 and 3.66 for significant linkage. Mean information content
was 0.88 (S.D. 0.026) using MERLIN’s entropy measure (reflecting potential information
with fully informative markers) and 0.908 (SD, 0.028) using ALLEGRO’s exponential
measure (measuring potential information given the constellation of genotyped relatives).

Figure 1 shows Kong-Cox lods and dominant and recessive hlod scores for EUR and ALL
families. Table 2 lists the maximum lod and hlod scores in each analysis on each
chromosome. The nonparametric analysis of EUR families, considered the primary analysis
here, produced suggestive evidence for linkage on chromosome 8p21 (in EUR families, lod
=2.00, 45.9 cM; in ALL families, lod = 2.51, 46.4 cM, with the latter, larger score at 26.61
bp). The dominant and recessive analyses were considered an alternative approach, and
suggestive evidence for linkage (taking both tests into account as noted above) was observed
on chromosomes 8p21, 8g24.1, 9934 and 12g24.1 in non-parametric and/or parametric
analyses (see Table 1 for details). Evidence for linkage was most consistent for chromosome
8p21 (five of the six analyses).

Heterogeneity and linkage allowing for heterogeneity

Table 3 shows the results of the logistic regression analysis of linkage while allowing for
intersite heterogeneity, in EUR families. Highly significant genomewide evidence for
linkage with heterogeneity was observed on chromosome 10p12 (see Table 3 legend for
additional details). Chromosome 8p21 again produced suggestive evidence for linkage both
with and without heterogeneity in this analysis. Results of tests for intersite heterogeneity
(i.e., the difference between lods with and without allowing for heterogeneity) are shown in
online Supplementary Table 1. Significant heterogeneity was observed on chromosome 10p
(45.6 cM) and 22g11.1 (0 cM).



Holmans et al.

Page 5

Supplementary online files provide details of parametric and nonparametric linkage scores,
genetic location and information content for each analyzed point for each analysis in the
entire sample for EUR and ALL families, as well as the full and No-LD marker maps.
Online files for the companion meta-analysis paperl provide ranked results for each of our 8
samples separately and for EUR and ALL families separately.

Other analyses

No significant chromosome-wide effects were observed for sex of the affected pair or parent
of origin (online Supplementary Tables 3 and 4). Online Supplementary Table 5 shows
results of interaction analyses for all pairs of 18 regions with Kong-Cox lod scores greater
than 1. No genomewide significant interactions were observed. The online table legend
includes a list of the most significant empirical interaction p-values.

Discussion

Suggestive evidence for linkage was detected on chromosome 8p21 in multiple analyses: in
nonparametric, dominant and recessive analyses of 707 European-ancestry families, and in
nonparametric and dominant analyses of all 807 families.

This same region produced suggestive evidence for linkage (and the largest peak), in the
independent Molecular Genetics of Schizophrenia (MGS) sample35 of 409 European-
ancestry and African American families. Our peak results were between 45.9-46.8 cM
(between rs1561817 and rs9797, 26.59-27.65 Mb; deCODE linkage map and genome build
36.3 physical locations). The MGS peak was at 43.3 cM for all families (near rs196886 at
24.79 Mb), while in European-ancestry families it was at 15.3 ¢cM (8p23, near rs7834209 at
6.9 Mb), with a slightly smaller peak at 34.6 cM (8p21, near rs34393111 at 20.28 Mb), and
suggestive evidence for linkage extended beyond our peak scores. Pulver and colleagues
were the first to report preliminary36 and then strongly suggestive evidencel0 for linkage of
SCZ to chromosome 8p markers in much of the JHU sample that is included here. We
previously reported support for 8p linkage in a study of microsatellite markers in a majority
of the families in the present analysis13, consistent with results in this enlarged sample.

The most widely-studied 8p candidate gene is NRG1 (neuregulin 1), found to be associated
with SCZ by Stefansson et al.37 in a linkage disequilibrium mapping study of a suggestive
linkage peak observed in Icelandic families (there were two 8p peaks in that analysis, with
the second one closer to ours), with supportive evidence in some datasets.38 There are
several indications that, if there is linkage on chromosome 8p, it is not entirely explained by
NRGL1. Here, lod scores within one unit of the maximum (1-lod interval) were observed
between 21.37-29.36 Mb, whereas NRG1 is between 32.53-32.74 Mb. (The 1-lod interval
is a reliable confidence interval in studies of Mendelian disorders, but not for complex
disorders.) In the companion meta-analysis paperl, the second “bin” on chromosome 8 (8.2,
28.1-56.2 cM, ~ 15.7-33 Mb) produced the strongest (suggestive) evidence for linkage in
22 European-ancestry datasets, and was ranked eighth in the analysis of all 32 datasets.
NRG1 is at the centromeric edge of that bin (~ 55.7 cM), so one would expect that if it
explained the linkage, the signal would extend equally in the centromeric and telomeric
directions, but support for linkage was not observed in more centromeric bins (bin 8.3 in the
primary analysis, from 56.2-84.3 cM; bin 8.4 in the “20 cM” analysis from 56.2—75 cM; or
bin 8.3 in the “30 cM” shifted analysis from 42.15-70.25 cM).1 We hypothesize that there is
weak linkage to SCZ on chromosome 8p, due to one or more loci in which there are multiple
rare risk-associated SNPs and/or structural variants and/or multiple associated common
SNPs. There are other candidate genes on 8p (see discussion in the meta-analysis paperl), it
is not yet clear what accounts for the evidence for linkage in this region.
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Suggestive evidence for linkage was observed on chromosome 9q in the dominant analysis
of all families. Support for this region in other analyses was modest, but not substantially
different than the evidence for 8p. This region is not supported by previous linkage findings
or the meta-analysis.1

Genomewide significant evidence for linkage allowing for intersite heterogeneity was
observed on chromosome 10p12 at 45.6 cM (21.28 Mb). We previously reported modest
evidence for heterogeneity in this region14, and in that report we also reviewed the evidence
for 10p linkage reported previously in the NIMH-SGI, VCU/Ireland and part of the Bonn/
Perth samples studied here. A significant signal is now seen in the present expanded sample,
with a denser marker map, due to allele sharing in the ParissCNRS, NIMH-SGI and (to a
lesser degree) the VCU samples (online Supplementary Table 2). There is no indication of a
high-penetrance signal from a small subset of families: the NIMH sample includes small
nuclear families from the general U.S. population; and although there are some large,
extended pedigrees in the ParissCNRS sample from La Réunion Island, most of the families
with positive lod scores were small families from the general French population, and no
single family had a lod score (Kong-Cox, dominant or recessive) greater than 1.4. Because
we combined families from eight previously-colected datasets, we do not have a consistent
set of clinical ratings across samples to search for a possible clinical basis for linkage
heterogeneity. The 10p peak is not supported by meta-analysis1, and is far from the
chromosome 10q peaks observed between 100-110 cM in two independent studies39-40.

Significant heterogeneity (but not linkage with heterogeneity) was seen on chromosome 22q
at 15 Mb, adjacent to the typical region (17-21 Mb) of the 22q11 deletion syndromes whose
manifestations include SCZ in approximately 20% of cases.41 This deletion was detected in
less than 0.5% of SCZ cases in two recent large studies.42:43 No consistent association
signals have been observed to date between SCZ and common SNPs in candidate genes
within the deletion region.

Two other regions, on chromosomes 8qg24.1 and 12g24.1, produced suggestive evidence for
linkage in at least one analysis, both reportedly linked to mood disorders rather than SCZ.
On 8q, a combined analysis of genotypes from 11 linkage scans (1,067 families) produced a
nonparametric lod score of 3.40 at 134.5 Mb, just telomeric to our 1-lod interval, in an
analysis of bipolar-1 and bipolar-I1 cases, but the signal was much smaller in an analysis of
only bipolar-1.44 Given that by definition only bipolar-1 can include psychosis (usually in
around half of cases), one would not predict that the same locus in this region would account
for linkage signals to bipolar disorder and SCZ. On chromosome 12q, there have been
reports of linkage to major depressive45:46 and bipolar disorders (see review by Barden et
al.47) with peak locations ranging from 97.4-126.5 Mb -- 116-126 Mb in bipolar studies,
close to our peak at 111 Mb. Neither region was supported by the SCZ linkage meta-
analysis.1

In the linkage meta-analysis1, genomewide significant evidence for linkage was detected on
chromosome 2q (132-162 cM, 121-152 Mb), with some support for linkage across a broad
region (118-176 cM and 206-235 cM). In the present study, we see a jagged line across
chromosome 2q (Figure 1), reflecting diverse peaks in different samples, although without
statistically significant evidence for heterogeneity. Our largest peak was in the
nonparametric EUR analysis at 206.6 cM (210.87 Mb). Thus, in our data and in the meta-
analysis of 32 datasets, linkage evidence on 2q is intriguing but poorly localized. Thus, in
our data and in the meta-analysis of 32 datasets, linkage evidence on 2q is intriguing but
poorly localized. It was recently reported that a SNP in ZNF804A, at 185 Mb on 2q,
produced genomewide significant evidence for linkage when a large collaborative SCZ
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association sample was combined with bipolar disorders cases from the Wellcome Trust
Case Control Consortium project.48

What is the relevance of linkage studies as the field moves on to GWAS and large-scale
resequencing methods? Meta-analysis provides some support for quite modest linkage
signals.1 Thus, no gene is likely to have a large effect on overall population risk. In this
situation, GWAS methods have better power2, but (currently) only for common SNPs.
GWAS technologies can also detect some but not all copy number variants (CNVs). Recent
studies suggest that rare deletions on chromosomes 1q and 15q (as well as 22g11)
predispose to SCZ42:43:49 50; and that SCZ cases also have a small but significant excess
of very rare CNVs, some of which might therefore also be pathogenic. These findings
support the more general hypothesis of multiple rare genomic events (SNPs, CNVs, other
structural changes) influencing risk for a common disease.51753

High-penetrance CNVs like those on 1q and 15q have effects such as mental retardation
and/or autism, consistent with the observation that they reduce fertility and thus are usually
de novo mutations rather than transmitted in families. But most SCZ risk variants probably
have smaller effects: the risk to probands’ siblings is around 5%20, and if one allows for a
small proportion of cases to be due to high-penetrance CNVs, the remaining risk should be
due to lower-penetrance variants which would thus be transmitted in families. It is possible
that weak SCZ linkage signals are in regions where there are multiple rare as well as
common risk variants, whose aggregate frequency and effects are sufficient to produce a
linkage signal, and whose effects on fertility are not too severe. We refer here both to
deleterious transmitted and/or recurring sequence and structural polymorphisms with low
population frequencies, and to very rare and thus very deleterious variants that segregate in
different families, i.e., extreme allelic heterogeneity.

One approach to finding these variants would be high-throughput resequencing studies of
linkage regions. For example, significant differences have been found in the proportions of
high- and low-risk individuals carrying very rare non-synonymous coding SNPs for some
diseases.54755 This approach has not yet been attempted for schizophrenia in a large
sample, thus we lack information to predict the power or optimal design of such studies. If a
region in fact contained a sufficient number of rare high-risk variants to produce a linkage
signal, then it might be possible to detect them via resequencing, although success would
depend on the the proportion of subjects of families carrying such variants, and by the extent
of locus heterogeneity, i.e., if a small proportion of cases carried rare risk variants at a large
number of loci in a linkage region, studies of a feasible sample size might not detect them. It
is not known whether it will prove most productive to resequence exons, entire genes with
their nearby regulatory regions, or entire linkage regions (given that there are likely to be
relevant unannotated intergenic regulatory sequences). Family-based samples might be
particularly useful for resequencing studies of linkage peaks, if rare variants were
contributing to the signal. But it also possible that because these variants are rare precisely
because they reduce fertility, they could be more easily found in case-control samples,
which are also larger. In our view, multiple strategies should be attempted.

It has also been suggested that the power of GWAS can be increased by upweighting
evidence for association based on linkage scores (resulting in a small downweighting of
other regions).56 Whether or not this formal approach is used, it would be reasonable to
consider linkage findings when selecting genes and regions for dense LD mapping and
large-scale resequencing studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomewide linkage results
Shown for 707 European ancestry families (top) and for all 807 families (bottom) are

linkage results across the genome. The X-axis values are cumulative chromosomal locations
in centiMorgans (deCODE map), with chromosome boundaries shown as vertical gridlines.
The Y-axis values are Kong-Cox lod scores for nonparametric analyses, or heterogeneity lod
(hlod) scores for parametric analyses. Black lines represent nonparametric lod scores, red
lines represent hlod scores under a dominant model, and purple lines represent hlod scores
under a recessive model (see text for details of the models). Dotted lines show the empirical
thresholds for genomewide suggestive evidence for linkage (less than 1 peak of this
magnitude expected by chance, in the absence of linkage) for nonparametric and parametric
analyses. The parametric threshold takes into account that two such tests (dominant and

recessive) were performed.
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