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Abstract. We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a
noncommutative geometry setting framed in terms of Kasparov modules. We use a map-
ping cone construction to relate odd index pairings to even index pairings with APS bound-
ary conditions in the setting of KK-theory, generalising the commutative theory. We find
that Cuntz-Krieger systems provide a natural class of examples for our construction and
the index pairings coming from APS boundary conditions yield complete K-theoretic infor-
mation about certain graph C �-algebras.
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1. Introduction

This paper is about a noncommutative analogue of APS index theory. We will focus
on one aspect of generalising the APS theory. Namely we replace classical first order elliptic
operators on a manifold with product metric near the boundary by a ‘cylinder’ of operators
on a Kasparov module. We explain below how the classical theory provides an example of
this more general framework. We also show in the last section that there are many noncom-
mutative examples as well. Our motivation is not simply that we are trying to understand
noncommutative manifolds with boundary but is derived from the fact that the construc-
tion in this paper can be applied to many index problems in semifinite noncommutative ge-
ometry using [9] (which we plan to address elsewhere).

To explain our point of view let us recast a simple special case, using the language
of later sections, the connection between spectral flow and APS boundary conditions dis-
cussed in [2]. Let X be a closed Riemannian manifold, of odd dimension, and let D be a
(self-adjoint) Dirac type operator on X . Then D determines an odd K-homology class
½D� for the algebra CðX Þ and we may pair ½D� with the K-theory class of a unitary
u A Mk

�
CðXÞ� to obtain the integer

IndexðPkuPkÞ ¼ sf ðDk; uDku
�Þ:

Here Pk is the nonnegative spectral projection for Dk :¼ Dn IdCk and the index of the
‘Toeplitz operator’ PkuPk gives the spectral flow sf ðDk; uDku

�Þ from Dk to uDku
�.

We may also attach a semi-infinite cylinder to X , and consider the manifold-with-
boundary X � Rþ. If D acts on sections of some bundle S ! X , then D determines a self-
adjoint operator on the L2-sections of S, H ¼ L2ðX ;SÞ, with respect to an appropriate
measure constructed from the Riemannian metric and bundle inner products. We define

ĤH ¼ L2ðRþ;HÞ
L2ðRþ;HÞlF0H

� �
; D̂D ¼ 0 �qt þD

qt þD 0

� �
;

where F0 is the projection onto the kernel of D. It is necessary to single out the zero eigen-
value of D for special attention since it gives rise to ‘extended L2-solutions’ which contrib-
ute to the index, [1]. We let D̂D act as zero on F0H, and regard this subspace as being com-
posed of values at infinity of extended solutions (more on this in the text).

We give D̂D APS boundary conditions. That is, we take the domain of qt þD to be

fx A L2ðRþ;HÞ : ðqt þDÞx A L2ðRþ;HÞ;Pxð0Þ ¼ 0g

where again P is the nonnegative spectral projection for D. The domain of �qt þD is de-
fined similarly using 1� P in place of P. Then it can be shown, see for instance [1], that D̂D
is an unbounded self-adjoint operator and for any f A CyðX � RþÞ which is of compact
support and equal to a constant on the boundary, the product f ð1þ D̂D2Þ�1=2 is a compact
operator on ĤH.
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Such functions lie in the mapping cone algebra for the inclusion C ,! CðX Þ. This is
defined as

M
�
C;CðX Þ� ¼ f f : Rþ ! CðXÞ : f ð0Þ A C1X ; f continuous and vanishes at yg:

We have an exact sequence

0 ! CðX ÞnC0

�ð0;yÞ�! M
�
C;CðX Þ�! C ! 0

from which we get a six term sequence in K-theory. Since K1ðCÞ ¼ 0, this sequence simpli-
fies to

0 ! K1

�
CðX Þ�! K0

�
M
�
C;CðXÞ��! K0ðCÞ ! K0

�
CðXÞ�! K1

�
M
�
C;CðXÞ��! 0:

A careful analysis, which we present in greater generality in this paper, shows that the map
Z ¼ K0ðCÞ ! K0

�
CðX Þ� takes n to the class of the trivial bundle of rank n on X , and so is

injective. Thus we find that

K1

�
CðX Þ�GK0

�
M
�
C;CðXÞ��;

and the mapping cone algebra is providing a suspension of sorts. The relationship be-
tween the even index pairing for D̂D and the odd index pairing for D is then as follows.
Let eu be the projection over M

�
C;CðXÞ� determined by the unitary u over CðXÞ, so that

½eu� � ½1� A K0

�
M
�
C;CðX Þ��. Then

Index
�
euðqt þDÞeu

�� Indexðqt þDÞ ¼ h½eu� � ½1�; ½D̂D�i ¼ h½u�; ½D�i ¼ sf ðD; uDu�Þ:

The purpose of this paper is to present a noncommutative analogue of this picture.
Our main result, Theorem 5.1, shows that the situation described above for the commuta-
tive case carries over to a class of Kasparov modules for noncommutative algebras. We ex-
ploit a paper of Putnam [17] on the K-theory of mapping cone algebras to give an APS type
construction for a Kasparov module with boundary conditions that implies an equality be-
tween even and odd indices. Not only will we find a new version of this index equality, but
we will see that it allows us to use APS boundary conditions to obtain interesting index
pairings, and consequences, that were previously unknown. For instance we show that the
complicated K-theory calculations of [14] can be given a simple functorial description.

A description of the organisation and main results of the paper now follows. We be-
gin in the next section with some preliminaries on Kasparov modules. In Section 3 we re-
view [17], describing K0 of mapping cone algebras, MðF ;AÞ where F HA are certain C �-
algebras (replacing the pair CHCðX Þ in the classical setting above). We make some basic
computations related to these groups and associated exact sequences.

The application of APS boundary conditions for Kasparov modules is done in Sec-
tion 4. We show that certain odd Kasparov modules for algebras A, B with F a subalgebra
of A, can be ‘suspended’ to obtain even Kasparov modules for the algebras MðF ;AÞ, B,
using APS boundary conditions. The proof is surprisingly complicated as there are substan-
tial technical issues. Even self-adjointness of the abstract Dirac operator on the suspension
with APS boundary conditions is not clear. We solve all of the di‰culties using a careful
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construction in the noncommutative setting of a parametrix for our abstract Dirac opera-
tors on the even Kasparov module.

The main theorem (Theorem 5.1) shows that two index pairings—one from an odd
Kasparov module and one from its even ‘suspension’—with values in K0ðBÞ are equal. Re-
placing K0ðCÞ ¼ Z with K0ðBÞ gives us an analogue of the classical example above. The
proof is quite di‰cult; solving di¤erential equations in Hilbert C �-modules is a more com-
plex issue than in Hilbert space.

In Section 6 we explain one class of examples. There we calculate the K-groups of the
mapping cone algebra MðF ;AÞ for the inclusion of the fixed point algebra F of the gauge
action on certain graph C �-algebras A. For these algebras, the application of Theorem 5.1
yields in Proposition 5.7 an isomorphism from K0

�
MðF ;AÞ� to K0ðFÞ, which leads to a

functorial description of the calculations of K0ðAÞ, K1ðAÞ in [14].

Readers familiar with [5] may be puzzled by the fact that we do not study the more
general question of boundary conditions parametrised by a Grassmannian. In fact we
make, in our main theorem, an assumption that classicially corresponds to assuming that
we can work with a fixed APS boundary condition for all of the perturbed operators we
study. We know that for classical index problems it is often the case that a more general
operator can be homotopied to one that preserves the APS boundary conditions. In the
noncommutative context of this paper we have not studied this homotopy argument. The
examples in Section 6 illustrate that for many cases our restricted analysis su‰ces and pro-
vides complete information about the K-theory of the relevant algebras.

Acknowledgements. We thank Rsyzard Nest for advice on Section 5, David Pask,
Aidan Sims and Iain Raeburn for enlightening conversations and Ian Putnam for bringing
his work to the third author’s attention. The first and second named authors acknowledge
the financial assistance of the Australian Research Council and the Natural Sciences and
Engineering Research Council of Canada while the third named author thanks Statens Na-
turvidenskabelige Forskningsråd, Denmark. All authors are grateful for the support of the
Ban¤ International Research Station where some of this research was undertaken.

2. Kasparov modules

The Kasparov modules considered in this subsection are for C �-algebras with trivial
grading.

Definition 2.1. An odd Kasparov A-B-module consists of a countably generated un-
graded right B-C �-module E, with f : A ! EndBðEÞ a �-homomorphism, together with
P A EndBðEÞ such that aðP� P�Þ, aðP2 � PÞ, ½P; a� are all compact endomorphisms. Alter-
natively, for V ¼ 2P� 1, aðV � V �Þ, aðV 2 � 1Þ, ½V ; a� are all compact endomorphisms for
all a A A. One can modify P to ~PP so that ~PP is self-adjoint; k ~PPke 1; aðP� ~PPÞ is compact for
all a A A and the other conditions for P hold with ~PP in place of P without changing the
module E. If P has a spectral gap about 0 (as happens in the cases of interest here) then
we may and do assume that ~PP is in fact a projection without changing the module, E.
(Note that by [4], 17.6, we may assume that P is a projection by changing to a new module
in the same class as E.)
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By [10], Lemma 2, Section 7, the pair ðf;PÞ determines a KK 1ðA;BÞ class, and every
class has such a representative. The equivalence relation on pairs ðf;PÞ that give KK 1-
classes is generated by unitary equivalence ðf;PÞ@ ðUfU �;UPU �Þ and homology:
ðf1;P1Þ@ ðf2;P2Þ if P1f1ðaÞ � P2f2ðaÞ is a compact endomorphism for all a A A, see also
[10], Section 7. Later we will also require even, or graded, Kasparov modules.

Definition 2.2. An even Kasparov A-B-module has, in addition to the data of the
previous definition, a grading by a self-adjoint endomorphism G with G2 ¼ 1 and
fðaÞG ¼ GfðaÞ, VGþ GV ¼ 0.

The next theorem presents a general result used in [15], Appendix, about the Kas-
parov product in the odd case.

Theorem 2.3. Let ðY ;TÞ be an odd Kasparov module for the C �-algebras A, B. Then
(assuming that T has a spectral gap around 0) the Kasparov product of K1ðAÞ with the class

of ðY ;TÞ is represented by

h½u�; ½ðY ;TÞ�i ¼ ½kerPuP� � ½cokerPuP� A K0ðBÞ;

where P is the non-negative spectral projection for the self-adjoint operator T.

This pairing was studied in [15], as well as the relation to the semifinite local index
formula in noncommutative geometry. It is also the starting point for this work. More de-
tailed information about the KK-theory version of this can be found in [9].

In this paper we will employ unbounded representatives of KK-classes. The theory of
unbounded operators on C �-modules that we require is all contained in Lance’s book, [12],
Chapters 9, 10. We quote the following definitions (adapted to our situation).

Definition 2.4. Let Y be a right C �-B-module. A densely defined unbounded op-
erator D : domDHY ! Y is a B-linear operator defined on a dense B-submodule
domDHY . The operator D is closed if the graph GðDÞ ¼ fðx;DxÞ : x A domDg is a
closed submodule of Y lY .

If D : domDHY ! Y is densely defined and unbounded, we define the domain of
the adjoint of D to be the submodule:

domD� :¼ fy A Y : bz A Y such that Ex A domD; hDx j yiR ¼ hx j ziRg:

Then for y A domD� define D�y ¼ z. Given y A domD�, the element z is unique, so
D� : domD� ! Y , D�y ¼ z is well-defined, and moreover is closed.

Definition 2.5. Let Y be a right C �-B-module. A densely defined unbounded opera-
tor D : domDHY ! Y is symmetric if for all x; y A domD

hDx j yiR ¼ hx jDyiR:

A symmetric operator D is self-adjoint if domD ¼ domD� (so D is closed). A densely de-
fined operator D is regular if D is closed, D� is densely defined, and ð1þD�DÞ has dense
range.
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The extra requirement of regularity is necessary in the C �-module context for the con-
tinuous functional calculus, and is not automatic, [12], Chapter 9.

Definition 2.6. An odd unbounded Kasparov A-B-module consists of a countably gen-
erated ungraded right B-C �-module E, with f : A ! EndBðEÞ a �-homomorphism, to-
gether with an unbounded self-adjoint regular operator D : domDHE ! E such that
½D; a� is bounded for all a in a dense �-subalgebra of A and að1þD2Þ�1=2 is a compact
endomorphism of E for all a A A. An even unbounded Kasparov A-B-module has, in addi-
tion to the previous data, a Z2-grading with A even and D odd, as in Definition 2.2.

3. K-theory of the mapping cone algebra and pairing with KK-theory

3.1. The mapping cone. Let F HA be a C �-subalgebra of a C �-algebra A. Recall
[17] that the mapping cone algebra is

MðF ;AÞ ¼ f f : ½0; 1� ! A : f is continuous; f ð0Þ ¼ 0; f ð1Þ A Fg:

The algebra operations are pointwise addition and multiplication and the norm is the uni-
form (sup) norm. There is a natural exact sequence

0 ! C0ð0; 1ÞnA !i MðF ;AÞ !ev F ! 0:

Here evð f Þ ¼ f ð1Þ and iðgn aÞðtÞ ! gðtÞa. It is well known that when F is an ideal in the
algebra A we have K�

�
MðF ;AÞ�GK�ðA=FÞ.

We will always be considering the situation where K1ðFÞ ¼ 0, as is the case for graph
C �-algebras, though this is not strictly necessary. When K1ðFÞ ¼ 0, the six term sequence in
K-theory coming from this short exact sequence degenerates into

0 ! K1ðAÞ ! K0

�
MðF ;AÞ�!ev� K0ðFÞ !j� K0ðAÞ ! K1

�
MðF ;AÞ�! 0:ð1Þ

We need to justify the notation j�; namely we need to display the map j which induces j�.

Lemma 3.1. In the above exact sequence the map j� : K0ðFÞ ! K0ðAÞ is induced by

minus the inclusion map j : F ! A (up to Bott periodicity).

Proof. The map we have denoted by j� is actually a composite:

j� : K0ðFÞ !q K1

�
C0ð0; 1ÞnA

�!G K0ðAÞ:

The isomorphism here is the inverse of the Bott map Bott : K0ðAÞ ! K1

�
C0ð0; 1ÞnA

�
,

where Bottð½p�Þ ¼ ½e�2pit n pþ 1n ð1� pÞ�. The boundary map q is defined as follows,
[8], p. 113. For ½p� � ½q� A K0ðFÞ, we choose representatives p, q over F , and then choose
self-adjoint lifts x, y over MðF ;AÞ. Then e2pix, e2piy are unitaries over CðS1ÞnA which are
equal to the identity modulo C0ð0; 1ÞnA. Then

qð½p� � ½q�Þ ¼ ½e2pix� � ½e2piy� A K1

�
C0ð0; 1ÞnA

�
:
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Now we choose the particular lifts over MðF ;AÞ given by xðtÞ ¼ tp and yðtÞ ¼ tq (in
fact these are tn jðpÞ and tn jðqÞ). Both these elements are self-adjoint, vanish at t ¼ 0
and at t ¼ 1 are in F . Now

½e2pix� � ½e2piy� ¼ ½e2pitnp� � ½e2pitnq� ¼ �Bottð½p� � ½q�Þ A K1

�
C0ð0; 1ÞnA

�
:

So modulo the isomorphism

Bott : K0ðAÞ ! K1

�
C0ð0; 1ÞnA

�
; j�ð½p� � ½q�Þ ¼ ��½ jðpÞ� � ½ jðqÞ��: r

We now describe K0

�
MðF ;AÞ� [17]. Let VmðF ;AÞ be the set of partial isometries

v A MmðAÞ such that v�v; vv� A MmðFÞ. Using the inclusion Vm ,! Vmþ1 given by
v ! vl 0 we can define

VðF ;AÞ ¼ S
m

VmðF ;AÞ:

Our aim, following [17], is to define a map k : VðF ;AÞ ! K0

�
MðF ;AÞ�, and we proceed in

steps. First, let v A VðF ;AÞ and define a self-adjoint unitary v1 via:

v1 ¼ 1� vv� v

v� 1� v�v

� �
;

that is, v21 ¼ 1, v1 ¼ v�1 . So, v1 ¼ pþ � p� where pþ ¼ 1

2
ðv1 þ 1Þ and p� ¼ 1

2
ð1� v1Þ are the

positive and negative spectral projections for v1: Then for t A ½0; 1� define

v2ðtÞ ¼ pþ þ eiptp�

so that we have a continuous path of unitaries from the identity (t ¼ 0) to v1 (t ¼ 1).
Observe that v2ðtÞ is unitary for all t A ½0; 1�, v2 A Cð½0; 1�ÞnM2mðAÞ, v2ð0Þ ¼ 1 and
v2ð1Þ ¼ v1. Now define

evðtÞ ¼ v2ðtÞev2ðtÞ�; e ¼ 1 0

0 0

� �
:

Then evðtÞ is a projection over the unitization ~MMðF ;AÞ of MðF ;AÞ given by

~MMðF ;AÞ ¼ f f : ½0; 1� ! ~AA : f is continuous; f ð0Þ A C1; f ð1Þ A ~FFg:

Thus ½ev� � ½e� defines an element of K0

�
MðF ;AÞ�. So with kðvÞ ¼ ½ev� � ½e� we find:

Lemma 3.2 ([17], Lemmas 2.2, 2.4, 2.5). (1) kðvlwÞ ¼ kðvÞ þ kðwÞ.

(2) If v;w A VmðF ;AÞ and kv� wk < ð200Þ�1
then kðvÞ ¼ kðwÞ.

(3) If v A VmðF ;AÞ, w1;w2 A UmðFÞ then w1vw2 A VmðF ;AÞ, kðw1Þ ¼ kðw2Þ ¼ 0,
kðw1vw2Þ ¼ kðvÞ.
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(4) For v A MmðFÞ a partial isometry, kðvÞ ¼ 0, so, for p A MmðFÞ a projection,
kðpÞ ¼ 0.

(5) The map k : VðF ;AÞ ! K0

�
MðF ;AÞ� is onto.

(6) Generate an equivalence relation@ on VðF ;AÞ by:

(i) v@ vl p for v A VðF ;AÞ, p A MkðFÞ.

(ii) If vðtÞ, t A ½0; 1� is a continuous path in VðF ;AÞ then vð0Þ@ vð1Þ.

Then k : VðF ;AÞ=@! K0

�
MðF ;AÞ� is a well-defined bijection.

Hence we may realise K0

�
MðF ;AÞ� as equivalence classes of partial isometries in

MmðAÞ whose source and range projections lie in MmðFÞ. Observe that when K1ðFÞ ¼ 0,
K1ðAÞ embeds in K0

�
MðF ;AÞ� by regarding a unitary (possibly in a unitization of A) as a

partial isometry. We add the following lemmas which we will need later.

Lemma 3.3. Let v;w A VmðF ;AÞ have the same source projection, so v�v ¼ w�w ¼ p,
say. Then ½vlw�� ¼ ½v� þ ½w�� ¼ ½v� � ½w� ¼ ½vw��:

Proof. The homotopy is given by

Vy ¼ cos2ðyÞvþ sin2ðyÞp cosðyÞ sinðyÞðw� � vw�Þ
cosðyÞ sinðyÞðp� vÞ cos2ðyÞw� þ sin2ðyÞvw�

� �
; y A ½0; p=2�: r

Lemma 3.4. Suppose v�v ¼ pþ q with p; q A F projections, p ? q. Then

v ¼ vpþ vq, vv� ¼ vpv� þ vqv�, vpv� ? vqv� and if we assume that vpv� A F then

½v� ¼ ½vpl vq� ¼ ½vp� þ ½vq�:

Proof. The first few statements are simple algebraic consequences of the hypothesis.
The homotopy from v@ vl 0 to vpl vq is

Vy ¼ vpþ vq cos2ðyÞ vq sinðyÞ cosðyÞ
vq sinðyÞ cosðyÞ vq sin2ðyÞ

� �
; y A ½0; p=2�: r

We will use the following equivalent definition of the mapping cone algebra, as it is
more useful for our intended applications and agrees with the definition in the classical
commutative case. We let

MðF ;AÞ ¼ f f : Rþ ! A : f continuous and vanishes at y and f ð0Þ A Fg:

This way of defining the mapping cone algebra gives an isomorphic C �-algebra and we will
take this as our definition from now on.

3.2. The pairing in KK for the mapping cone. Using the Kasparov product,
K0

�
MðF ;AÞ� pairs with KK 0

�
MðF ;AÞ;B� for any C �-algebra B. However, K0

�
MðF ;AÞ�
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also pairs with odd A, B Kasparov modules ðY ;VÞ such that the left action by f A F HA

commutes with V . While all our constructions work for such A, B Kasparov modules, we
will restrict in the sequel to A, F Kasparov modules. This will cause no loss of generality to
those wishing to extend these results to the general case, but is the situation which arises
naturally in examples.

Standing assumptions (SA). For the rest of this section, let v A A be a partial isome-
try with v�v; vv� A F (the same will work for matrix algebras over A, F ). Let ðY ;VÞ be an
odd Kasparov module for A, F such that the left action of f A F HA commutes with
V ¼ 2P� 1 where P is the non-negative spectral projection of V .

Remarks. In all the calculations we do here, if v A MkðAÞ then we use Pk :¼ Pn 1k
in place of P: we will usually suppress this inflation notation in the interests of avoiding
notation inflation.

To define the pairing between the mapping cone and Kasparov modules satisfying
SA, we need a preliminary result.

Lemma 3.5. Let ðY ;VÞ satisfy SA. The two projections vv�P and vPv� di¤er by a

compact endomorphism, and consequently PvP : v�vPðY Þ ! vv�PðYÞ is Fredholm.

Proof. It is a straightforward calculation that

vPv� ¼ vv�Pþ v½P; v�� ¼ vv�Pþ 1

2
v½V ; v��

and, as ½V ; v�� is compact, vv�P and vPv� di¤er by a compact endomorphism. One easily
checks that Pv�P : vv�PðY Þ ! v�vPðYÞ is a parametrix for PvP and the second statement
follows. r

As PvP commutes with the right action of F , the kernel and cokernel are right F -
modules. It follows from the detailed discussion in [7] that while it may not be the case
that the kernel and cokernel are both finitely generated projective F -modules, the di¤erence

½kerPvP� � ½cokerPvP�

makes sense as an element of K0ðFÞ.

Definition 3.6. For ½v� A K0

�
MðF ;AÞ� and ðY ; 2P� 1Þ satisfying SA, define

½v� � ðY ;VÞ ¼ Index
�
PvP : v�vPðYÞ ! vv�PðY Þ� ¼ ½kerPvP� � ½cokerPvP� A K0ðFÞ:

We make some general observations.

� If v is unitary over A, we recover the usual Kasparov pairing between K1ðAÞ and
KK 1ðA;FÞ, [9], [15], Appendix. Thus the pairing depends only on the class of ðY ; 2P� 1Þ
in KK 1ðA;FÞ for v unitary.
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� In general the operator PvP does not have closed range. However the operator

gPvPPvP :¼ PvP 0

ð1� PÞvP 0

� �
:

v�vPðY Þ
v�vPðY Þ

� �
! vv�PðYÞ

vv�ð1� PÞðY Þ
� �

does have closed range, [7], Lemma 4.10, and the index is easily seen to be

IndexðgPvPPvPÞ ¼ Pv�ð1� PÞðYÞ
ð1� PÞv�PðYÞ

� �� �
� ð1� PÞv�PðYÞ

ð1� PÞv�PðYÞ
� �� �

:

The index of PvP is in fact defined to be the index of any suitable ‘amplification’ like gPvPPvP,
[7], and we see that if the right F -module Pv�ð1� PÞðYÞ is closed, then the ‘correction’
term ð1� PÞv�PðY Þ arising from the amplification process cancels out. Since the K-theory
class of the index does not in fact depend on the choice of amplification, we will ignore this
subtlety from here on. That is, we assume without any loss of generality that the various
Fredholm operators we consider satisfy the stronger condition of being regular in the sense
of having a pseudoinverse [7], Definition 4.3. Since we will be concerned only with showing
that certain indices coincide, this will not a¤ect our conclusions.

� The pairing depends only on the class of v in K0

�
MðF ;AÞ� with the module ðY ;VÞ

held fixed, in particular it vanishes if v A F . These statements follow in the same way as the
analogous statements for unitaries, cf. [15], Appendix.

� Since addition in the ‘‘Putnam picture’’ of K0

�
MðF ;AÞ� is by direct sum as is addi-

tion in the usual picture of K0

�
MðF ;AÞ�, it is easy to see that the pairing is additive in the

K0

�
MðF ;AÞ� variable with the module ðY ;VÞ held fixed. So with ðY ;VÞ held fixed we

have a well-defined group homomorphism:

�ðY ; 2P� 1Þ : K0

�
MðF ;AÞ�! K0ðFÞ:

3.3. Dependence of the pairing on the choice of (Y, 2PC 1). The dependence on the
Kasparov module ðY ; 2P� 1Þ is not straightforward. For instance, we require that P com-
mute with the left action of F , and so homotopy invariance is necessarily broken. We now
fix v A VmðF ;AÞ and show that we can obtain an even Kasparov module ðYv;RvÞ for
ðAv;FÞ :¼ ðvv�Avv�;FÞ so that the two classes ½v� � ðY ; 2P� 1Þ and ½1Av

� � ½ðYv;RvÞ� are
equal in K0ðAÞ, with the latter being a Kasparov product of genuine KK-classes.

The purpose in doing this is to understand the homotopy invariance properties of
IndexðPvPÞ by characterising it as a Kasparov product. In this subsection this is achieved
by creating a ‘smaller’ Kasparov module, which depends on v. In our main theorem, The-
orem 5.1, we associate to an odd unbounded Kasparov module ðX ;DÞ a ‘larger’ even un-
bounded Kasparov module ðX̂X ; D̂DÞ. This latter module is independent of v and allows us to
characterise, for all ½v� A K0

�
MðF ;AÞ�, the class IndexðPvPÞ as the Kasparov product

½v� � ½ðX̂X ; D̂DÞ�.

Lemma 3.7. With v, ðY ; 2P� 1Þ as above, the pair

ðYv;RvÞ :¼ vv�ðYÞ
v�vðYÞ

� �
;

0 R�
Rþ 0

� �� �
where R� ¼ �PvP� ð1� PÞv� and Rþ ¼ R�

�
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is an even ðvv�Avv�;FÞ Kasparov module for the representation

pðaÞ ¼ a 0

0 v�av

� �
for a A vv�Avv�:

Proof. First observe that vv�Avv� is always unital, with unit 1Av
¼ vv�, and that pðaÞ

leaves Yv invariant for a A vv�Avv�: Next, Rv is clearly self-adjoint and moreover,
R�v�v ¼ vv�R�. Taking adjoints we obtain Rþvv� ¼ v�vRþ so that Rv also leaves Yv

invariant. Now since v and v� commute with P up to compacts we see that

R� ¼ ð2P� 1Þv ðmod compactsÞ ¼ vð2P� 1Þ ðmod compactsÞð2Þ

and

Rþ ¼ ð2P� 1Þv� ðmod compactsÞ ¼ v�ð2P� 1Þ ðmod compactsÞ:ð3Þ

Hence,

R2
v ¼ vv� 0

0 v�v

� �
¼ 1Yv

ðmod compactsÞ:

The compactness of commutators ½Rv; pðaÞ� can be reduced by (2) and (3) to the equations:

að2P� 1Þv ¼ ð2P� 1Þvv�av and v�avv�ð2P� 1Þ ¼ v�ð2P� 1Þa ðmod compactsÞ:

This completes the proof using a ¼ vv�a ¼ avv� and ½P; a� compact. r

The following corollary is obvious once we note that

pð1Av
Þ ¼ vv� 0

0 v�v

� �
:

Corollary 3.8. We have the equality in K0ðFÞ: ½v� � ðY ; 2P� 1Þ ¼ ½1Av
� � ½ðYv;RvÞ�:

Hence the pairing ½v� � ðY ; 2P� 1Þ depends only on ½v� A K0

�
MðF ;AÞ� and the class

½ðYv;RvÞ� A KK 0ðvv�Avv�;FÞ.

Remarks. In the Kasparov module ðYv;RvÞ there is a dependence on v. This result
also shows that we can pair with any subprojection of vv� in F instead of vv� ¼ 1vv�Avv� .
The Kasparov module ðYv;RvÞ is formally reminiscent of the module obtained by a cap
product of an odd module with a unitary. The remaining homotopy invariance is for ho-
motopies of operators on Yv, or operators on Y commuting with vv�.

It should be clear by now that the mapping cone algebra provides a partial suspen-
sion, but mixes odd and even in a fascinating way. In the next section we relate the even
index pairing for MðF ;AÞ to the odd index pairing described here.

4. APS boundary conditions and Kasparov modules for the mapping cone

In this section we begin the substantially new material by constructing an even Kas-
parov module for the mapping cone algebra MðF ;AÞ starting from an odd Kasparov F -
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module ðX ;DÞ for A: In particular we are assuming that D is self-adjoint and regular on X ,
has discrete spectrum and the eigenspaces are closed F -submodules of X which sum to X .
Our even module X̂X is initially defined to be the direct sum of two copies of the C �-module:
E ¼ L2ðRþÞnC X which is the completion of the algebraic tensor product in the tensor
product C �-module norm. That is, we take finite sums of elementary tensors which can nat-
urally be regarded as functions f : Rþ ! X . The inner product on such f ¼P

i

fi n xi,
g ¼P

j

gj n yj is defined to be

h f j giE ¼P
i; j

Ðy
0

fiðtÞgjðtÞ dthxi j yjiX ;

where we have written h� j �iX for the inner product on X . Clearly the collection of all con-
tinuous compactly supported functions from Rþ to X is naturally contained in the comple-
tion of this algebraic tensor product and for such functions f , g the inner product is given
by:

h f j giE ¼ Ðy
0

h f ðtÞ j gðtÞiX dt:

The corresponding norm is

k f kE ¼ kh f j f iEk1=2:

Remarks. While many elements in the completion E can be realised as functions it
may not be true that all of E consists of X -valued functions. We also note that the Banach
space L2ðRþ;XÞ of functions f defined by square-integrability of t 7! k f ðtÞk is strictly con-
tained in E: However, we shall show below that the domain of the operator qt n 1 on E
(free boundary conditions) consists of X -valued functions which are square-integrable in
the C �-module sense above. We will define our operators using APS boundary conditions
on the domains.

4.1. Domains and APS boundary conditions. Let P be the spectral projection for D
corresponding to the nonnegative axis and let TG ¼Gqt n 1þ 1nD (¼Gqt þD for brev-
ity) with initial domain determined by Atiyah-Patodi-Singer type boundary conditions,
namely

domTG ¼
�
f : Rþ ! XD : f ¼Pn

i¼1

fi n xi;ð4Þ

f is smooth and compactly supported;

xi A XD;P
�
f ð0Þ� ¼ 0 ðþcaseÞ; ð1� PÞ� f ð0Þ� ¼ 0 ð�caseÞ

	
:

By smooth we mean Cy, using one-sided derivatives at 0 A Rþ. Then
TG : domTGHE ! E. These are both densely defined, and so the operator

D̂D ¼ 0 T�
Tþ 0

� �
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is densely defined on ElE. An integration by parts (using the boundary conditions) shows
that

ðTG f j gÞE ¼ ð f jTHgÞE; f A domTG; g A domTH:

Hence the adjoints are also densely defined, and so each of these operators is closable. This
shows that D̂D is likewise closable, and symmetric.

The subtlety noted above, namely that the module E does not necessarily consist of
functions, forces us to consider some seemingly circuitous arguments. Basically, to prove
self-adjointness, we require knowledge about domains, and we must prove various proper-
ties of these domains without the benefit of a function representation of all elements of E.
However, we will prove below a function representation for elements in the natural domain
of qtn 1, and therefore in the domains of the closures of TG because if f fjgH domTG is a
Cauchy sequence in the norm of E such that fTG fjg is also Cauchy then as TG is closable,
the limit f of the sequence fj lies in the domain of the closure, and limTG fj ¼ TG f .

Lemma 4.1. For f A domTG, the initial domain, we have:

(1) hTG f jTG f i ¼ hðqt n 1Þ f j ðqt n 1Þ f iE þ hð1nDÞ f j ð1nDÞ f iE

H


f ð0Þ jD� f ð0Þ��

X
;

and

(2) H


f ð0Þ jD� f ð0Þ��

X
f 0:

Proof. We do the case Tþ; the proof for T� is the same. After some computation, it
su‰ces to see:

hðqt n 1Þ f j ð1nDÞ f iE þ hð1nDÞ f j ðqt n 1Þ f iE ¼ �
 f ð0Þ jD� f ð0Þ��
X

for f ¼P
i

fi n xi with fi compactly supported and f ð0Þ A kerP: Then, using integration

by parts:

hðqtn 1Þ f j ð1nDÞ f iE ¼P
i; j

Ðy
0

d

dt
fiðtÞ

� ��
fjðtÞ

�
dt � hxi jDxjiX

¼ �P
i; j

�
fið0Þ fjð0Þ þ

Ðy
0

fiðtÞ d
dt

fjðtÞ dt
	
hxi jDxjiX

¼ �
�P

i

fið0Þxi
P

j

fjð0ÞDxj

�
X

�
�P

i

fi n xi

P
j

qt fj nDxj

�
E

¼ �
 f ð0Þ jD� f ð0Þ��
X
� h f j ðqtnDÞ f iE:

But, since D is self-adjoint and 1nD commutes with qt n 1 we have

h f j ðqtnDÞ f iE ¼ hð1nDÞ f j ðqtn 1Þ f iE
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and item (1) follows. To see item (2), we have ð1� PÞ� f ð0Þ� ¼ f ð0Þ where
ð1� PÞ ¼ Xð�y;0ÞðDÞ so we see that D restricted to the range of ð1� PÞ is negative and
therefore �
 f ð0Þ jD� f ð0Þ��

X
f 0 in our C �-algebra. r

Corollary 4.2. If f fngL domðTGÞ is a Cauchy sequence in the initial domain of TG

and fTGð fnÞg is also a Cauchy sequence in k � kE norm then both fðqt n 1Þð fnÞg and

fð1nDÞð fnÞg are also Cauchy sequences in the k � kE norm. Therefore, the limit, f of f fng
in E which is in the domain of the closure of TG, is also in the domain of the closures of both

ðqtn 1Þ and ð1nDÞ:

Proof. This follows from the lemma and the fact that if A ¼ Bþ C are all positive
elements in a C �-algebra, then kAkf kBk and kAkf kCk. r

Lemma 4.3. (1) If g ¼P
i

fi n xi where the fi are smooth and compactly supported

then

hðqtn 1Þg j giE ¼ �hgð0Þ j gð0ÞiX � hg j ðqt n 1ÞgiE:

(2) With g as above

kgð0Þk2X e 2kðqt n 1ÞgkE � kgkE:

Proof. Item (1) is an integration by parts similar to the previous computation and
item (2) follows from item (1) by the triangle and Cauchy-Schwarz inequalities. r

4.2. Elements in dom(qt n 1) are functions.

Definition 4.4. For each t A Rþ, we define two shift operators St and Tt on
L2ðRþÞ via: StðxÞðsÞ ¼ xðsþ tÞ and Tt ¼ S �

t : Clearly both have norm 1 and TtSt ¼ 1 and
StTt ¼ 1� Et where Et is the projection, multiplication by X½0; t�: Hence, Stn 1, Tt n 1,
and Et n 1 are in LðEÞ and Etn 1 converges strongly to 1E as t ! y:

Lemma 4.5. Let qt n 1 denote the closed operator on E with free boundary condition

at 0: That is, qtn 1 is the closure of qtn 1 defined on the initial domain dom 0ðqt n 1Þ con-
sisting of finite sums of elementary tensors f n x where f is smooth and compactly sup-

ported. Then:

(1) St leaves domðqtn 1Þ invariant and commutes with qt n 1:

(2) If g A dom 0ðqtn 1Þ then for each t0 A Rþ

kgðt0Þk2X e 2kðqtn 1ÞgkEkgkE:

(3) If g A domðqtn 1Þ and fgng is a sequence in dom 0ðqt n 1Þ with gn ! g in E and

ðqtn 1ÞðgnÞ ! ðqtn 1ÞðgÞ in E then there is a continuous function ĝg : Rþ ! X so that

gn ! ĝg uniformly on Rþ: Moreover ĝg A C0ðRþ;X Þ and depends only on g, not on the partic-

ular sequence fgng:

(4) If g A domðqtn 1Þ and ĝg is the function defined in item (3) then for all elements

h A E which are finite sums of elementary tensors of the form f n x where f is compactly

supported and piecewise continuous we have
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hg j hiE ¼ Ðy
0

hĝgðtÞ j hðtÞiX dt:

(5) If g A domðqt n 1Þ then

hg j giE ¼ lim
M!y

ÐM
0

hĝgðtÞ j ĝgðtÞiX dt :¼ Ðy
0

hĝgðtÞ j ĝgðtÞiX dt:

Proof. To see item (1), one easily checks that St n 1 leaves dom 0ðqtn 1Þ invariant
and commutes with qt n 1 on this space. Since qt n 1 is the closure of its restriction to
dom 0ðqt n 1Þ and St n 1 is bounded the conclusion follows by an easy calculation.

To see item (2), we apply item (1) and the previous lemma:

kgðt0Þk2X ¼ kðSt0gÞð0Þk2X e 2kðqt n 1ÞSt0ðgÞkEkSt0ðgÞkE
¼ 2kSt0ðqtn 1ÞðgÞkEkSt0ðgÞkE
e 2kðqtn 1ÞðgÞkEkgkE:

To see item (3), apply item (2) to the sequence fðgn � gmÞðt0Þg to see that the sequence
fgnðt0Þg in X is uniformly Cauchy for t0 A Rþ: Since we can intertwine two such sequences
converging to g, we see that ĝg is independent of the particular sequence. That ĝg vanishes at
y follows immediately from the uniform convergence.

To see item (4), let fgng be a sequence satisfying the conditions of item (3). Then for h
supported on ½0;M� satisfying the conditions of item (4):

hg j hiE ¼ lim
n!y

hgn j hiE ¼ lim
n!y

Ðy
0

hgnðtÞ j hðtÞiX dt

¼ lim
n!y

ÐM
0

hgnðtÞ j hðtÞiX dt ¼ ÐM
0

hĝgðtÞ j hðtÞiX dt

¼ Ðy
0

hĝgðtÞ j hðtÞiX dt:

To see item (5), fix M > 0 and use item (4):

hg jEMðgÞiE ¼ lim
n!y

hg jEMðgnÞiE ¼ lim
n!y

Ðy
0

hĝgðtÞ jEMðgnÞðtÞiX dt

¼ lim
n!y

ÐM
0

hĝgðtÞ j gnðtÞiX dt

¼ ÐM
0

hĝgðtÞ j ĝgðtÞiX dt:

Taking the limit as M ! y completes the proof. r
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Corollary 4.6. (1) If g A domðqt n 1Þ2 then ðqtn 1ÞðgÞ is also given by a continuous

X-valued function as above.

(2) If g A domðqtn 1Þn for all nf 1 then ðqt n 1ÞnðgÞ is given by a continuous X-

valued function for all n:

Proposition 4.7. (1) If g A domðTGÞ the domain of the closure of TG on its initial do-

main then g A domðqtn 1ÞX domð1nDÞ. Moreover, gð0Þ is well-defined and P
�
gð0Þ� ¼ 0

in the Tþ case while in the T� case, ð1� PÞ�gð0Þ� ¼ 0. Furthermore

TGg ¼Gðqt n 1Þgþ ð1nDÞg:

(2) If g A domðTGÞ as above, then gð0Þ A domðjDj1=2Þ:

Proof. For the first item, by Corollary 4.2, g A domðqt n 1ÞXdomð1nDÞ: Then,
by the previous Lemma gð0Þ is defined. Since P is a bounded operator on X , P

�
gð0Þ� ¼ 0

in the Tþ case and ð1� PÞ�gð0Þ� ¼ 0 in the T� case. To see item (2), we use part (2) of
Lemma 4.1 to see that for f A domðTGÞ we have

H


f ð0Þ jD� f ð0Þ��

X
¼ 
jDj1=2� f ð0Þ�  jDj1=2� f ð0Þ��

X
:

If we apply this observation to f ¼ gn � gm where fgng is a Cauchy sequence in domðTGÞ
we get the conclusion of item (2). r

Remark. Note that evaluation at a point is continuous on domðqt n 1Þ in the
domðqt n 1Þ-norm, but not in the module norm.

4.3. Self-adjointness of D̂D away from the kernel. To show that D̂D is self-adjoint
we will follow the basic strategy of [1] and display a parametrix which is (almost) an
exact inverse. Note that we assume that D has discrete spectrum with eigenvalues rk
for k A Z where the spectral projection of D corresponding to the eigenvalue rk is de-
noted by Fk. We suppose that rk is increasing with k and if k > 0 then rk > 0, and con-
versely, so that the zero eigenvalue, if it exists, corresponds to the index k ¼ 0. Moreover,
the eigenspaces Xk ¼ FkðXÞ are F -bimodules which sum to X by hypothesis. We note that
X0 ¼ F0ðX Þ ¼ kerD:

We observe that if f is any real-valued function defined (at least) on frk : k A Zg, the
spectrum of D, then f ðDÞ is the self-adjoint operator with domain:�

x ¼P
k

xk A X :
P
k

f ðrkÞxk converges in X

	
;

and is defined on this domain by f ðDÞx ¼P
k

f ðrkÞxk: The convergence condition on the

domain is equivalent to
P
k

j f ðrkÞj2hxk j xkiX converges in F .

We further note that if g : Rþ ! X is continuous and compactly supported then for
each k A Z, the function gk :¼ Fk � g : Rþ ! Xk is continuous with suppðgkÞL suppðgÞ
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and g ¼P
k

gk converges in E. Furthermore, if g is smooth then so is each gk and

qtðgkÞ ¼
�
qtðgÞ

�
k
and by the previous sentence qtðgÞ ¼ qt

�P
k

gk

�
¼P

k

qtðgkÞ:

As both qtn 1 and 1nD leave the subspaces L2ðRþÞnXk invariant, in order to
construct parametrices Qþ and Q� for Tþ and T� we can begin by considering homoge-
neous solutions fk to the equation

Tþ;k fk ¼ ðqt þ rkÞ fk ¼ gk

where gk is a smooth compactly supported function with values in Xk for each k > 0: Set-
ting

fkðtÞ ¼ Qþ;kðgkÞðtÞ ¼
Ðt
0

e�rkðt�sÞgkðsÞ ds ¼
Ðy
0

Hðt� sÞe�rkðt�sÞgkðsÞ ds;

where H ¼ XRþ (the characteristic function of Rþ) is the Heaviside function, we get a solu-
tion satisfying the boundary conditions, as the reader will readily confirm.

Observe that for these homogeneous solutions our parametrix is given by a convolu-
tion operator

fkðtÞ ¼ Qþ;kðgkÞðtÞ ¼ ðGk � gkÞðtÞ :¼ LGk
gkðtÞ:

Here GkðsÞ ¼ HðsÞe�rks A L1ðRÞ, and kGkk1 ¼ 1=rk. Since the operator norm of LGk
on

L2ðRÞ is bounded by kGkk1, we have

kQþ;kk ¼ kðLGk
nFkÞkEndEe kGkk1 e 1=rk:

For k < 0 we set

fkðtÞ ¼ Qþ;kðgkÞðtÞ ¼ �Ðy
t

e�rkðt�sÞgkðsÞ ds ¼ � Ðy
�y

Xð�y;0Þðt� sÞe�rkðt�sÞgkðsÞ ds:

The verification that Tþ fk ¼ gk is again straightforward, and the solution is an L2-function
with values in FkðXÞ since it is given by the convolution of an L1-function and an L2-
function.

Later when we have defined Qþ;0 we will sum all the Qþ;k to obtain the parametrix
Qþ. At the moment we note that for a smooth compactly supported g we have

�
Qþ
�
1n ðP�F0Þ

�ðgÞ�ðtÞ :¼ �P
k>0

Qþ;kð1nFkÞðgÞ
�
ðtÞ ¼

�P
k>0

Qþ;kgk

�
ðtÞ

¼ P
k>0

Ðt
0

e�rkðt�sÞgkðsÞ ds:

If we formally interchange the sum and the integral we get the equation
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�
Qþ
�
1n ðP�F0Þ

�ðgÞ�ðtÞ ‘¼’
Ðt
0

P
k>0

e�rkðt�sÞFkðgÞðsÞ ds ¼
Ðt
0

e�Dðt�sÞðP�F0Þ
�
gðsÞ� ds:

It is not hard to see that this convolution on the right actually converges to the expression
on the left in the norm of our module L2ðRþÞnX :

Similarly for the equation T�;k fk ¼ ð�qt þ rkÞ fk ¼ gk we have the solutions

Q�;kðgkÞðtÞ ¼
Ðy
t

e�rkðs�tÞgkðsÞ ds ¼
Ðy

�y
Xð�y;0Þðt� sÞerkðt�sÞgkðsÞ ds; k > 0;

Q�;kðgkÞðtÞ ¼ �Ðt
0

erkðt�sÞgkðsÞ ds ¼ � Ðy
�y

Hðt� sÞerkðt�sÞgkðsÞ ds; k < 0:

Again this solution is given by a convolution, and in all cases k3 0 we get
kQG;kð1nFkÞke 1=jrkj. We can get a similar operator convolution equation forP
k<0

Qþ;kgk:

Before proceeding we require a general lemma.

Lemma 4.8. Let Y be a C �-F-module and Y0 LY a dense F-submodule. Let

T : Y0 ! Y0 be closable as a module mapping on Y , with closure T. Suppose there exists

a bounded module mapping S on Y such that (1) SðY0ÞHY0, and (2) ST ¼ IdY0
and

TSjY0
¼ IdY0

. Then S is one-to-one and T ¼ S�1 : ImageðSÞ ! Y , domT ¼ ImageðSÞ,
S � T ¼ IddomT , and T � S ¼ IdY .

Proof. This is essentially just a careful check of the definitions of the domains and
closures in question. Let y A domðTÞ so there exists a sequence fyngHY0 converging to y

and Tyn ! Ty also. Now, since S is bounded,

yn ¼ STyn ! SðTyÞ and yn ! y;

so SðTyÞ ¼ y and S � T ¼ IddomðTÞ. This also shows domðTÞH ImageðSÞ.

On the other hand, let y ¼ Sy 0 A ImageðSÞ. Then y 0 ¼ lim zn, where fzngHY0, and
so y ¼ Sy 0 ¼ limSzn. Since S : Y0 ! Y0, we see that fSzngHY0 H domðTÞ, and so
zn ¼ TSzn converges to y 0 A Y . Hence y A domT and Ty ¼ y 0. That is

ImageðSÞH domðTÞ;

and so they are equal. Finally, TSy 0 ¼ Ty ¼ y 0, and as y 0 A Y was arbitrary, TS ¼ IdY .
Hence S is one-to-one, and T ¼ S�1. r

Returning to the operators TG and QG on the module Em ð1nF0ÞE, we have the
following preliminary result. The proof is just a check of the hypotheses of the previous
lemma.
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Corollary 4.9. For k3 0, let Ek ¼ L2ðRþÞnXk and Ek;0 HEk be the algebraic ten-

sor product of

Cy
00ðRþÞ :¼ fg A CyðRþÞ : gð0Þ ¼ 0 and suppðgÞ is compactg

with Xk. That is, Ek;0 ¼ Cy
00ðRþÞpXk: Then TG;k, QG;k map Ek;0 to itself, and are mutual

inverses there. Hence domðTG;kÞ ¼ ImageðQG;kÞ, QG;k is one-to-one, and the operators TG;k

and QG;k are mutually inverse (on appropriate subspaces).

We extend this result by another application of Lemma 4.8:

Corollary 4.10. Let the algebraic direct sum of the Ek;0 with k3 0 be denoted

Ealg;0 :¼
P

alg;k30

Ek;0 ¼
P

alg;k30

Cy
00ðRþÞpXk ¼ Cy

00ðRþÞp
P

alg;k30

Xk:

Define QG on Ealg;0 as the algebraic direct sum of the QG;k, and similarly for TG. Then QG

extends to an operator on the completion, E0 where it is bounded and one-to-one. More-

over, TG ¼ Q�1
G : ImageðQGÞ ! E0 so that QG � TG ¼ IddomTG

and TG �QG ¼ IdE0
: We

observe that E ¼ E0l
�
L2ðRþÞnX0

�
as an internal orthogonal direct sum. That is,

E?
0 ¼ �L2ðRþÞnX0

�
:

4.4. The adjoint on L2(RB)nX0 and self-adjointness of D̂D. On L2ðRþÞnX0 the op-
erator Tþ;0 becomes qtn IdX0

with boundary conditions xð0Þ ¼ 0 while T�;0 ¼ �qt n IdX0

with free boundary conditions, and it is well-known that these two operators are mutual
adjoints, cf. [12], page 116. The parametrix Qþ;0 for Tþ;0 is given by

Qþ;0ðgÞðtÞ ¼
Ðt
0

gðtÞ dt for g A rangeðTþ;0Þ;

while the parametrix Q�;0 for T�;0 is given by

Q�;0ðgÞðtÞ ¼ �Ðy
t

gðtÞ dt for g A rangeðT�;0Þ:

Of course, both Qþ;0 and Q�;0 are unbounded operators and on L2ðRþÞnX0 we have

TG;0QG;0 ¼ IdrangeðTG; 0Þ and QG;0TG;0 ¼ IddomðTG; 0Þ:

Letting QG denote the (closure of the) direct sum of all the QG;k we get the parametrix for
TG:

Proposition 4.11. The adjoint of TG : domðTGÞ ! E is TH. Moreover,

TGQG ¼ IdrangeðTGÞ and QGTG ¼ IddomðTGÞ:

Proof. In the following we write TG for the closure of TG. We write
TG ¼ TGð1nF0ÞlTG

�
1E � ð1nF0Þ

�
and observe from our last comments that�

TGð1nF0Þ
�� ¼ THð1nF0Þ:
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Restricting to
�
1E � ð1nF0Þ

�
E ¼ E0 we have Q�

G ¼ QH. To see this, recall that QG

is bounded, and so it su‰ces to check on the dense submodule Ealg;0 of Corollary 4.10. For
x; h A Ealg;0, there is x0; h0 A Ealg;0 such that x ¼ TGx0 and h ¼ THh0 (x0 ¼ QGx and simi-
larly for h0). Then

hQGx j hiE ¼ hQGðTGx0Þ jTHh0iE ¼ hx0 jTHh0iE

¼ hTGx0 j h0iE by symmetry

¼ hx jQHhiE:

Hence Q�
G ¼ QH on

�
1E � ð1nF0Þ

�
E ¼ E0. In order to deduce from this a similar relation

for the TG on E0 we need the following general considerations.

For a densely defined module map T : E0 ! E0 we have the relation between graphs

GðT �Þ ¼ �n�GðTÞ��? ¼ n½GðTÞ?�;

where n : E0 lE0 ! E0 lE0 is the unitary given by nðx; yÞ ¼ ðy;�xÞ, [12], page 95. Also
for one-to-one module maps Q, GðQ�1Þ ¼ y

�
GðQÞ� where yðx; yÞ ¼ ðy; xÞ and yn ¼ �ny.

So restricting TG to E0 we calculate:

GðT �
þÞ ¼

�
n
�
GðTþÞ

��? ¼ �n�GðQ�1
þ Þ��?

¼ �n�y�GðQþÞ
���? ¼ ��y�n�GðQþÞ

���? ¼ �y
�
n
�
GðQþÞ

�?�
¼ �y½GðQ�

þÞ� ¼ �y½GðQ�Þ� ¼ �½GðQ�1
� Þ� ¼ �½GðT�Þ�

¼ GðT�Þ:

The same proof works for T�, and so T �
G ¼ TH on all of E. r

The next step is to introduce the notion of extended solutions. In [1], the analogue of
our module was introduced as a model of a (product) neighbourhood of the boundary for a
manifold-with-boundary. Since the interest there, as here, was in the index of the operator
on the whole manifold-with-boundary, it was necessary to modify the space of solutions
considered to account for those functions on the boundary which extended to interior so-
lutions in a non-trivial way. Such functions are not L2 on this product description of the
boundary, but are bounded. Nevertheless they contribute to the index, and so we make a
definition.

Definition 4.12. Let ðX ;DÞ be an unbounded odd Kasparov A� F -module. Let
E ¼ L2ðRþÞnX be the MðF ;AÞ � F -module defined above. As seen in Lemma 4.5,
any element in the domain of the operator qt n 1 (free boundary conditions) is given
by a uniformly continuous X -valued function g which vanishes at y and the integral

hg j giE ¼ Ðy
0

hgðtÞ j gðtÞiX dt converges in Fþ: We enlarge E to a space ÊE consisting of

formal sums, f ¼ gþ x where g A E and x A X0: For g A domðqtn 1Þ, the element
f ¼ gþ x is naturally a function on Rþ where f ðtÞ ¼ gðtÞ þ x and lim

t!y
f ðtÞ ¼ x A X0: We
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call such an f an extended L2-function and we may regard f as a function f : Rþ ! X with
a limit: lim

t!y
f ðtÞ :¼ f ðyÞ such that f � f ðyÞ is in L2ðRþÞnX and f ðyÞ A X0, that is,

Df ðyÞ ¼ 0. Note we reserve the terms extended L2-function and extended solution to the
case where f ðyÞ3 0:

So, we have a new module ÊE ¼ f f ¼ gþ x : g A E and x A X0g: We let F act on the
left and right of this extra copy of X0 by its natural action. The F -valued inner product on
ÊE is given by

h f þ x j hþ yi ¼ h f ðtÞ j hðtÞiE þ hx j yiX :

The left action of MðF ;AÞ on the extra component X0 is naturally defined to be zero since
MðF :AÞ consists of functions which vanish at y: However, when we extend the left action
to the unitization of MðF ;AÞ the added identity will of course act as the identity on the
extra copy of X0: While D naturally acts as zero on this extra copy of X0, functions f ðDÞ
act as multiplication by f ð0Þ so that in particular, P acts as the identity operator on this
copy of X0 and the operator qt naturally extends here as the zero operator.

We now modify our earlier definition of X̂X to include ÊE only in the second compo-
nent. Hence, by definition

X̂X ¼ E

ÊE

� �
:

For the first component any solution (i.e. element of the kernel of Tþ) necessarily vanishes
on the boundary, and classically cannot contribute to the index and the same situation per-
sists in this noncommutative setting.

We extend the action of T� to a map: ÊE ! E via T�ð f þ xÞ ¼ T�ð f Þ: Similarly we
extend the action of Tþ to a map: E ! ÊE via Tþð f Þ ¼ Tþð f Þ þ 0 and we extend the defi-
nitions of the actions of Qþ and Q�. In order to emphasize the extension of T� we use the
somewhat clumsy notation:

D̂D ¼ 0 T�l 0

Tþ 0

� �
:

The addition of the zero map does not a¤ect the adjointness properties proved above, and
so

ðT�l 0Þ� ¼ Tþ and T �
þ ¼ T�l 0:

Thus D̂D is self-adjoint. We summarise this lengthy discussion.

Proposition 4.13. Let X be a right C � � F-module, and D : domDHX ! X be a

self-adjoint regular operator with discrete spectrum. Then the operator

D̂D ¼ 0 ð�qt n 1þ 1nDÞl 0

qtn 1þ 1nD 0

� �
defined on

E

ÊE

� �
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satisfying APS boundary conditions, given in equation (4) and modified for extended solutions

as above, is self-adjoint and regular on X̂X ¼ ðEl ÊEÞT :

Proof. It remains only to show that D̂D is regular, namely ð1þ D̂D2Þ has dense range.
We begin with D̂D restricted to ðElEÞT . We restrict ourselves further to the invariant sub-
space ðE0 lE0ÞT : To this end let R ¼ QþQ�. This is a bounded, positive endomorphism
on E0 which is injective and has dense range (both Qþ, Q� are injective with dense range,
and are mutual adjoints by Proposition 4.11). Hence the (unbounded) densely defined op-
erator R�1 ¼ ðQþQ�Þ�1 ¼ Q�1

� Q�1
þ ¼ T�Tþ on E0 is a one-to-one positive operator which

is onto. As the operator Rþ 1 is bounded, positive and (boundedly) invertible, it is surjec-
tive. Thus on domðT�TþÞ consider the operator

ðRþ 1ÞR�1 ¼ 1þ R�1 ¼ 1þ T�Tþ:

This is the composition of two surjective operators and so is surjective (on E0). Sim-
ilar comments apply to 1þ TþT� (on E0). Thus ð1þ D̂D2Þ restricted to (its domain in)
ðE0 lE0ÞT maps onto ðE0 lE0ÞT :

Next, inside E, we have E?
0 ¼ L2ðRþÞnX0 and D̂D on ðE?

0 lE?
0 ÞT is just

0 �qt

qt 0

� �
n 1X0

: As regularity is automatic on
�
L2ðRþÞlL2ðRþÞ

�T
, we have regularity

on all of ðElEÞT . Now, on X0 ,! ÊE, D̂D is defined as zero, so ð1þ D̂D2ÞjX0
¼ 1X0

, which is
surjective. Putting the pieces together, 1þ D̂D2 is surjective on X̂X . r

For use in the next proposition, we consider a more explicit discussion of regularity.
So we consider the equation

1þ T�Tþ 0

0 1þ TþT�

� �
f1

f2

� �
¼ 1� q2t þD2 0

0 1� q2t þD2

 !
f1

f2

� �
¼ g1

g2

� �
:

Here we initially suppose each of ðg1; g2ÞT is in Cy
00ðRþÞp

P
alg

Xk. With the exception of

the extra kernel term, such pairs are dense in X̂X : We need to find f ¼ ð f1; f2ÞT in the do-
main of D̂D2 satisfying this equation. In solving this equation we may therefore assume that
all terms are homogeneous, meaning that the general solution is built from functions that
map Rþ to a single eigenspace for D, corresponding to the eigenvalue rk. Thus the equation
we must solve, for given ðg1; g2ÞT A X̂X , is

1� q2t þ r2k 0

0 1� q2t þ r2k

 !
f1

f2

� �
¼ g1

g2

� �
:

The boundary conditions are

rk f 0
f1ð0Þ ¼ 0;�ð�qt þ rkÞ f2

�ð0Þ ¼ 0;

(
rk < 0

f2ð0Þ ¼ 0;�ðqt þ rkÞ f1
�ð0Þ ¼ 0:

(

We use the notation brkrk :¼ ð1þ r2kÞ1=2 as this term appears so often. The solution for f1 is

f1ðtÞ ¼ ð2 brkrkÞ�1

�Ðy
t

ebrkðt�wÞg1ðwÞ dwþ Ðt
0

e�brkðt�wÞg1ðwÞ dw
�
þ Ae�brkt;
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where for

rk f 0; A ¼ �1

2 brkrk Ðy0 e�wbrkg1ðwÞ dw;
and for

rk < 0; A ¼ 1

2 brkrk brkrk þ rkbrkrk � rk

Ðy
0

e�wbrkg1ðwÞ dw:
Observe that in terms of the Heaviside function H:

f1ðtÞ ¼ 1

2 brkrk
0BB@ Ðy

�y
H?ðt� wÞebrkðt�wÞg1ðwÞ dw

þ Ðy
�y

Hðt� wÞebrkðt�wÞg1ðwÞ dwþ
�he�brk �; g1ð�Þie�brkt; rk f 0

þ brkrk þ rkbrkrk � rk
he�brk �; g1ð�Þie�brkt; rk < 0

8>><>>:
1CCA:

The point of this observation is that it displays the integral as a convolution by an L1-
function, plus a rank one operator, namely a multiple of the projection onto spanfe�brktg.
Thus f1 is an L2-function.

For f2 the situation is analogous. We have

f2ðtÞ ¼ ð2 brkrkÞ�1

�Ðy
t

ebrkðt�wÞg2ðwÞ dwþ Ðt
0

e�brkðt�wÞg2ðwÞ dw
�
þ Be�brkt;

where for

rk < 0; B ¼ 1

2 brkrk Ðy0 e�wbrkg2ðwÞ dw;
and for

rk f 0; B ¼ 1

2 brkrk brkrk � rkbrkrk þ rk

Ðy
0

e�wbrkg2ðwÞ dw:
Now we consider elements of X̂X which only have a nonzero component in X0. For such
elements ð0; 0þ xÞT we have

ð1� q2t þD2Þx ¼ ð1� 0þ 0Þx ¼ x;

so we have surjectivity for such elements. Now write a general g ¼ ðg1; g2 þ xÞT A X̂X as
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g ¼ g1

g2 þ 0

� �
þ 0

0þ x

� �
:

Then the above solutions show that for any g in a dense subspace of X̂X , we can find
f A dom D̂D2 with ð1þ D̂D2Þ f ¼ g. Hence, we have a second proof that D̂D is regular which
we now exploit.

In the next result APS boundary conditions mean that D̂D is defined on those
x ¼ ðx1l x2ÞT in ðEl ÊEÞT such that D̂Dx A X̂X , Px1ð0Þ ¼ 0, ð1� PÞx2ð0Þ ¼ 0: This is all
well defined thanks to Lemma 4.5.

Proposition 4.14. Let ðX ;DÞ be an ungraded unbounded Kasparov module for C �-
algebras A, F with F HA a subalgebra satisfying A � F ¼ A. Suppose that D also commutes

with the left action of F HA, and that D has discrete spectrum. Then there is an unbounded

graded Kasparov module

ðX̂X ; D̂DÞ ¼
 

E

ÊE

� �
;

0 T�
Tþ 0

� �!
¼ L2ðRþÞnXdL2ðRþÞnXL2ðRþÞnX

 !
;

0 �qt þD

qt þD 0

� � !

(with APS boundary conditions, equation (4)) for the mapping cone algebra MðF ;AÞ.

Proof. The most important observation is that the left action of MðF ;AÞ on X̂X pre-
serves the APS boundary condition, and therefore the boundary condition of D̂D because for
every f A MðF ;AÞ, f ð0Þ A F and hence commutes with the spectral projections defining the
boundary conditions. We note that to see that the action of MðF ;AÞ on X̂X is by bounded

module maps requires the strong boundedness property of all adjointable mappings [12],
Proposition 1.2. We let AHA be the �-subalgebra of A such that for all a A A, ½D; a� is
bounded (on X ) and að1þD2Þ�1=2 is a compact endomorphism of X . We define the
algebra

MðF ;AÞ ¼ f f : Rþ ! A : f ð0Þ A F and f A Cy
0 ðRþÞ and ½D̂D; f � is boundedg:

We observe that the �-algebra of finite sums:

�P
i

fi n ai : fi A CyðRþÞ and fið0Þ ¼ 0 if ai B F

	
is dense in MðF ;AÞ and is a �-subalgebra of MðF ;AÞ.

By Proposition 4.13, the operator D̂D is regular and self-adjoint, so we may employ
the continuous functional calculus [12], to prove that f ð1þ D̂D2Þ�1=2 is a compact endo-
morphism. It su‰ces to show that f ð1þ D̂D2Þ�1 is compact. To see this, observe that
f ð1þ D̂D2Þ�1=2 is compact if and only if

f ð1þ D̂D2Þ�1
f � ¼ f ð1þ D̂D2Þ�1=2ð1þ D̂D2Þ�1=2

f �

is compact and this follows if f ð1þ D̂D2Þ�1 is compact. The latter follows by observing that
from our second proof of Proposition 4.13 we have that each diagonal entry of
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f ð1þ D̂D2Þ�1 ð1nFkÞ 0

0 ð1nFkÞ
� �

:¼ f ð1þ D̂D2Þ�1�ð1nFkÞn 12
�

can be expressed as a finite sum of terms of the form f ðLgk nFkÞ þ f ðRk nFkÞ
where Lgk is convolution by an L1-function and Rk is a rank one operator. We con-
sider a single elementary tensor in the above subalgebra of MðF ;AÞ: f ¼ hn a, where
a ¼ a1 � b, where b A F and a1 A A. For such an elementary tensor the diagonal entry is
ðh � Lgk þ h � RkÞn a1 � bFk: Since gk is in L1, the product h � Lgk is a compact operator
on L2ðRþÞ, and of course hRk is compact. Since bð1þD2Þ�1=2 is a compact endomor-
phism on X , it is straightforward to check that bFk is a compact endomorphism. So as
End0

F

�
L2ðRþÞnX

� ¼ End0
C

�
L2ðRþÞ

�
nEnd0

F ðXÞ, [18], Corollary 3.38, the endomor-
phism

Bk :¼ f
�ðLgk þ RkÞnFk

� ¼ ð1n a1Þ
�
hðLgk þ RkÞn bFk

� ¼ ð1n a1ÞCk

is compact: indeed each Ck is compact on L2ðRþÞnXk. The importance of this description

is that f ð1þ D̂D2Þ�1 ¼ ð1n a1Þ
�L

k

Ck

�
is a direct sum of compacts on

L
k

�
L2ðRþÞnXk

�
times the bounded operator ð1n a1Þ.

The operator norm of Lgk on L2ðRþÞ is bounded by the L1-norm of gk, and so

kLgkkope kgkk1 ¼ ð1þ r2kÞ�1=2:

The norm of the rank one operator Rk on L2ðRþÞ is given by Cauchy-Schwarz as

kRkkope
�
2ð1þ r2kÞ

��1
:

(This inequality is una¤ected by multiplication by ð brkrk þ jrkjÞ=ð brkrk � jrkjÞ, so can be applied
to both rk < 0 and rk f 0.) Hence

kCkkop e khkopkLgkkopkbkop þ khkopkRkkopkbkop
e khkopkbkop

�ð1þ r2kÞ�1=2 þ �2ð1þ r2kÞ
��1�

:

Since 1þ r2k ! y as jkj ! y, the sequence of compact endomorphisms

�
ð1n a1Þ

PN
�N

Ck

	
converges in norm to f ð1þ D̂D2Þ�1, which is therefore compact. Since an arbitrary
f A MðF ;AÞ is the norm limit of finite sums

P
fj n aj we see that f ð1þ D̂D2Þ�1 is compact

for general f in the mapping cone algebra.

We can now show that we do indeed obtain a Kasparov module. First
V ¼ D̂Dð1þ D̂D2Þ�1=2 is self-adjoint. Also f ð1� V 2Þ ¼ f ð1þ D̂D2Þ�1 is a compact endomor-
phism for f A MðF ;AÞ. Since V clearly anticommutes with the grading operator

G ¼ 1 0

0 �1

� �
, we only need to show that ½V ; f � is compact for all f A MðF ;AÞ. For f a

sum of elementary tensors (using smooth functions), we may write this commutator as

½V ; f � ¼ ½D̂D; f �ð1þ D̂D2Þ�1=2 þ D̂D½ð1þ D̂D2Þ�1=2; f �:
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Now for an elementary tensor f n a, we get ½D̂D; f n a� ¼ qf n aþ f n ½D; a� and so the
first term in the above equation is compact. In the proof of [6], Proposition 2.4, we have
the formula

D̂D½ð1þ D̂D2Þ�1=2; f � ¼ 1

p

Ðy
0

l�1=2fD̂Dð1þ D̂D2 þ lÞ�1=2

� fð1þ D̂D2 þ lÞ�1=2½ f ; D̂D�ð1þ D̂D2 þ lÞ�1=2gD̂Dð1þ D̂D2 þ lÞ�1=2

þ D̂D2ð1þ D̂D2 þ lÞ�1½ f ; D̂D�ð1þ D̂D2 þ lÞ�1g dl

where the integral converges in operator norm and we have grouped the terms in the
integrand so that they are clearly compact by the discussion above. It follows that
½V ; f � is a compact endomorphism for f a sum of elementary tensors. Since these are
norm dense in MðF ;AÞ and V is bounded, ½V ; f � is compact for all f A MðF ;AÞ. So we
have an even Kasparov module for

�
MðF ;AÞ;F� with an unbounded representative for�

MðF ;AÞ;F�. r

Remark. It should be noted that in this context, discreteness of the spectrum of D
does not imply that ð1þD2Þ�1=2 is a compact endomorphism. We are assuming that we
have a Kasparov module, so that for all a A A, að1þD2Þ�1=2 is a compact endomorphism,
but these two compactness conditions are not equivalent unless A is unital. Kasparov mod-
ules corresponding to infinite graphs provide examples of this phenomenon, [15].

5. Equality of the index pairings from the Kasparov modules

We formulate our main theorem in this section demonstrating how even and odd
Kasparov modules give equal index pairings.

We recall that given a partial isometry v A A with range and source projections in F

(observe this includes unitaries in A), we defined v1 ¼ 1� vv� v

v� 1� v�v

� �
: This is a self-

adjoint unitary in M2ð ~AAÞ, and hence there exists a norm continuous path of self-adjoint
unitaries in M2ð ~AAÞ from v1 to the identity. We choose the path

v1ðtÞ ¼ 1

2

�
e2i tan

�1ðtÞðv1 � 12Þ þ ðv1 þ 12Þ
�
;

so that v1ð0Þ ¼ v1 and v1ðyÞ ¼ 12. Now define a projection evðtÞ over ~MMðF ;AÞ by

evðtÞ ¼ v1ðtÞ 1 0

0 0

� �
v1ðtÞ� ¼

1� 1

1þ t2
vv�

�it

1þ t2
v

it

1þ t2
v�

1

1þ t2
v�v

0BB@
1CCA;

where we have used some elementary trigonometry to simplify the expressions. It is im-
portant to observe that this is a finite sum of elementary tensors

P
fj n aj with fj smooth
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and square integrable or fj � fjðyÞ smooth and square integrable. As such it maps
ðÊEl ÊEÞT to itself and leaves ðElEÞT invariant.

The di¤erence of classes

½evðtÞ� � 1 0

0 0

� �� �
lies in K0

�
MðF ;AÞ�: see Lemma 3.2 and the discussion preceding it, as well as [17]. Let

e ¼ 1 0

0 0

� �
, a constant function, then the index pairing of ½v� A K0

�
MðF ;AÞ� with

½ðX̂X ; D̂DÞ� is

h½ev� � ½e�; ½ðX̂X ; D̂DÞ�i :¼ Index
�
evðD̂Dn 12Þev

�� Index
�
eðD̂Dn 12Þe

�
A K0ðFÞ:

Remarks. To explain this notation we review even index theory. On
E

ÊE

� �
,

D̂D ¼ 0 T�
Tþ 0

� �
while the grading operator G ¼ 1 0

0 �1

� �
: That is D̂D is odd while

the action of MðF ;AÞ is even, i.e., diagonal. Then, on
EnC2

ÊEnC2

� �
we have:

D̂Dn 12 ¼ D̂D 0

0 D̂D

� �
and Gn 12 ¼ G 0

0 G

� �
while ev ¼ f g

h k

� �
A M2

�
MðF ;AÞ� acts as

f n 12 gn 12

hn 12 kn 12

� �
: Let ð½El ÊE�l ½El ÊE�ÞT G ð½ElE�l ½ÊEl ÊE�ÞT be the obvious uni-

tary equivalence. Under this equivalence D̂Dn 12 becomes
0 T�n 12

Tþn 12 0

� �
, while

ev ¼ f g

h k

� �
A M2

�
MðF ;AÞ� acts as ev 0

0 ev

� �
. Also, Index

�
evðD̂Dn 12Þev

�
really means

the index of the lower corner operator of

ev 0

0 ev

� �
ðD̂Dn 12Þ ev 0

0 ev

� �
¼ 0 evðT�n 12Þev

evðTþ n 12Þev 0

� �
:

ev
Tþ 0

0 Tþ

� �
ev: as a mapping ev

E

E

� �
! ev

ÊE

ÊE

� �
:

That is we must compute both:

ker
�
evðTþn 12Þev

�
L ev

E

E

� �
and ker

�
evðT�n 12Þev

�
L ev

ÊE

ÊE

� �
L

ÊE

E

� �
:

Similarly, Index
�
eðD̂Dn 12Þe

�
means the index of the lower corner operator: e

Tþ 0

0 Tþ

� �
e,

that is, Tþ as a mapping from E ! ÊE, which we will write as IndexðD̂DÞ. With this reminder,
and the convention that if T is an operator on the module Y , we write Tk for T n 1k on the
module Y nCk, we now state our key result.
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Theorem 5.1. Let ðX ;DÞ be an ungraded unbounded Kasparov module for the (pre-)
C �-algebras AHA, F with F HA a subalgebra satisfying A � F ¼ A. Suppose that D
also commutes with the left action of F HA, and that D has discrete spectrum. Let ðX̂X ; D̂DÞ
be the unbounded Kasparov MðF ;AÞ, F module of Proposition 4.14. Then for any unitary

u A MkðAÞ such that Pk and ðF0Þk both commute with uDku
� and u�Dku we have the follow-

ing equality of index pairings with values in K0ðFÞ:

h½u�; ½ðX ;DÞ�i :¼ IndexðPku
�PkÞ ¼ Index

�
euðD̂Dk n 12Þeu

�� IndexðD̂DkÞ

¼: ½eu� � 1 0

0 0

� �� �
; ½ðX̂X ; D̂DÞ�

� �
A K0ðFÞ:

Moreover, if v is a partial isometry, v A MkðAÞ, with vv�; v�v A MkðFÞ and such that Pk and

ðF0Þk both commute with vDkv
� and v�Dkv we have

½ev� � 1 0

0 0

� �� �
; ½ðX̂X ; D̂DÞ�

� �
¼ �Index

�
PvP : v�vPðXÞ ! vv�PðX Þ� A K0ðFÞð5Þ

¼ Index
�
Pv�P : vv�PðXÞ ! v�vPðX Þ� A K0ðFÞ:

Remarks. (1) In the last statement we really are taking a Kasparov product when we
consider

K0

�
MðF ;AÞ�� KK 0

�
MðF ;AÞ;F�! K0ðFÞ:

Hence the index is well-defined, depends only on the class of ½ev� � ½1� ¼ ½v� and the class of
the ‘APS Kasparov module’.

(2) We note that our hypothesis that P and F0 commute with v�Dv is equivalent to P

and F0 commuting with v� dv since P, F0 commute with D and with v�v. Thus P, F0 com-
mute with all functions of v�Dv, and in particular with each spectral projection v�Fkv. Sim-
ilarly, the first set of commutation relations imply that D and all of D’s spectral projections
commute with v�Pv and v�F0v.

(3) Whether every class ½v� A K0

�
MðF ;AÞ� possesses a representative satisfying the

hypotheses of the theorem is unknown to us in general. Just as with the issues of regularity,
it may be that one can always homotopy v and/or ðX ;DÞ so that the hypotheses are satis-
fied. We leave this issue for future work, noting that for the applications we have in mind
the hypotheses are satisfied.

(4) With regards to the regularity of PvP (in the sense of having a pseudoinverse [7],
Definition 4.3), we observe that since P commutes with v�Pv, the operator PvP is regular as
an operator from v�vPðXÞ to vv�PðX Þ, where the pseudoinverse of PvP is provided by
Pv�P. That is, ðPvPÞðPv�PÞðPvPÞ ¼ PvP and ðPv�PÞðPvPÞðPv�PÞ ¼ Pv�P: Thus our hy-
potheses guarantee the regularity of PvP, and the independence of the index of PvP on
which regular ‘amplification’ we take gives some evidence that the hypotheses may be re-
laxed.

The proof of Theorem 5.1 will occupy the rest of the section.
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5.1. Preliminaries. As is usual for an index calculation such as this, we will assume
without loss of generality (by replacing A by MkðAÞ if necessary) that the partial isometry
v lies in A. To begin the proof it is helpful to write ev as an orthogonal sum of subprojec-
tions in LðX̂X l X̂XÞ which, of course, commute with ev:

ev ¼
t2

1þ t2
vv�

�it

1þ t2
v

it

1þ t2
v�

1

1þ t2
v�v

0BB@
1CCAþ 1� vv� 0

0 0

� �
:¼ bevev þ e0v :ð6Þ

Note that to prove the theorem it su‰ces to demonstrate the equality in equation (5),
and that is what we shall do. Using the decomposition of ev into orthogonal subprojections
in (6) an elementary calculation now gives:

Lemma 5.2. (1) Let x ¼ x1
x2

� �
A

E

E

� �
. Then x A ev

E

E

� �
if and only if v�vx2 ¼ x2

and vv�x1 ¼ �itvx2: In this case by equation (6) we get an orthogonal decomposition:

x1
x2

� �
¼ ev

x1
x2

� �
¼ bevev x1

x2

� �
þ e0v

x1
x2

� �
¼ h1

x2

� �
þ z1

0

� �
;ð7Þ

where h1 ¼ vv�x1 ¼ �itvx2 and z1 ¼ ð1� vv�Þx1; and both
h1
x2

� �
and

z1
0

� �
lie in ev

E

E

� �
.

(2) The same statement (mutatis mutandis) holds for x ¼ x1
x2

� �
A

E

ÊE

� �
.

In order to solve the di¤erential equations to find the index in the theorem we need
the commutation relations recorded in the following lemma.

Lemma 5.3. The operators v�Dv, v�vD and v� dv preserve the subspaces of

v�vðXÞ (intersected with the appropriate domains where necessary) given by v�QvPðX Þ,
v�Qvð1� PÞðX Þ, where Q is any of the projections P, P�F0, 1� P, 1� PþF0, F0.

Proof. In the remarks after the statement of Theorem 5.1, we noted that all
spectral projections of v�vD commute with the projections v�Qv with Q. As v�vD
also commutes with P and 1� P, v�vD preserves these subspaces. Likewise, v�Dv com-
mutes with v�Q 0v for any spectral projection Q 0 of D, and by the hypotheses on v, v�Dv

commutes with P and so 1� P. Thus v�Dv preserves all these subspaces. The result for
v� dv ¼ v�Dv� v�vD follows immediately. r

5.2. Simplifying the equations. The main consequence of Lemma 5.2 is that we can
consider two orthogonal subspaces of solutions separately and this greatly reduces the com-
plexity of our task. In this subsection we will cover the Tþ case: ker

�
evðTþn 12Þev

�
.

We observe that ðqt þDÞn 12 commutes with the projection
1� vv� 0

0 0

� �
(which

ise ev). Thus with Qþ the parametrix for Tþ ¼ qt þD constructed earlier we have
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ð1� vv�Þ 0

0 0

� �
ðQþn 12Þ ð1� vv�Þ 0

0 0

� �
ev
�ðqt þDÞn 12

�
ev

1� vv� 0

0 0

� �

¼ ð1� vv�Þ 0

0 0

� �
ðQþ n 12Þ

�ðqt þDÞn 12
� 1� vv� 0

0 0

� �

¼ ð1� vv�Þ 0

0 0

� �
ðIdn 12Þ 1� vv� 0

0 0

� �
¼ 1� vv� 0

0 0

� �
:

Thus the kernel is f0g on this subspace, and so we only need to calculate the kernel on the
range of bevev: Using the notation da :¼ ½D; a� and recalling that vv� and v�v commute with D,
so that v�v dv� ¼ dv� and vv� dv ¼ dv we now obtain

bevev½ðqt þDÞn 12� bevev
¼

t

ð1þ t2Þ2 vv
� þ t2

1þ t2
vv�ðqt þDÞ þ t2

ð1þ t2Þ2 v dv
� it2

ð1þ t2Þ2 vþ
�it

1þ t2
vðqt þDÞ þ �it3

ð1þ t2Þ2 dv

i

ð1þ t2Þ2 v
� þ it

1þ t2
v�ðqt þDÞ þ it

ð1þ t2Þ2 dv
� �t

ð1þ t2Þ2 v
�vþ 1

1þ t2
v�vðqt þDÞ þ t2

ð1þ t2Þ2 v
� dv

0BBB@
1CCCA

¼ 1

1þ t2
t2vv�ðqt þDÞ �itvðqt þDÞ
itv�ðqt þDÞ v�vðqt þDÞ

� �
þ 1

ð1þ t2Þ2
tvv� þ t2v dv� it2v� it3 dv

iv� þ it dv� �tv�vþ t2v� dv

� �
:

Using this formula, we obtain

bevev ðqt þDÞ 0

0 ðqt þDÞ
� �bevev x1

x2

� �
¼

�itvðqt þDÞx2 �
it2

1þ t2
vx2 �

it3

1þ t2
dvx2

ðqt þDÞx2 þ
t

1þ t2
x2 þ

t2

1þ t2
v� dvx2

0BB@
1CCA:

Since this vector is also in the range of bevev we check that the first coordinate is �itv times the
second coordinate as required by Lemma 5.2. We may rewrite the second coordinate in the
preceding equation:

r2ðtÞ ¼ ðqt þDÞx2 þ
t

1þ t2
x2 þ v� dvx2 �

v� dv
1þ t2

x2

using x2 ¼ v�vðx2Þ, and 1� 1=ð1þ t2Þ ¼ t2=ð1þ t2Þ as

r2ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p qt �

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ v�vDþ t2v� dv

1þ t2

� �
x2 ¼: ð ~DDv þ VÞx2

where ~DDv ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ v�vD

� �
and V ¼ t2

1þ t2
n ðv� dvÞ :¼ V0 n ðv� dvÞ: So

in order to compute the kernel of bevev½ðqt þDÞn 12� bevev acting on the range of bevev, it su‰ces to
compute the kernel of ~DDv þ V acting on vectors x2 A domð ~DDÞ satisfying v�vðx2Þ ¼ x2 and
tx2 A L2ðRþÞnX . In the Tþ case only, such vectors are precisely those x2 in domð ~DDÞ which
lie in L2

�
Rþ; ð1þ t2Þ dt�n v�vðX Þ. We make the important observation that ~DDv is natu-

rally a densely defined closed operator on L2
�
Rþ; ð1þ t2Þ dt�n v�vðX Þ completely ana-

logous to the operator Tþ ¼ qt þD of Section 4 which acts on L2ðRþÞnX :
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Now we consider boundary values. For the equation ev
�ðqt þDÞn 12

�
evx ¼ 0 we

want to impose the boundary condition evð0ÞðPn 12Þevð0Þxð0Þ ¼ 0 where P is the non-
negative spectral projection for D. This projection is

evð0Þ P 0

0 P

� �
evð0Þ ¼ ð1� vv�ÞP 0

0 v�vP

� �
:

Observe that our boundary projection is also the non-negative spectral projection of
evð0ÞðDn 12Þevð0Þ. As noted above, the only solution which lies in the range of

e0v ðPn 12Þe0v ¼ ð1� vv�ÞP 0

0 0

� �
is the zero solution, for which this condition is automati-

cally satisfied. Hence, we need not concern ourselves any further with this subcase.

5.3. Solutions, integral kernels and parametrices. In the following we make some
notational simplifications. We replace v�vD by D, and similarly for other operators, since
everything commutes with v�v and we will always be working on the subspace v�vðXÞ. In
the notation of the previous subsection we aim to find the solutions of ð ~DDv þ VÞr ¼ 0 on
L2
�
Rþ; ð1þ t2Þ dt�n v�vðX Þ.

We will break our space up into orthogonal pieces preserved by ~DDv þ V . We first split
our space as the image of 1nP and 1n ð1� PÞ. On the image of 1nP we define a two
parameter family of bounded operators which will be the integral kernel of a local left in-
verse for ~DDv þ V on this space. The reason for our notation ~DDv þ V is that we regard V as
a (time dependent) perturbation, and we will define our integral kernels using a variant of
the Dyson expansion for time dependent Hamiltonians, [19], X.12.

So for tf sf 0 define an operator on Pv�vðX Þ by

Uðt; sÞ ¼ e�ðt�sÞPD þPy
n¼1

ð�1ÞnÐt
s

Ðt1
s

� � � Ðtn�1

s

e�ðt�t1ÞPDVðt1Þe�ðt1�t2ÞPD � � �VðtnÞe�ðtn�sÞPD dt;

where we write: dtn � � � dt2 dt1 ¼ dt, and where PD really means D restricted to Pv�vðXÞ:

Lemma 5.4. For all tf sf 0 the integrals and the infinite sum defining Uðt; sÞ con-
verge absolutely in the operator norm on the space Pv�vðXÞ: For all tf sf 0 we have

kUðt; sÞke ke�ðt�sÞPDkeðt�sÞkv� dvk:

Moreover Uðt; sÞ satisfies the di¤erential equations
d

dt
Uðt; sÞ ¼ ��Dþ VðtÞ�Uðt; sÞ and

d

ds
Uðt; sÞ ¼ Uðt; sÞ�Dþ VðsÞ�:

Proof. To see the convergence and the norm inequality, we use the crude estimate
kVðtÞke kv� dvk together with the equalities

ke�ðtk�tkþ1ÞPDk ¼ ke�PDkðtk�tkþ1Þ and
Ðt
s

Ðt1
s

� � � Ðtn�1

s

1 dtn � � � dt1 ¼ ðt� sÞn=n!;
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to obtain the inequality

kUðt; sÞke ke�ðt�sÞPDkPy
n�0

ðt� sÞnkv� dvkn

n!
¼ ke�ðt�sÞPDkeðt�sÞkv� dvk:

Di¤erentiating formally yields the two di¤erential equations but to see that the di¤erence
quotients converge in operator norm to the formal derivative takes a little e¤ort. For ex-
ample, using the mean value theorem and the functional calculus for unbounded self-
adjoint operators, one shows that for any f A Cð2ÞðRþÞ which satisfies x2j f 00ðxÞjeC for all

x A Rþ we have:
d

dt

�
f
�ðatþ bÞD�� ¼ aDf 0�ðatþ bÞD� when ðatþ bÞ > 0 with norm con-

vergence of the di¤erence quotient. Applying this to f ðxÞ ¼ e�x for ðt� sÞ > 0 we get
d

dt
e�ðt�sÞD ¼ �De�ðt�sÞD, and

d

ds
e�ðt�sÞD ¼ De�ðt�sÞD:

As for di¤erentiating the integral terms, formally one uses a product rule which tech-
nically is invalid as one term is unbounded; however, by using the product rule trick of add-
ing in a term and subtracting it out, one shows the formal calculation works. Since the orig-
inal series and the series for the derivatives converge uniformly and absolutely, we are
done. r

Using these results we now construct a (local) left inverse for ð ~DDv þ VÞð1nPÞ. We
define for any tf 0 and continuous function r A

�
L2
�
Rþ; ð1þ t2Þ dt�nPv�vðXÞ�,

ð ~QQrÞðtÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Uðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds:

Observe that ð ~QQrÞð0Þ ¼ 0, and is di¤erentiable. First we need an elementary operator-
theoretic lemma.

Lemma 5.5. Let T be a closed densely defined operator on a Banach space B and let

SL domðTÞ be a dense subspace of domðTÞ in the domain norm. Let A : domðTÞ ! B be a

bounded operator in the domðTÞ norm, and let Q be a densely defined closable linear operator

whose domain contains TðSÞ and such that QT ¼ 1S þ AjS : Then, rangeðTÞL domðQÞ and
QT ¼ 1domðTÞ þ A:

Proof. Let Tx A rangeðTÞ, so there exists a sequence fxng in S with xn ! x and
Txn ! Tx: But then, the fact that

lim
n

Txn ¼ Tx and lim
n

QðTxnÞ ¼ lim
n

�
xn þ AðxnÞ

� ¼ xþ AðxÞ

implies that Tx A domðQÞ and QðTxÞ ¼ xþ AðxÞ: r

Lemma 5.6. The equation ð ~DDv þ VÞr ¼ 0 has no nonzero solutions in

�
L2
�
Rþ; ð1þ t2Þ dt�nPv�vðX Þ�:
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Proof. Fix M > 0 and let EM be the orthogonal projection of L2
�
Rþ; ð1þ t2Þ dt�

onto the subspace L2
�½0;M�; ð1þ t2Þ dt�: Then EM n 1 is the orthogonal projection of�

L2
�
Rþ; ð1þ t2Þ dt�nPv�vðXÞ� onto the subspace

�
L2
�½0;M�; ð1þ t2Þ dt�nPv�vðX Þ�:

Now, we see that ~QQ defines a linear operator on the dense subspace of�
L2
�½0;M�; ð1þ t2Þ dt�nPv�vðXÞ� consisting of continuous functions, call it ~QQM : This op-

erator has a densely defined adjoint defined on the same subspace, ~QQK
M , given by the for-

mula

ð ~QQK
MrÞðtÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p ÐM

t

Uðs; tÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds:

Thus, ~QQM is not only densely defined, but also closable on�
L2
�½0;M�; ð1þ t2Þ dt�nPv�vðX Þ�:

The smooth functions r in the domain of ð ~DDv þ VÞð1nPÞ form a domain-dense sub-
space and

ðEM n 1Þð ~DDv þ VÞðrÞ ¼ ð ~DDv þ VÞðEM n 1ÞðrÞ A domð ~QQMÞ:

Let rM ¼ ðEM n 1ÞðrÞ, fix t A ½0;M� and calculate:�
~QQMð ~DDv þ VÞrM

�ðtÞ ¼ � ~QQMð ~DDv þ VÞr�ðtÞ ¼ � ~QQð ~DDv þ VÞr�ðtÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

Uðt; sÞ�qs� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p �

Dþ VðsÞ�rðsÞ� ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

qs
�
Uðt; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ� ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

�
qsUðt; sÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ ds

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Uðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ ds

¼ rðtÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Uðt; 0Þrð0Þ ¼ rðtÞ ¼ rMðtÞ:

As rð0Þ ¼ P
�
rð0Þ� ¼ 0 the previous lemma implies that ð ~DDv þ VÞðEM nPÞ is injective

and ð ~DDv þ VÞr ¼ 0 has no nonzero local solutions on ½0;M� for any M > 0: Hence,
ð ~DDv þ VÞr ¼ 0 has no nonzero global solutions in

�
L2
�
Rþ; ð1þ t2Þ dt�nPv�vðX Þ�. r

Next we split the range of 1n ð1� PÞ into two pieces, namely

1n ð1� PÞ ¼ 1n v�ð1� PþF0Þvð1� PÞl 1n v�ðP�F0Þvð1� PÞ:

Lemma 5.7. The equation ð ~DDv þ VÞr ¼ 0 has no nonzero solutions in the subspace

L2
�
Rþ; ð1þ t2Þ dt�n v�ð1� PþF0Þvð1� PÞðXÞ:
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Proof. Suppose we did have a solution

r A L2
�
Rþ; ð1þ t2Þ dt�n v�ð1� PþF0Þvð1� PÞðXÞ:

We write rðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p sðtÞ, where s is now an (ordinary) L2 function with values in

v�ð1� PþF0Þvð1� PÞðXÞ. A brief calculation shows that

1

1þ t2
d

dt
hsðtÞ j sðtÞiX ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p d

dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
hrðtÞ j rðtÞiX

¼ 
��Dþ VðtÞ�rðtÞ j rðtÞ�
X
þ 
rðtÞ j ��Dþ VðtÞ�rðtÞ�

X
:

Since v�Dv is non-positive and D strictly negative on v�ð1� PþF0Þvð1� PÞðXÞ, we have
the estimate

Dþ VðtÞ ¼ ð1þ t2Þ�1ðt2v�DvþDÞ < �c1=ð1þ t2Þ;

where c > 0 and 0 < c < jr�1j where r�1 is the first negative eigenvalue of D on this sub-
space. Thus

1

1þ t2
d

dt
hsðtÞ j sðtÞiX f

2c

1þ t2
hrðtÞ j rðtÞiX :

Multiplying by 1þ t2 and integrating from 0 to s gives (this is an integral of a continuous
function into the positive cone of the C �-algebra F )

Ðs
0

d

dt
hsðtÞ j sðtÞiX dt ¼ hsðsÞ j sðsÞiX � hsð0Þ j sð0ÞiX f 2c

Ðs
0

hrðtÞ j rðtÞiX dt:

The right-hand side is a nondecreasing function of s, and if r is nonzero, this function is
eventually positive. Hence hsðsÞ j sðsÞiX is a continuous non-decreasing function of s in
Fþ, and so can not be integrable as can be seen by evaluating on a state of F : Hence s is
not an element of L2 and there are no nonzero solutions r of ð ~DDv þ VÞðrÞ ¼ 0 in the space
L2
�
Rþ; ð1þ t2Þ dt�n v�ð1� PþF0Þvð1� PÞðXÞ. r

Finally, we come to the subspace L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðX Þ. On

this subspace we will define a parametrix which is a right inverse, but is not a left inverse,
instead providing solutions to our equation. Thus, for tf sf 0 define an operator Hðt; sÞ
on the space v�ðP�F0Þvð1� PÞðX Þ by

e�ðt�sÞv�Dv þPy
n¼1

Ðt
s

Ðt1
s

� � � Ðtn�1

s

�ð1þ t21Þ � � � ð1þ t2nÞ
��1

e�ðt�t1Þv�Dvv� dv � � � v� dve�ðtn�sÞv�Dv dt

where v�Dv means v�Dv restricted to the subspace v�ðP�F0Þvð1� PÞðXÞ:

Lemma 5.8. For all tf sf 0 the integrals and the infinite sum defining Hðt; sÞ con-
verge absolutely in norm. For tf sf 0, Hðt; sÞ is an endomorphism of the module

v�ðP�F0Þvð1� PÞðXÞ with norm
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kHðt; sÞke ke�ðt�sÞv�Dvke tan�1ðtÞkv� dvk e e�ðt�sÞr1e tan
�1ðtÞkv� dvk;

where r1 is the smallest positive eigenvalue of v�Dv on this subspace. The family of endomor-

phisms Hðt; sÞ satisfies the di¤erential equations
d

dt
Hðt; sÞ ¼ ��Dþ VðtÞ�Hðt; sÞ; d

ds
Hðt; sÞ ¼ Hðt; sÞ�Dþ VðsÞ�:

Proof. Except for the final estimate the proof of this is similar to the proof of
Lemma 5.4. Now, the norm of Hðt; sÞ (on v�ðP�F0Þvð1� PÞðX Þ) can be estimated as fol-
lows:

kHðt; sÞke ke�ðt�sÞv�Dvk
�
1þPy

n¼1

kv� dvknÐt
0

Ðt1
0

� � � Ðtn�1

0

�ð1þ t21Þ � � � ð1þ t2nÞ
��1

dt

�

¼ ke�ðt�sÞv�Dvk
�
1þ Py

n¼1

kv� dvkn

n!

�
tan�1ðtÞ�n�

¼ ke�ðt�sÞv�Dvke tan�1ðtÞkv� dvke e�ðt�sÞr1e tan
�1ðtÞkv� dvk;

where r1 is the smallest positive eigenvalue of v�Dv on the subspace. r

We now define a local parametrix on the space

L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðX Þ:

Let r be given by a continuous function in L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðX Þ

and let tf 0: Define

ð ~RRrÞðtÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Hðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds:

As in the proof of Lemma 5.6, ~RR defines a closable linear mapping locally on ½0;M� on it’s
initial dense domain of continuous functions. We note that ~RRðrÞ is di¤erentiable.

Lemma 5.9. For every vector x in the subspace v�ðP�F0Þvð1� PÞðXÞ there exists a
unique element r A L2

�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðXÞ with rð0Þ ¼ x and

ð ~DDv þ VÞr ¼ 0. Moreover, these are the only solutions in the space

L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðX Þ:

Proof. As in the proof of Lemma 5.6 we work locally with t in the interval ½0;M�,
however, we suppress the local notations rM , etc. Take r a continuous function in
L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðXÞ with values in domðDÞ and compute using

the di¤erential equations from Lemma 5.8

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ð ~RRrÞðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p qt

�Ðt
0

Hðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds

�
¼ rðtÞ � �Dþ VðtÞ�ð ~RRrÞðtÞ:
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Thus
�
~DDv þ VðtÞ�ð ~RRrÞðtÞ ¼ rðtÞ and ~RR is injective. The injectivity is first proved locally on

½0;M� by using Lemma 5.5 which easily implies global injectivity. On the other hand if r is
smooth and lies in the domain of ~DDv þ V then ð ~DDv þ VÞðrÞ is continuous and so locally we
get

�
~RRð ~DDv þ VÞr�ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

Hðt; sÞ�qs� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p �

Dþ VðsÞ�rðsÞ� ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

qs
�
Hðt; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ� ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

�
qsHðt; sÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ ds

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Hðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ ds

¼ rðtÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Hðt; 0Þrð0Þ;

where we have again used the di¤erential equations from Lemma 5.8. Applying Lemma 5.5
we obtain this equation for all r A domð ~DDv þ VÞ: By the estimate on kHðt; 0Þk in the pre-

vious lemma, the function
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Hðt; 0Þrð0Þ is in

L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0Þvð1� PÞðX Þ;

and so if r is in the kernel of ~DDv þ V we have locally and hence globally

rðtÞ ¼ ð1þ t2Þ�1=2
Hðt; 0Þrð0Þ:ð8Þ

Conversely, with x ¼ rð0Þ A v�ðP�F0Þvð1� PÞðXÞ, equation (8) defines a solution as ~RR is
injective. r

Putting together Lemmas 5.6, 5.7, 5.9, we have the following preliminary result.

Corollary 5.10. The kernel of ~DDv þ V on L2
�
Rþ; ð1þ t2Þ dt�n v�vðXÞ is isomorphic

to the right F-module v�ðP�F0Þvð1� PÞðXÞ: Consequently
ker
�
ev
�ðqt þDÞn 12

�
ev
� ¼ ker

�
êev
�ðqt þDÞn 12

�
êev
�

G kerð ~DDv þ VÞG v�ðP�F0Þvð1� PÞðXÞ:

Thus we have part of the index of
�
evðD̂Dn 12Þev

�
: To complete the calculation, we

compute the kernel of the adjoint operator evð�qt þDÞev. We follow an essentially similar
path, but must take a little more care with the extended L2-space ÊE:

5.4. The kernel of the adjoint. As explained above, we must compute the kernel

of the operator ev
�qt þD 0

0 �qt þD

� �
ev as a map from ev

ÊE

ÊE

� �
to ev

E

E

� �
: Recall
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that MðF ;AÞ acts as zero on the constant X0-valued functions but the added unit

element acts as the identity. Thus for a pair of constant functions
x1

x2

� �
A

ÊE

ÊE

� �
we

have ev
x1

x2

� �
¼ x1

0

� �
: Hence ev

ÊE

ÊE

� �
L

ÊE

E

� �
: For x A ev

ÊE

ÊE

� �
to be in the domain of

ev
�ð�qt þDÞn 12

�
ev we impose the boundary condition:

ð1� vv�Þð1� PÞ 0

0 v�vð1� PÞ
� �

xð0Þ ¼ 0:

For the constant function
x1

0

� �
A ev

ÊE

ÊE

� �
to be in the domain this means that x1

must satisfy ð1� vv�Þð1� PÞðx1Þ ¼ 0: However, this is automatic as x1 A X0 so that
ð1� PÞðx1Þ ¼ 0: Thus the domain of ev

�ð�qt þDÞn 12
�
ev extended to the constant

X0-valued functions ðX0lX0ÞT is ðX0 l 0ÞT : Of course, the extended operator
ev
�ð�qt þDÞn 12

�
ev is identically 0 here. It is important to note that:

dom
�
ev
�ð�qt þDÞn 12

�
ev
�
L evðÊElEÞT :

As before we use the orthogonal decomposition of ev to enable separate analysis of
the two subspaces

êev
ÊE

ÊE

� �
! êev

E

E

� �
and e0v

ÊE

ÊE

� �
! e0v

E

E

� �
:

Now,

e0v
ÊE

ÊE

� �
¼ e0v

E

E

� �
l

ð1� vv�ÞðX0Þ
0

� �
:

As in the case of ev
�ðqt þDÞn 12

�
ev we have ev

�ð�qt þDÞn 12
�
ev is one-to-one on

e0v ðElEÞT and so the kernel there is 0: Since ev
�ð�qt þDÞn 12

�
ev is identically 0 on

e0v
�ð1� vv�ÞðX0Þl 0

�T
G ð1� vv�ÞðX0Þ, we have the following result.

Proposition 5.11. The kernel of ev
�ð�qt þDÞn 12

�
ev restricted to e0v

ÊE

ÊE

� �
is isomor-

phic to the right F-module ð1� vv�ÞðX0Þ:

These solutions are a rather trivial type of extended solution to the adjoint equation.
Next:

bevev ð�qt þDÞ 0

0 ð�qt þDÞ
� �bevev x1

x2

� �
¼

�itvð�qt þDÞx2 þ
it2

1þ t2
vx2 �

it3

1þ t2
dvx2

ð�qt þDÞx2 �
t

1þ t2
x2 þ

t2

1þ t2
v� dvx2

0BB@
1CCA:

That is, any vector ðr1; r2ÞT in the range of bevev½ðqt þDÞn 12� bevev satisfies r1ðtÞ ¼ �itvðr2ÞðtÞ
and as before, after simplifying,
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r2ðtÞ ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ v�vDþ t2v� dv

1þ t2

� �
x2 ¼: ðD̂Dv þ VÞx2

where D̂Dv ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ v�vD

� �
and

V ¼ t2

1þ t2
n ðv� dvÞ :¼ V0 n ðv� dvÞ:

So in order to compute the kernel of bevev½ð�qt þDÞn 12� bevev acting on the range of bevev, it suf-
fices to compute the kernel of D̂Dv þ V acting on vectors x2 A E satisfying v�vðx2Þ ¼ x2 and
�itvðx2Þ A ÊE. As opposed to the Tþ case, such vectors x2 only need to lie in the larger space
L2ðRþÞn v�vðX Þ, while x1ðtÞ ¼ �itv

�
x2ðtÞ

�
may have a nonzero limit at y in X0 subject to

the boundary conditions P
�
x2ð0Þ

� ¼ x2ð0Þ:

Again we split L2ðRþÞn v�vðXÞ into the range of 1nP and 1n ð1� PÞ. On the im-
age of 1n ð1� PÞ we define a two parameter family of bounded operators which will be
the integral kernel of a local parametrix for D̂Dv þ V on this space. Thus with D standing for
ð1� PÞD and for tf sf 0, define an operator on ð1� PÞv�vðX Þ by

Wðt; sÞ ¼ eðt�sÞD þPy
n¼1

ð�1ÞnÐt
s

Ðt1
s

� � � Ðtn�1

s

eðt�t1ÞDVðt1Þeðt1�t2ÞDVðt2Þ � � �VðtnÞeðtn�sÞD dt:

Lemma 5.12. For all tf sf 0 the integrals and the infinite sum defining Wðt; sÞ con-
verge absolutely in norm. For all tf sf 0 we have (in the operator norm for endomorphisms

of v�vðXÞ)

kW ðt; sÞke keðt�sÞDkeðt�sÞkv� dvk:

Moreover W ðt; sÞ satisfies the di¤erential equations

d

dt
W ðt; sÞ ¼ �Dþ VðtÞ�W ðt; sÞ; d

ds
W ðt; sÞ ¼ �W ðt; sÞ�Dþ VðsÞ�:

Proof. This is very similar to the proof of Lemma 5.4 so we omit the details. r

Using these results we construct a local parametrix for ðD̂Dv þ VÞ�1n ð1� PÞ�: For r
a continuous function in L2ðRþÞn ð1� PÞv�vðX Þ define

ðQ̂QrÞðtÞ :¼ �ð1þ t2Þ�1=2 Ðt
0

Wðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds:

Observe that ðQ̂QrÞð0Þ ¼ 0, and is di¤erentiable, and so if r has range in domðDÞ then Q̂QðrÞ
is locally in the domain of D̂Dv þ V . As in the proof of Lemma 5.6, Q̂Q defines a closable lin-
ear mapping locally on ½0;M� on its initial dense domain of continuous functions. All our
calculations below are local as in Lemma 5.6.
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Lemma 5.13. In the space L2ðRþÞn ð1� PÞv�vðX Þ the equation ðD̂Dv þ VÞr ¼ 0
has no nonzero solutions and therefore it has no nonzero solutions in the subspace

L2
�
Rþ; ð1þ t2Þ dt�n ð1� PÞv�vðX Þ:

Proof. Let r be a smooth function in the domain of ðD̂Dv þ VÞð1� PÞ:

�
Q̂QðD̂Dv þ VÞr�ðtÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

Wðt; sÞ��qs
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ� ds

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

qs
�
Wðt; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ� ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

�
qsWðt; sÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Wðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ ds

¼ rðtÞ � ð1þ t2Þ�1=2
Wðt; 0Þrð0Þ ¼ rðtÞ;

where, as r has values in the range of ð1� PÞ, we have rð0Þ ¼ 0: Arguing as in the proof of
Lemma 5.6 this implies that ðD̂Dv þ VÞð1� PÞ is injective on its whole domain. Hence,
ðD̂Dv þ VÞr ¼ 0 has no nonzero solutions in L2ðRþÞn ð1� PÞv�vðXÞ. r

Next we split the range of 1nP into three pieces, namely

1nP ¼ ½1n v�ðP�F0ÞvP�l ½1n v�ð1� PÞvP�l ½1n v�F0vP�:

Lemma 5.14. In the subspace L2ðRþÞn v�ðP�F0ÞvPv�vðX Þ the equation

ðD̂Dv þ VÞr ¼ 0 has no nonzero solutions and therefore has no nonzero solutions in

L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0ÞvPv�vðXÞ:

Proof. First, suppose we have a solution r with rðtÞ A v�ðP�F0ÞvPv�vðX Þ for all
tf 0, and r A L2ðRþÞn v�ðP�F0ÞvPv�vðX Þ. Then �itv

�
rðtÞ� A ðP�F0ÞvPv�vðXÞ and

so if this has a limit at y in F0ðXÞ, the limit must be 0: That is,

�itvðrÞ A L2ðRþÞn ðP�F0ÞvPv�vðX Þ

and so our solution r actually lies in the smaller space

L2
�
Rþ; ð1þ t2Þ dt�n v�ðP�F0ÞvPv�vðXÞ:

Arguing as in Lemma 5.7 write rðtÞ ¼ ð1þ t2Þ�1=2sðtÞ, where s is now an (ordinary) L2

function with values in v�ðP�F0ÞvPv�vðXÞ:

ð1þ t2Þ�1 d

dt
hsðtÞ j sðtÞiX

d

dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
hrðtÞ j rðtÞiX

¼ 
�Dþ VðtÞ�rðtÞ j rðtÞ�
X
þ 
rðtÞ j �Dþ VðtÞ�rðtÞ�

X
:
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Since v�Dv is strictly positive and D is non-negative on v�ðP�F0ÞvPv�vðXÞ, we have the
estimate

Dþ VðtÞ ¼ ð1þ t2Þ�1ðt2v�DvþDÞ > r1t
2=ð1þ t2Þ;

where r1 is the first positive eigenvalue of v
�Dv on this subspace and therefore

1

1þ t2
d

dt
hsðtÞ j sðtÞiX f

2r1t
2

1þ t2
hrðtÞ j rðtÞiX :

Multiplying by 1þ t2 and integrating from 0 to s gives

Ðs
0

d

dt
hsðtÞ j sðtÞiX dt ¼ hsðsÞ j sðsÞiX � hsð0Þ j sð0ÞiX f 2r1

Ðs
0

t2hrðtÞ j rðtÞiX dt:

The right-hand side is a nondecreasing function of s, and if r is nonzero, this function is
eventually positive. Thus arguing further as in Lemma 5.7 there are no nonzero solutions
r of ðD̂Dv þ VÞðrÞ ¼ 0 in L2

�
Rþ; ð1þ t2Þ dt�n v�ðP�F0ÞvPv�vðX Þ, and hence none in

L2ðRþÞn v�ðP�F0ÞvPv�vðX Þ: r

Next, we come to the subspace L2ðRþÞn v�ð1� PÞvPv�vðX Þ. On this subspace we
will define a local parametrix which is a right inverse, but is not a left inverse, instead
providing solutions to our equation. So for tf sf 0 define Gðt; sÞ (on the module
v�ð1� PÞvPv�vðXÞ) by

eðt�sÞv�Dv þPy
n¼1

ð�1ÞnÐt
s

Ðt1
s

� � � Ðtn�1

s

�ð1þ t21Þ � � � ð1þ t2nÞ
��1

eðt�t1Þv�Dvv� dv � � � v� dveðtn�sÞv�Dv dt:

Lemma 5.15. For all tf sf 0 the integrals and the infinite sum defining Gðt; sÞ con-
verge absolutely in norm. For tf sf 0, Gðt; sÞ is a bounded endomorphism of the module

v�ð1� PÞvPv�vðXÞ with norm bounded by

kGðt; sÞke keðt�sÞv�Dvkeðt�sÞkv� dvke eðt�sÞr�1eðt�sÞkv� dvk;

where r�1 is the largest negative eigenvalue of D. The family of endomorphisms Gðt; sÞ satis-
fies the di¤erential equations

d

dt
Gðt; sÞ ¼ �Dþ VðtÞ�Gðt; sÞ; d

ds
Gðt; sÞ ¼ �Gðt; sÞ�Dþ VðsÞ�:

Proof. The proof of this is very similar to the proof of Lemma 5.8. r

Now define a local parametrix on continuous functions r by

ðR̂RrÞðtÞ :¼ ð1þ t2Þ�1=2 Ðt
0

Gðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds; r A L2ðRþÞn v�ð1� PÞvPv�vðX Þ:
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As in the proof of Lemma 5.6, R̂R defines a closable linear mapping locally on ½0;M� on the
initial dense domain of continuous functions. We note that R̂RðrÞ is di¤erentiable.

Lemma 5.16. For every vector x in the space v�ð1� PÞvPv�vðXÞ there exists a unique

element r A L2ðRþÞn v�ð1� PÞvPv�vðXÞ with rð0Þ ¼ x and ðD̂Dv þ VÞr ¼ 0. Moreover,
these are the only solutions in the subspace L2ðRþÞn v�ð1� PÞvPv�vðX Þ: In fact these solu-

tions r clearly lie in L2
�
Rþ; ð1þ t2Þ dt�n v�ð1� PÞvPv�vðX Þ and satisfy

lim
t!y

�itv
�
rðtÞ� ¼ 0:

Proof. We work locally as in the proofs of Lemmas 5.6 and 5.9. Take r a continu-
ous function in L2ðRþÞn v�ð1� PÞvPv�vðXÞ with values in domðDÞ and compute

�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ðR̂RrÞðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p qt

�Ðt
0

Gðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds

�
¼ rðtÞ � �Dþ VðtÞ�ðR̂RrÞðtÞ;

where we have used the computations from Lemma 5.15. Thus
�
D̂Dv þ VðtÞ�ðR̂RrÞðtÞ ¼ rðtÞ

and R̂R is injective. The injectivity is first proved locally on ½0;M� by using Lemma 5.5 which
easily implies global injectivity. On the other hand if r is smooth and lies in the domain of
D̂Dv þ V then ðD̂Dv þ VÞðrÞ is continuous and so locally we get

�
R̂RðD̂Dv þ VÞr�ðtÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p Ðt

0

Gðt; sÞ��qs
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ� ds

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

qs
�
Gðt; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ� ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

�
qsGðt; sÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
rðsÞ ds

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

Gðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p �
Dþ VðsÞ�rðsÞ ds

¼ rðtÞ � ð1þ t2Þ�1=2
Gðt; 0Þrð0Þ;

where we have again used the derivative computations from Lemma 5.15. Applying
Lemma 5.5 we get this formula for all r A domðD̂Dv þ VÞ:

Now if r is in the kernel of D̂Dv þ V we have locally and hence globally

rðtÞ ¼ ð1þ t2Þ�1=2
Gðt; 0Þrð0Þ;ð9Þ

and this lies in L2ðRþÞn v�ð1� PÞvPv�vðX Þ by the estimate:

kGðt; 0Þke etr�1e tan
�1ðtÞkv� dvk

where r�1 is the largest negative eigenvalue of D on the subspace. Conversely, given any
vector rð0Þ A v�ð1� PÞvPv�vðXÞ, equation (9) defines a solution since R̂R is injective. r
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Finally we need to consider the subspace L2ðRþÞn v�F0vPðX Þ. This subspace gives
rise to extended solutions. That is, the solutions we seek here are the second components x2
of a solution x ¼ ðx1; x2ÞT in evðÊEl ÊEÞT L ðÊElEÞT to the equation evð�qt þDÞevx ¼ 0,
where x1 A ÊE satisfies x1 ¼ �ivtx2. Hence, a true extended solution (one where x1 B E)
comes from those x2 which behave like ð1þ t2Þ�1=2 as t ! y. With this reminder, we have

Lemma 5.17. For every vector x A v�ðF0ÞvPðX Þ there exists a unique solution to the

equation ðD̂Dv þ VÞr ¼ 0 in the space L2ðRþÞn v�ðF0ÞvPðXÞ with rð0Þ ¼ x: Moreover,
every solution in this space is of the form rðtÞ ¼ ð1þ t2Þ�1=2

e�ðtan�1ðtÞÞv� dvrð0Þ and

(1) lim
t!y

�itv
�
rðtÞ� ¼ �ive�p=2v� dv

�
rð0Þ� A F0ðXÞ

and

(2) t 7! ��ivtrðtÞ þ ive�ðp=2Þv� dv�rð0Þ�� is in L2ðRþÞn v�ðF0ÞvPðX Þ:

Proof. We define a local parametrix for r a continuous function in
L2ðRþÞn v�ðF0ÞvPðX Þ by

ðÊErÞðtÞ :¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p e�ðtan�1ðtÞÞv� dv Ðt
0

eðtan
�1ðsÞÞv� dv ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ ds:

We observe that ðÊErÞ is di¤erentiable and satisfies ðÊErÞð0Þ ¼ 0: To show that this is a para-
metrix, first use v� dv ¼ v�Dv� v�vD to rewrite

D̂Dv þ V ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
þ v�Dv� 1

1þ t2
v� dv:

As v�Dv acts as zero on v�F0vðXÞ, this reduces on v�F0vðXÞ to

D̂Dv þ V ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
� 1

1þ t2
v� dv:

Applying
�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
to ÊEðrÞ and using the product rule gives

�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p qt
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ðÊErÞðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p qt

�
e�ðtan�1ðtÞÞv� dv Ðt

0

eðtan
�1ðsÞÞv� dv ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

rðsÞ ds
�

¼ rðtÞ � v� dv
1þ t2

ðÊErÞðtÞ:

Thus ðD̂Dv þ VÞðÊErÞ ¼ r locally for continuous functions. As in previous cases ÊE is locally a
closable operator and so by Lemma 5.5 we get that ðD̂Dv þ VÞðÊErÞ ¼ r locally for all r in
the domain of ÊE. Hence, ÊE is globally injective. Integration by parts for smooth r in the
domain gives �

ÊEðD̂Dv þ VÞr�ðtÞ ¼ rðtÞ � ð1þ t2Þ�1=2
e�tan�1ðtÞv� dvrð0Þ:
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Applying Lemma 5.5, we get this equation for all r A domðD̂Dv þ VÞ: Hence if
r A kerðD̂Dv þ VÞ we have

rðtÞ ¼ ð1þ t2Þ�1=2
e�tan�1ðtÞv� dvrð0Þ:

On the other hand if x A v�ðF0ÞvPðX Þ and we define r by this equation with rð0Þ ¼ x then
we have a solution of ðD̂Dv þ VÞðrÞ ¼ 0 in the space r A L2ðRþÞn v�ðF0ÞvPðX Þ: Since for
each tf 0 we have rðtÞ A v�F0vðX Þ, we also have �itv

�
rðtÞ� A F0vðX ÞLF0ðXÞ, and

therefore

lim
t!y

�itv
�
rðtÞ� ¼ �ive�p=2v� dv�rð0Þ� A F0ðXÞ:

It is an exercise to check that t 7! ��ivtrðtÞ þ ive�ðp=2Þv� dv�rð0Þ�� is in
L2ðRþÞn v�ðF0ÞvPðX Þ: r

Putting together Proposition 5.11 and Lemmas 5.13, 5.14, 5.16, 5.17, we have the fol-
lowing.

Corollary 5.18. The kernel of ðD̂Dv þ VÞ on L2ðRþÞn v�vðX Þ is isomorphic to the

right F-module

kerðD̂Dv þ VÞG ½v�ð1� PÞvPðXÞ�l ½v�F0vPðX Þ�;

where the first summand consists of ordinary solutions in L2
�
Rþ; ð1þ t2Þ dt�n v�vðX Þ,

while the second summand consists of extended solutions whose second component is in

L2ðRþÞn v�vðX Þ: Consequently, taking into account the (trivial ) extended solutions of Pro-

position 5.11, ð1� vv�ÞF0ðXÞ we have the full kernel

ker
�
ev
�ð�qt þDÞn 12

�
ev
�
G ½v�ð1� PÞvPðXÞ�l ½v�F0vPðXÞ�l ½ð1� vv�ÞF0ðX Þ�:

5.5. Completing the proof of Theorem 5.1. Consider the pairing of
1 0

0 0

� �
with

qt þD. Examining our earlier parametrix computations shows that qt þD with boundary
condition P has no kernel, while �qt þD with boundary condition 1� P has extended so-
lutions: the constant functions with value in X0. The projection onto these extended solu-
tions is F0 and Indexðqt þDÞ ¼ �½X0�: Since the mapping cone algebra is nonunital, we

can not just pair with the class of ev, but must pair with ½ev� � 1 0

0 0

� �� �
. We have com-

puted the pairing of ðX̂X ; D̂DÞ with both these terms, and so we have the following intermedi-
ate result:

Proposition 5.19. The pairing of ½ev� � 1 0

0 0

� �� �
with ðX̂X ; D̂DÞ is given by

Index
�
evðqt þDÞev

�� Indexðqt þDÞ ¼ Index
�
evðqt þDÞev

�þ ½X0�
¼ ½v�ðP�F0Þvð1� PÞðXÞ� � ½v�ð1� PÞvPðXÞ�
� ½v�F0vPðX Þ� � ½ð1� vv�ÞðX0Þ� þ ½X0�
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¼ ½v�Pvð1� PÞðX Þ� � ½v�F0vð1� PÞðX Þ�
� ½v�ð1� PÞvPðXÞ� � ½v�F0vPðXÞ� þ ½vv�ðXÞ0�

¼ ½v�Pvð1� PÞðX Þ� � ½v�ð1� PÞvPðX Þ� � ½v�F0vðX Þ� þ ½vv�ðX0Þ�
¼ ½v�Pvð1� PÞðX Þ� � ½v�ð1� PÞvPðX Þ�:

The last line follows because w ¼ v�F0 is a partial isometry with ww� ¼ v�F0v and
w�w ¼ vv�F0, showing that the modules defined by these projections are isomorphic.

Now we can finalise the proof of the theorem by computing the index of

PvP : v�vPðXÞ ! vv�PðX Þ;

where P is the non-negative spectral projection for D. The kernel of PvP is given by the set

fx A v�vPðXÞ : vx A vv�ð1� PÞðXÞ ¼ ð1� PÞvðXÞg ¼ Pv�ð1� PÞvðX Þ;

while the cokernel is given by

fx A vv�PðXÞ ¼ PvðX Þ : x ¼ vh; h A v�vð1� PÞðX Þg ¼ ð1� PÞv�PvðX Þ:

Thus

IndexðPvPÞ ¼ ½Pv�ð1� PÞvðX Þ� � ½ð1� PÞv�PvðX Þ� A K0ðFÞ:

Hence, since Pv�ð1� PÞv ¼ v�ð1� PÞvP and so on,

Index
�
PvP : v�vPðXÞ ! vv�PðXÞ� ¼ ��Index�evðqt þDÞev

�� Indexðqt þDÞ�;
and the proof of Theorem 5.1 is complete.

Remark. When ½D; v� dv� ¼ 0, enormous simplifications occur in the preceding ana-
lysis. In this case one can verify that for the equation ~DDv þ V in v�vE, a solution of
r ¼ ð ~DDv þ VÞx vanishing at zero is given by

xðtÞ ¼ ev
� dv tan�1ðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p Ðt
0

e�v�Dvðt�sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
e�v� dv tan�1ðsÞrðsÞ ds;

and we require r A v�ðP�F0ÞvE. This formula can be obtained by performing the sums
and integrals in the definition of our more general parametrix. Similar comments apply to
the other cases.

In the next section we apply Theorem 5.1 to graph algebras and the Kasparov mod-
ule constructed from the gauge action in [15]. We will see that in this case we can always
assume that v� dv commutes with D, so that we are in the simplest situation described
above.
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6. Applications to certain Cuntz-Krieger systems

For a detailed introduction to Cuntz-Krieger systems as graph algebras see [20]. A
directed graph E ¼ ðE0;E1; r; sÞ consists of countable sets E0 of vertices and E1 of edges,
and maps r; s : E1 ! E0 identifying the range and source of each edge. We will always

assume that the graph is locally-finite which means that each vertex emits at most fi-
nitely many edges and each vertex receives at most finitely many edges. We write En

for the set of paths m ¼ m1m2 � � � mn of length jmj :¼ n; that is, sequences of edges mi such that
rðmiÞ ¼ sðmiþ1Þ for 1e i < n. The maps r, s extend to E � :¼ S

nf0

En in an obvious way. A

sink is a vertex v A E0 with s�1ðvÞ ¼ j, a source is a vertex w A E0 with r�1ðwÞ ¼ j however
we will always assume there are no sources.

A Cuntz-Krieger E-family in a C �-algebra B consists of mutually orthogonal projec-
tions fpv : v A E0g and partial isometries fSe : e A E1g satisfying the Cuntz-Krieger rela-

tions

S �
e Se ¼ prðeÞ for e A E1 and pv ¼

P
fe:sðeÞ¼vg

SeS
�
e whenever v is not a sink:

There is a universal C �-algebra C �ðEÞ generated by a non-zero Cuntz-Krieger E-family
fSe; pvg [11], Theorem 1.2. A product Sm :¼ Sm1Sm2 � � �Smn is non-zero precisely when
m ¼ m1m2 � � � mn is a path in En. The Cuntz-Krieger relations imply that words in fSe;S

�
f g

collapse to products of the form SmS
�
n for m; n A E � satisfying rðmÞ ¼ rðnÞ and we have

C �ðEÞ ¼ spanfSmS
�
n : m; n A E � and rðmÞ ¼ rðnÞg:ð10Þ

There is a canonical gauge action of T on A :¼ C �ðEÞ determined on the generators via:
gzðpvÞ ¼ pv and gzðSeÞ ¼ zSe: Because T is compact, averaging over g with respect to nor-
malised Haar measure gives a faithful expectation F from A onto the fixed-point algebra
F ¼ Ag:

FðaÞ :¼ 1

2p

Ð
T

gzðaÞ dy for a A C �ðEÞ; z ¼ eiy:

As described in [15], right multiplication by F makes A into a right (pre-Hilbert) F -module
with inner product: ða j bÞR :¼ Fða�bÞ: Then X denotes the Hilbert F -module completion
of A in the norm

kak2X :¼ kða j aÞRkF ¼ kFða�aÞkF :

For each k A Z, the projection Fk onto the k-th spectral subspace of the gauge action is
defined by

FkðxÞ ¼ 1

2p

Ð
T

z�kgzðxÞ dy; z ¼ eiy; x A X :

The generator of the gauge action on X , D ¼ P
k AZ

kFk, is determined on the generators of
A ¼ C �ðEÞ by the formula
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DðSaS
�
b Þ ¼ ðjaj � jbjÞSaS

�
b :

The following result is proved in [15].

Proposition 6.1. Let A be the graph C �-algebra of a directed graph with no sources.

Then ðX ;DÞ is an odd unbounded Kasparov A-F-module. The operator D has discrete spec-

trum, and commutes with left multiplication by F HA. Set V ¼ Dð1þD2Þ�1=2
. Then ðX ;VÞ

defines a class in KK 1ðA;FÞ.

We are going to investigate relations in K0

�
MðF ;AÞ�. As graph algebras are gener-

ated by partial isometries in A with range and source in F , so K0

�
MðF ;AÞ� contains a lot

of information about A and the underlying graph. The main result of Section 5 will give us
more information.

Proposition 6.2. Let A be the graph C �-algebra of a locally finite directed graph. Let

a ¼ a1a2 � � � ajaj be a path in the graph, and Sa the corresponding partial isometry in A. If m is

also a path let Pm ¼ SmS
�
m . Then in K0

�
MðF ;AÞ� we have the relations

½SaPm� ¼
Pjaj�1

j¼1

½Saj Sajþ1
Sajþ2

� � �SanPmS
�
an
� � �S �

ajþ2
S �
ajþ1

� þ ½SajajPm�;

½SaS
�
b � ¼ ½Sa� � ½Sb�; a; b paths:

Proof. This proceeds by induction on jaj. If jaj ¼ 0 then ½Sa� ¼ ½prðaÞ� ¼ 0 and if
jaj ¼ 1, there is nothing to prove. So suppose the relation is true for all a with jaj < n. Let
a be a path with jaj ¼ n and write a ¼ aan where jaj ¼ n� 1. Then

½SaPm� ¼ ½SaSanPm� ¼ ½SaSanPmS
�
an
SanPm� ¼ ½SaSanPmS

�
an
� þ ½SanPm� by Lemma 3:3

¼ Pjaj�2

½Saj Sajþ1
Sajþ2

� � �SanPmS
�
an
� � �S �

ajþ2
S �
ajþ1

� þ ½Sajaj�1
SanPmS

�
an
� þ ½SanPm�;

the last line following by induction. The application of Lemma 3.3 requires

ðSaSanPmS
�
an
Þ�ðSaSanPmS

�
an
Þ ¼ SanPmS

�
an
¼ ðSanPmÞðSanPmÞ�:

The second relation follows from Lemma 3.3 also, since S �
aSa ¼ prðaÞ ¼ S �

bSb. r

Lemma 6.3. Let A be the graph C �-algebra of a locally finite directed graph E with

no sources. Then for all edges e A E1, the class ½Se� A K0

�
MðF ;AÞ� is not zero. Similarly if

rðeÞ ¼ sðaÞ then ½SePa�3 0.

Proof. The assumptions on the graph ensure the existence of the Kasparov module
ðX ;DÞ constructed from the gauge action. The pairing h½SePa�; ½ðX ;DÞ�i is given by
½SePaS

�
eF0� ¼ ½SePaS

�
e � A K0ðFÞ, where F0 is the kernel projection of D, whose range is

the trivial F -module F . This class is nonzero since F is an AF algebra, and so satisfies can-
cellation. r

Remark. The hypothesis of ‘no sources’ was introduced so that we could use the
nonzero index pairing to infer nonvanishing of the class ½SePa�. This restriction may be
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loosened provided we use other ways of deducing the nonvanishing. For instance, if the
class ½Pa� � ½SePaS

�
e � ¼ ev�ð½SePa�Þ3 0 in K0ðFÞ, then the class ½SePa� cannot be zero. On

the other hand, if ½Pa� ¼ ½SePaS
�
e � in K0ðFÞ, then since F is AF, there exists a partial iso-

metry v A F such that SePaS
�
e ¼ vv� and Pa ¼ v�v. Then u ¼ 1� Pa þ v�SePa is a unitary,

and so defines a class in K1ðAÞ. Since the map K1ðAÞ ! K0

�
MðF ;AÞ� is an injection, and

takes ½u� to ½SePa�, we would know that ½SePa�3 0 if we knew that ½u�3 0.

Corollary 6.4. Let A be the graph C �-algebra of a locally finite connected directed

graph with no sources. Two nonzero classes ½SePa�, ½Sf Pa�, with e, f edges in the graph and

a an arbitrary path, are equal if and only if rðeÞ ¼ rð f Þ. Two nonzero classes ½Se�, ½Sf �, rðeÞ a
sink, are equal, ½Se� ¼ ½Sf �, if and only if rðeÞ ¼ rð f Þ.

Proof. Suppose that rðeÞ ¼ rð f Þ, and that ½SePa�3 0 (otherwise there is nothing to
prove). Then as SePaS

�
f A F we have

0 ¼ ½SePaS
�
f � ¼ ½SePa� � ½Sf Pa�;

by Lemma 3.3. Conversely, if rðeÞ3 rð f Þ at least one of these classes is zero.

For the second statement we observe that if rðeÞ ¼ rð f Þ then SeS
�
f is nonzero, and

then ½Se� ¼ ½SeS
�
f � þ ½Sf � ¼ ½Sf � by Lemma 3.3. If rðeÞ3 rð f Þ, we suppose ½Se� ¼ ½Sf �, for

a contradiction, and compute the index pairing with the Kasparov module ðX ;DÞ con-
structed from the gauge action. The pairing is given by

h½Se�; ½ðX ;DÞ�i ¼ �½SeS
�
e � ¼ �½Sf S

�
f � ¼ h½Sf �; ½ðX ;DÞ�i:

Hence the class of SeS
�
e in K0ðFÞ (F is the fixed point algebra) coincides with the class of

Sf S
�
f . Since F is an AF algebra, there exists a partial isometry v A spanfSmS

�
n : jmj ¼ jnjg

such that SeS
�
e ¼ vSf S

�
f v

�. Thus

prðeÞ ¼ S �
e vSf S

�
f v

�Se ¼
P
j

cjckS
�
e Smj S

�
nj
Sf S

�
f SnkS

�
mk
Se:

Here the paths mj start from sðeÞ and end at some vertex vj, while the corresponding path nj
starts from sð f Þ and ends at the same vertex vj. Moreover there is at least one path mj with
S �
e Smj 3 0 so mj ¼ emj2 � � � mjk , where jmjj ¼ k. However, rðeÞ is a sink, so any such path is of

the form mj ¼ e. This forces the length of the corresponding nj to be 1, and nj ¼ f . The only
way the product Smj S

�
nj
¼ SeS

�
f can now be non-zero is if rðeÞ ¼ rð f Þ, contradicting our as-

sumption. r

Corollary 6.5. Let A be the graph C �-algebra of a locally finite connected directed

graph with no sources. Then if two partial isometries of the form ½Se�, ½Sf � satisfy

½Se� ¼ ½Sf � A K0

�
MðF ;AÞ� then there exists a partial isometry r in F such that rSe ¼ Sf

and r�rSe ¼ Se ¼ r�Sf .

Proof. The required partial isometry r is Sf S
�
e . The remaining statements are imme-

diate. r

Lemma 6.6. Let E be a row-finite directed graph. Then the group

K0

�
M
�
C �ðEÞg;C �ðEÞ�� is generated by the classes ½SePa�, where e is an edge and a is a path.
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Proof. Let ½v� A K0

�
M
�
C �ðEÞg;C �ðEÞ�� and consider

ev�½v� ¼ ½v�v� � ½vv�� A K0

�
C �ðEÞg�:

Now K0

�
C �ðEÞg� is generated by the classes ½pm�, pm ¼ SmS

�
m , where m A E � is a path, [14].

As C �ðEÞg is an AF algebra, there are partial isometries W , Z over C �ðEÞg such that

W �W ¼ v�v; WW � ¼P
j

pmj ; ZZ� ¼ vv�; Z�Z ¼P
k

pnk ;ð11Þ

and ½v� ¼ ½Z�vW ��. The latter follows because Z, W are partial isometries over F and so
represent zero, while ½Z�vW �� ¼ ½Z�� þ ½v� þ ½W ��. In equation (11) the sums are necessar-
ily orthogonal, and may be in a matrix algebra over C �ðEÞg, and some zeroes (place-
holders to make the matrix dimensions equal) may have been omitted from the sums. Ob-
serve that ev�½Z�vW �� ¼P

k

½pnk � �
P
j

½pmj �. By considering pnkZ
�vW �pmj we may suppose

without loss of generality that we have only one summand so that WW � ¼ pm and
Z�Z ¼ pn. Then

ev�½Z�vW �SmS
�
n � ¼ ½pn� � ½pn� ¼ 0:

Hence ½v� ¼ ½Z�vW �� ¼ ½SnS
�
m � modulo the image of i�, and Lemma 6.2 completes the

proof for ½v� B Imageði�Þ. Observe that SnS
�
m 3 0 (and so rðmÞ ¼ rðnÞ) is a consequence.

In the case ev�½v� ¼ 0, so that ½v� A Imageði�Þ we observe that there is a partial isome-
try X over C �ðEÞg such that X �X ¼ v�v and XX � ¼ vv� so that 1� v�vþ X �v is unitary.
Then, again since all partial isometries are over F ,

½v� ¼ ½WX �vW �� ¼ ½WX �ZZ�vW �� ¼ ½WX �ZSnS
�
m � ¼ i�½1� pm þWX �ZSnS

�
m �

gives a unitary representative of v. Since i�½1� pm þWX �ZSnS
�
m � ¼ ½SnS

�
m �, Lemma 6.2

completes the proof. r

The structure of K1

�
MðF ;AÞ� is even simpler.

Lemma 6.7. If E is a row-finite directed graph, A ¼ C �ðEÞ and F ¼ C �ðEÞg, then
K1

�
MðF ;AÞ� ¼ 0.

Proof. The exact sequence 0 ! AnC0ð0; 1Þ ! MðF ;AÞ ! F ! 0 and K1ðFÞ ¼ 0
yields

0 ! K1ðAÞ ! K0

�
MðF ;AÞ�!ev� K0ðFÞ ! K0ðAÞ ! K1

�
MðF ; AÞ�! 0:ð12Þ

By Lemma 3.1, the map K0ðFÞ ! K0ðAÞ is induced (up to sign and Bott periodicity)
by inclusion j : F ! A. This map is surjective on K0 by [14], Lemma 4.2.2, and so
K1

�
MðF ;AÞ� ¼ 0. r

In [14], the K-theory of a graph algebra C �ðEÞ, where E has no sources or sinks, was
computed as the kernel (K1) and cokernel (K0) of the map given by the vertex matrix on
ZE 0

(there are subtleties when sinks are involved). The proof of this result involves the
dual of the gauge action and the Pimsner-Voiculescu exact sequence for crossed products.
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In equation (12), we see the K-theory again expressed as the kernel and cokernel of a map,
but this time it arises with no serious e¤ort. The di¤erence of course is that the groups
K0

�
MðF ;AÞ� and K0ðFÞ are in general harder to compute.

While the map ev� : K0

�
MðF ;AÞ�! K0ðFÞ is neither one-to-one nor onto in general,

we can deduce that the two groups K0

�
MðF ;AÞ� and K0ðFÞ are in fact isomorphic in a

wide range of examples. We let ðX̂X ; D̂DÞ be the APS Kasparov module arising from the Kas-
parov module ðX ;DÞ.

Proposition 6.8. Let A be the graph C �-algebra of a locally finite connected directed

graph with no sources and no sinks. Then the map IndexD̂D : K0

�
MðF ;AÞ�! K0ðFÞ given by

the Kasparov product with the Kasparov module of the gauge action is an isomorphism.

Proof. First the index map is a well-defined homomorphism, [10]. We begin by
showing that the index map is one-to-one. So suppose that we have edges e, g and paths
a, b in our graph (with no range a sink), and suppose that

IndexD̂Dð½SePa�Þ ¼ IndexD̂Dð½SgPb�Þ.

A simple computation using Theorem 5.1 yields

IndexD̂Dð½SePa�Þ ¼ ½SePaS
�
e � ¼ ½SgPbS

�
g � ¼ IndexD̂Dð½SgPb�Þ:

As F is an AF algebra, we can find a partial isometry v in F such that

SePaS
�
e ¼ vSgPbS

�
g v

�:

Then setting w ¼ PaS
�
e vSgPb 3 0 we have

Pa ¼ ww� ¼ wPbw
� and Pb ¼ w�w ¼ w�Paw:

We will use Lemma 3.3 below and need to check that some partial isometries have the same
source projections. First observe that ðSePawPbÞ�ðSePawPbÞ ¼ Pb ¼ w�w, so

½SePa� ¼ ½SePawPbw
�� ¼ ½SePawPb� þ ½w�� ¼ ½SePawPb� ¼ ½SePaS

�
e vSgPb�;

the second last equality following since w is a partial isometry in F . Now since
ðSgPbÞðSgPbÞ� ¼ SgPbS

�
g and ðSePaS

�
e vÞ�ðSePaS

�
e vÞ ¼ SgPbS

�
g , we can apply Lemma 3.3

again to find

½SePa� ¼ ½SePaS
�
e vSgPb� ¼ ½SePaS

�
e v� þ ½SgPb� ¼ ½SgPb�:

Thus IndexD̂D is one-to-one. Now supposing that our graph has no sinks, every class in
K0ðFÞ is a sum of classes ½pm� ¼ ½SmS

�
m �, where m is a path in the graph of length at least

one. For a given m ¼ m1 � � � mjmj, define m ¼ m2 � � � mjmj. Then it is straightforward to check
that

IndexD̂Dð½SmS
�
m �Þ ¼ ½pm�:

Hence the index map is onto and we are done. r
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Observe that this does not mean that the K-theory of the graph algebra is zero! The
evaluation map and the index map are very di¤erent. For the Cuntz algebra On, nf 2, for
example, the fixed point algebra has K-theory K0ðFÞGZ½1=n� and so we have

ev�ð½Sm�Þ ¼ ½1� � ½SmS
�
m �@ 1� 1

njmj
¼ ðnjmj � 1Þ 1

njmj
;

with kerðev�ÞGK1ðOnÞ ¼ 0 and cokerðev�ÞGK0ðOnÞ ¼ Zn�1. The index map gives us

IndexD̂Dð½Sm�Þ ¼
Pjmj�1

j¼0

½SmS
�
mFj�:

This equality follows from Theorem 5.1, and to determine the right-hand side more
explicitly, set m ¼ mjþ1 � � � mjmj and define the partial isometry W ¼ SmS

�
mF0. Then

WW � ¼ SmS
�
mFj and W �W ¼ SmS

�
mF0. Thus in K0ðFÞ we have

IndexD̂Dð½Sm�Þ ¼
Pjmj�1

j¼0

½SmS
�
mFj� ¼

Pjmj�1

j¼0

½SmS
�
mF0� ¼

Pjmj�1

j¼0

½SmS
�
m �@

Pjmj�1

j¼0

n�ðjmj�jÞ ¼ njmj � 1

n� 1

� �
1

njmj
:

The evaluation map and the mapping cone exact sequence gives us

K0

�
MðOg

n;OnÞ
�
G ðn� 1ÞZ½1=n�

(those polynomials all of whose coe‰cients have a factor of n� 1) which is of course iso-
morphic to Z½1=n�GK0ðFÞ as an additive group.

References

[1] M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc.

Camb. Phil. Soc. 77 (1975), 43–69.

[2] M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, III, Math. Proc.

Camb. Phil. Soc. 79 (1976), 71–99.

[3] T. Bates, D. Pask, I. Raeburn, W. Szymanski, The C �-algebras of row-finite graphs, New York J. Math. 6

(2000), 307–324.

[4] B. Blackadar, K-theory for operator algebras, Math. Sci. Res. Inst. Publ. 5, Springer, New York 1986.

[5] B. Booss-Bavnbek, K. P. Wojciechowski, Elliptic boundary value problems for Dirac operators, Birkhäuser,
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