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Abstract. We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a
noncommutative geometry setting framed in terms of Kasparov modules. We use a map-
ping cone construction to relate odd index pairings to even index pairings with APS bound-
ary conditions in the setting of KK-theory, generalising the commutative theory. We find
that Cuntz-Krieger systems provide a natural class of examples for our construction and
the index pairings coming from APS boundary conditions yield complete K-theoretic infor-
mation about certain graph C*-algebras.
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1. Introduction

This paper is about a noncommutative analogue of APS index theory. We will focus
on one aspect of generalising the APS theory. Namely we replace classical first order elliptic
operators on a manifold with product metric near the boundary by a ‘cylinder’ of operators
on a Kasparov module. We explain below how the classical theory provides an example of
this more general framework. We also show in the last section that there are many noncom-
mutative examples as well. Our motivation is not simply that we are trying to understand
noncommutative manifolds with boundary but is derived from the fact that the construc-
tion in this paper can be applied to many index problems in semifinite noncommutative ge-
ometry using [9] (which we plan to address elsewhere).

To explain our point of view let us recast a simple special case, using the language
of later sections, the connection between spectral flow and APS boundary conditions dis-
cussed in [2]. Let X be a closed Riemannian manifold, of odd dimension, and let & be a
(self-adjoint) Dirac type operator on X. Then & determines an odd K-homology class
[2] for the algebra C(X) and we may pair [Z] with the K-theory class of a unitary
ue M (C(X)) to obtain the integer

Il’ldeX(Pkqu> = Sf(@k, u@ku*)

Here P; is the nonnegative spectral projection for & := % ® Id.« and the index of the
‘Toeplitz operator’ PyuPy gives the spectral flow sf (%, uZ,u*) from Iy to uZu*.

We may also attach a semi-infinite cylinder to X, and consider the manifold-with-
boundary X x R.. If & acts on sections of some bundle § — X, then & determines a self-
adjoint operator on the L?-sections of S, # = L?(X,S), with respect to an appropriate
measure constructed from the Riemannian metric and bundle inner products. We define

. ( L*(Ry, ) ) . ( 0 —a,+@>
%: > 5 @: )
L*(Ry, #) @ ®gH o +9 0

where @ is the projection onto the kernel of Z. It is necessary to single out the zero eigen-
value of Z for special attention since it gives rise to ‘extended L2-solutions’ which contrib-
ute to the index, [1]. We let & act as zero on ®(.#, and regard this subspace as being com-
posed of values at infinity of extended solutions (more on this in the text).

We give 2 APS boundary conditions. That is, we take the domain of 9, + Z to be
{Ee LRy, ) : (0, + )¢ e LA(Ry, #), PE(0) = 0}

where again P is the nonnegative spectral projection for . The domain of —0, + Z is de-
fined similarly using 1 — P in place of P. Then it can be shown, see for instance [1], that &
is an unbounded self-adjoint operator and for any f € C* (X x R,) which is of compact
support and equal to a constant on the boundary, the product f(1 + 922)*1/ ’isa compact
operator on #.
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Such functions lie in the mapping cone algebra for the inclusion C — C(X). This is
defined as

M(C,C(X)) ={f: Ry — C(X): f(0) e Cly, f continuous and vanishes at co}.
We have an exact sequence
0— C(X)® Co((0,00)) = M(C,C(X)) = C—0

from which we get a six term sequence in K-theory. Since K;(C) = 0, this sequence simpli-
fies to

0 — Ki(C(X)) — Ko(M(C,C(X))) — Ko(C) — Ko(C(X)) — K (M(C, C(X))) — 0.

A careful analysis, which we present in greater generality in this paper, shows that the map
Z = Ko(C) — Ko(C(X)) takes n to the class of the trivial bundle of rank 7 on X, and so is
injective. Thus we find that

Ki(C(X)) = Ko(M(C, C(X))),

and the mapping cone algebra is providing a suspension of sorts. The relationship be-
tween the even index pairing for & and the odd index pairing for & is then as follows.
Let e, be the projection over M (C, C(X)) determined by the unitary u over C(X), so that
leu] — [1] € Ko(M (C, C(X))). Then

Index (e, (0, + Z)e,) — Index(d;, + 2) = {[e.] — [1], (D]> = ul,[2]) = sf (D, uGu*).

The purpose of this paper is to present a noncommutative analogue of this picture.
Our main result, Theorem 5.1, shows that the situation described above for the commuta-
tive case carries over to a class of Kasparov modules for noncommutative algebras. We ex-
ploit a paper of Putnam [17] on the K-theory of mapping cone algebras to give an APS type
construction for a Kasparov module with boundary conditions that implies an equality be-
tween even and odd indices. Not only will we find a new version of this index equality, but
we will see that it allows us to use APS boundary conditions to obtain interesting index
pairings, and consequences, that were previously unknown. For instance we show that the
complicated K-theory calculations of [14] can be given a simple functorial description.

A description of the organisation and main results of the paper now follows. We be-
gin in the next section with some preliminaries on Kasparov modules. In Section 3 we re-
view [17], describing K, of mapping cone algebras, M(F, A) where F < A are certain C*-
algebras (replacing the pair C = C(X) in the classical setting above). We make some basic
computations related to these groups and associated exact sequences.

The application of APS boundary conditions for Kasparov modules is done in Sec-
tion 4. We show that certain odd Kasparov modules for algebras 4, B with F a subalgebra
of A4, can be ‘suspended’ to obtain even Kasparov modules for the algebras M (F, A), B,
using APS boundary conditions. The proof is surprisingly complicated as there are substan-
tial technical issues. Even self-adjointness of the abstract Dirac operator on the suspension
with APS boundary conditions is not clear. We solve all of the difficulties using a careful
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construction in the noncommutative setting of a parametrix for our abstract Dirac opera-
tors on the even Kasparov module.

The main theorem (Theorem 5.1) shows that two index pairings—one from an odd
Kasparov module and one from its even ‘suspension’—with values in Ky(B) are equal. Re-
placing K, (C) = Z with Ky(B) gives us an analogue of the classical example above. The
proof is quite difficult; solving differential equations in Hilbert C*-modules is a more com-
plex issue than in Hilbert space.

In Section 6 we explain one class of examples. There we calculate the K-groups of the
mapping cone algebra M (F, A) for the inclusion of the fixed point algebra F of the gauge
action on certain graph C*-algebras 4. For these algebras, the application of Theorem 5.1
yields in Proposition 5.7 an isomorphism from Ko (M (F,A)) to Ko(F), which leads to a
functorial description of the calculations of Ky(4), K;(A) in [14].

Readers familiar with [5] may be puzzled by the fact that we do not study the more
general question of boundary conditions parametrised by a Grassmannian. In fact we
make, in our main theorem, an assumption that classicially corresponds to assuming that
we can work with a fixed APS boundary condition for all of the perturbed operators we
study. We know that for classical index problems it is often the case that a more general
operator can be homotopied to one that preserves the APS boundary conditions. In the
noncommutative context of this paper we have not studied this homotopy argument. The
examples in Section 6 illustrate that for many cases our restricted analysis suffices and pro-
vides complete information about the K-theory of the relevant algebras.

Acknowledgements. We thank Rsyzard Nest for advice on Section 5, David Pask,
Aidan Sims and Iain Raeburn for enlightening conversations and Ian Putnam for bringing
his work to the third author’s attention. The first and second named authors acknowledge
the financial assistance of the Australian Research Council and the Natural Sciences and
Engineering Research Council of Canada while the third named author thanks Statens Na-
turvidenskabelige Forskningsrad, Denmark. All authors are grateful for the support of the
Banff International Research Station where some of this research was undertaken.

2. Kasparov modules

The Kasparov modules considered in this subsection are for C*-algebras with trivial
grading.

Definition 2.1. An odd Kasparov A-B-module consists of a countably generated un-
graded right B-C*-module E, with ¢: A — Endg(E) a *x-homomorphism, together with
P € Endp(E) such that a(P — P*), a(P> — P), [P, d] are all compact endomorphisms. Alter-
natively, for V'=2P — 1, a(V — V*), a(V? — 1), [V, a] are all compact endomorphisms for
all a € A. One can modify P to P so that P is self-adjoint; || P|| < 1; a(P — P) is compact for
all a € A and the other conditions for P hold with P in place of P without changing the
module E. If P has a spectral gap about 0 (as happens in the cases of interest here) then
we may and do assume that P is in fact a projection without changing the module, E.
(Note that by [4], 17.6, we may assume that P is a projection by changing to a new module
in the same class as E.)
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By [10], Lemma 2, Section 7, the pair (¢, P) determines a KK'(A4, B) class, and every
class has such a representative. The equivalence relation on pairs (¢, P) that give KK!-
classes is generated by unitary equivalence (¢, P) ~ (UgpU*, UPU*) and homology:
(91, P1) ~ (¢hy, P2) if P1¢p;(a) — P2¢p,(a) is a compact endomorphism for all a € 4, see also
[10], Section 7. Later we will also require even, or graded, Kasparov modules.

Definition 2.2. An even Kasparov A-B-module has, in addition to the data of the
previous definition, a grading by a self-adjoint endomorphism I' with > =1 and
#a)T =T¢(a), VT +TV =0.

The next theorem presents a general result used in [15], Appendix, about the Kas-
parov product in the odd case.

Theorem 2.3. Let (Y, T) be an odd Kasparov module for the C*-algebras A, B. Then
(assuming that T has a spectral gap around 0) the Kasparov product of K,(A) with the class
of (Y, T) is represented by

{[u],[(Y,T)]) = [ker PuP] — [coker PuP| € K(B),

where P is the non-negative spectral projection for the self-adjoint operator T.

This pairing was studied in [15], as well as the relation to the semifinite local index
formula in noncommutative geometry. It is also the starting point for this work. More de-
tailed information about the KK-theory version of this can be found in [9].

In this paper we will employ unbounded representatives of KK-classes. The theory of
unbounded operators on C*-modules that we require is all contained in Lance’s book, [12],
Chapters 9, 10. We quote the following definitions (adapted to our situation).

Definition 2.4. Let Y be a right C*-B-module. A densely defined unbounded op-
erator Y:dom% < Y — Y is a B-linear operator defined on a dense B-submodule
dom % < Y. The operator & is closed if the graph G(2) = {(x,Zx): xedomZ} is a
closed submodule of Y @ Y.

If :dom% < Y — Y is densely defined and unbounded, we define the domain of
the adjoint of & to be the submodule:

domZ* :={ye Y :3ze Y such that Vx e dom Z,{Px | y)r = {x|z)r}.

Then for y e dom %™ define 2y =z. Given y e domZ*, the element z is unique, so
9" :domZ* — Y, 9"y = z is well-defined, and moreover is closed.

Definition 2.5. Let Y be a right C*-B-module. A densely defined unbounded opera-
tor ¥ :dom% < Y — Y is symmetric if for all x, y e dom &

(Dx|yyp=Lx|Dy)g.

A symmetric operator & is self-adjoint if dom 2 = dom 2" (so Z is closed). A densely de-
fined operator & is regular if & is closed, " is densely defined, and (1 + 2*Z) has dense
range.
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The extra requirement of regularity is necessary in the C*-module context for the con-
tinuous functional calculus, and is not automatic, [12], Chapter 9.

Definition 2.6. An odd unbounded Kasparov A-B-module consists of a countably gen-
erated ungraded right B-C*-module E, with ¢ : 4 — Endp(E) a *-homomorphism, to-
gether with an unbounded self-adjoint regular operator & : dom% < E — E such that
(2, 4] is bounded for all @ in a dense *-subalgebra of A4 and a(1 + 2%)"/? is a compact
endomorphism of E for all a € A. An even unbounded Kasparov A-B-module has, in addi-
tion to the previous data, a Z,-grading with 4 even and & odd, as in Definition 2.2.

3. K-theory of the mapping cone algebra and pairing with KK -theory

3.1. The mapping cone. Let FF = 4 be a C*-subalgebra of a C*-algebra 4. Recall
[17] that the mapping cone algebra is

M(F,A) ={f:]0,1] — A : f is continuous, f(0) =0, f(1) € F}.

The algebra operations are pointwise addition and multiplication and the norm is the uni-
form (sup) norm. There is a natural exact sequence

0— Co(0,1)®A 5 M(F,A) S F — 0.

Here ev(f) = f(1) and i(g ® a)(t) — g(t)a. It is well known that when F is an ideal in the
algebra A4 we have K, (M(F,A)) = K.(A/F).

We will always be considering the situation where K (F) = 0, as is the case for graph
C*-algebras, though this is not strictly necessary. When K (F) = 0, the six term sequence in
K-theory coming from this short exact sequence degenerates into

ev,

(1) 0= Ki(4) = Ko(M(F, 4)) 5 Ko(F) 5 Ko(A4) — Ky (M(F, 4)) — 0.
We need to justify the notation j,; namely we need to display the map j which induces j,.

Lemma 3.1. In the above exact sequence the map j. : Ko(F) — Ko(A) is induced by
minus the inclusion map j: F — A (up to Bott periodicity).

Proof. The map we have denoted by j, is actually a composite:
Jo: Ko(F) 5 K (Co(0,1) ® 4) = Ko(A).

The isomorphism here is the inverse of the Bott map Bott : Ko(4) — K;(Co(0,1) ® A4),
where Bott([p]) = [¢>™ ® p + 1 ® (1 — p)]. The boundary map 0 is defined as follows,
[8], p. 113. For [p] — [q] € Ko(F), we choose representatives p, ¢ over F, and then choose
self-adjoint lifts x, y over M (F, A). Then >, ¢>™ are unitaries over C(S') ® 4 which are
equal to the identity modulo Cy(0,1) ® 4. Then

A[p] = [a)) = ™) = [™] € K1 (Co(0,1) ® 4).
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Now we choose the particular lifts over M (F, A) given by x(¢) = tp and y(¢) = ¢ (in
fact these are 1 ® j(p) and 1 ® j(g)). Both these elements are self-adjoint, vanish at t =0
and at = 1 are in F. Now

2] — [¢2]) = [¢2187] — [291) = —Bott([p] - [q]) € K1(Co(0,1) @ 4).
So modulo the isomorphism

Bott : Ko(4) — Ki(Co(0,1) ® 4), ju([p] = [a]) = = ([i(p)] = li(@)]). O

We now describe Ko(M(F,A)) [17]. Let V,,(F,A) be the set of partial isometries
ve M, (A) such that v*v,vv* € M,,(F). Using the inclusion V,, — ¥V, given by
v — v @ 0 we can define

V(F,A) =] Vn(F, A).

m

Our aim, following [17], is to define a map x : V(F, A) — Ko(M(F, A)), and we proceed in
steps. First, let v € V(F, A) and define a self-adjoint unitary v; via:

1 —ov* v
U1 =
v* 1—v*v)’

. 1
thatis, v? = 1, v; = vj. So, v = p, — p_ where p, = §<vl +1)and p_ =

positive and negative spectral projections for v;. Then for ¢ € [0, 1] define

(I —vy) are the

N —

n(t) = py +e™p-
so that we have a continuous path of unitaries from the identity (r =0) to v; (t=1).

Observe that vy(¢) is unitary for all 7€ (0,1], vy e C([0,1]) ® M, (A), v2(0) =1 and
v2(1) = v;. Now define

es(t) = va()evs (1), e:((l) 8)

Then e,(¢) is a projection over the unitization M (F, A) of M(F, A) given by
M(F,A) ={f:[0,1] — A : f is continuous, f(0) € CI, f(1) € F}.
Thus [e,] — [e] defines an element of Ko (M (F, A)). So with x(v) = [e,] — [e] we find:
Lemma 3.2 ([17], Lemmas 2.2, 2.4, 2.5). (1) k(v ® w) = x(v) + x(w).
) If v,w e Vu(F, A) and ||v — w| < (200)~" then x(v) = r(w).

(3) If veVu(F,A), wi,wye Uyu(F) then wiowy €V, (F,A), x(wy) =r(wy) =0,
K(wiowy) = Kk(v).
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(4) For ve M, (F) a partial isometry, k(v) =0, so, for pe M, (F) a projection,

K(p) 6
(5) The map « : V(F,A) — Ko(M(F, A)) is onto.
(6) Generate an equivalence relation ~ on V(F, A) by:

(i) v~v@pforve V(F,A), pe My(F).

(1) If v(2), t € [0, 1] is a continuous path in V(F, A) then v(0) ~ v(1).
Thenk : V(F,A)/~— Ko(M(F, A)) is a well-defined bijection.

Hence we may realise K (M (F ,A)) as equivalence classes of partial isometries in
M,,(A) whose source and range projections lie in M,,(F). Observe that when K;(F) =0,
K (A) embeds in Ko(M(F,A)) by regarding a unitary (possibly in a unitization of 4) as a
partial isometry. We add the following lemmas which we will need later.

Lemma 3.3. Let v,w € V,,,(F, A) have the same source projection, so v*'v = w*w = p,
say. Then [v @ w*| = [v] + [w*] = [v] — [w] = [ow?].

Proof- The homotopy is given by

_ [ cos*(O)v + sin?(0)p  cos(6) sin(0)(w* — vw*)
B (COS(Q) sin(0)(p —v)  cos2(O)w* + sin*(Q)vw* )7 0el0,n/2]. O

Lemma 3.4. Suppose v'v=p+q with p,qeF projections, p L q Then
v=uvp—+uvq, vv*=uvpv*+ovqv*, vpv* L vqv* and if we assume that vpv* € F then
[v] = [vp @ vq] = [vp] + [vg].

Proof. The first few statements are simple algebraic consequences of the hypothesis.
The homotopy from v ~ v @ 0 to vp @ vq 1s

B vp + vgcos*(0) vgqsin(0) cos(0)
_<vqsin(0)cos(0) vg sin®(0) )’ 0el0,m/2]. O

We will use the following equivalent definition of the mapping cone algebra, as it is
more useful for our intended applications and agrees with the definition in the classical
commutative case. We let

M(F,A) ={f:R; — A: f continuous and vanishes at oo and f(0) € F}.

This way of defining the mapping cone algebra gives an isomorphic C*-algebra and we will
take this as our definition from now on.

3.2. The pairing in KK for the mapping cone. Using the Kasparov product,
Ko(M(F, A)) pairs with KK°(M(F, A), B) for any C*-algebra B. However, Ko(M(F, A))
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also pairs with odd A, B Kasparov modules (Y, }') such that the left action by f € F < 4
commutes with 7. While all our constructions work for such 4, B Kasparov modules, we
will restrict in the sequel to 4, F Kasparov modules. This will cause no loss of generality to
those wishing to extend these results to the general case, but is the situation which arises
naturally in examples.

Standing assumptions (SA). For the rest of this section, let v € 4 be a partial isome-
try with v*v, v0* € F (the same will work for matrix algebras over 4, F). Let (Y, V') be an
odd Kasparov module for 4, F such that the left action of /€ F < 4 commutes with
V' = 2P — 1 where P is the non-negative spectral projection of V.

Remarks. In all the calculations we do here, if v € M;(A) then we use Py := P ® 1
in place of P: we will usually suppress this inflation notation in the interests of avoiding
notation inflation.

To define the pairing between the mapping cone and Kasparov modules satisfying
SA, we need a preliminary result.

Lemma 3.5. Let (Y, V) satisfy SA. The two projections vv*P and vPv* differ by a
compact endomorphism, and consequently PvP : v*vP(Y) — vo*P(Y) is Fredholm.

Proof. It is a straightforward calculation that
* * * * 1 *
vPv* = vv* P + v[P,v"]| = vv P—|—§v[V,v ]

and, as [V, v*] is compact, vv*P and vPv* differ by a compact endomorphism. One easily
checks that Pv*P : vv*P(Y) — v*vP(Y) is a parametrix for PvP and the second statement
follows. []

As PvP commutes with the right action of F, the kernel and cokernel are right F-
modules. It follows from the detailed discussion in [7] that while it may not be the case
that the kernel and cokernel are both finitely generated projective F-modules, the difference

[ker PvP] — [coker PuP]
makes sense as an element of Ko (F).
Definition 3.6. For [v] € Ko(M(F,A)) and (Y, 2P — 1) satisfying SA, define
[v] x (Y, V) = Index(PvP : v'vP(Y) — vw*P(Y)) = [ker PuP] — [coker PvP] € Ko(F).
We make some general observations.
e If v is unitary over 4, we recover the usual Kasparov pairing between K;(4) and

KK'(A,F), [9], [15], Appendix. Thus the pairing depends only on the class of (Y,2P — 1)
in KK'(4, F) for v unitary.
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¢ In general the operator PvP does not have closed range. However the operator
o P * *
PP vP 0 (Y vP(Y) _ w*P(Y)
(1—=PpP 0 voP(Y) vw*(1 = P)(Y)

does have closed range, [7], Lemma 4.10, and the index is easily seen to be

B e B ()|

The index of PvP is in fact defined to be the index of any suitable ‘amplification’ like ﬁﬁ’,
[7], and we see that if the right F-module Pv*(1 — P)(Y) is closed, then the ‘correction’
term (1 — P)v*P(Y) arising from the amplification process cancels out. Since the K-theory
class of the index does not in fact depend on the choice of amplification, we will ignore this
subtlety from here on. That is, we assume without any loss of generality that the various
Fredholm operators we consider satisfy the stronger condition of being regular in the sense
of having a pseudoinverse [7], Definition 4.3. Since we will be concerned only with showing
that certain indices coincide, this will not affect our conclusions.

e The pairing depends only on the class of v in Ko (M (F, A)) with the module (Y, V)
held fixed, in particular it vanishes if v € F. These statements follow in the same way as the
analogous statements for unitaries, cf. [15], Appendix.

e Since addition in the “Putnam picture” of Ko (M (F, A)) is by direct sum as is addi-
tion in the usual picture of K (M (F, A)), it is easy to see that the pairing is additive in the
Ko(M(F,A)) variable with the module (Y, V) held fixed. So with (Y, V) held fixed we
have a well-defined group homomorphism:

X(Y,2P—1): Ko(M(F,A)) — Ko(F).

3.3. Dependence of the pairing on the choice of (Y,2P — 1). The dependence on the
Kasparov module (Y, 2P — 1) is not straightforward. For instance, we require that P com-
mute with the left action of F, and so homotopy invariance is necessarily broken. We now
fix ve V,(F,A) and show that we can obtain an even Kasparov module (Y,, R,) for
(Ay, F) := (vv*Avv*, F) so that the two classes [v] x (Y,2P —1) and [1,4,] x [(Y3, R,)] are
equal in Ky(A4), with the latter being a Kasparov product of genuine KK-classes.

The purpose in doing this is to understand the homotopy invariance properties of
Index(PvP) by characterising it as a Kasparov product. In this subsection this is achieved
by creating a ‘smaller’ Kasparov module, which depends on v. In our main theorem, The-
orem 5.1, we associate to an odd unbounded Kasparov module (X, Z) a ‘larger’ even un-
bounded Kasparov module (X, %). This latter module is independent of v and allows us to
characterise, for all [v] € Ko (M(F,A)), the class Index(PvP) as the Kasparov product
o] % [(X.9)]

Lemma 3.7. With v, (Y,2P — 1) as above, the pair

(Yo, Ry) = ((ZUUEQ) <£+ %‘)) where R_ = (PvP — (1 — P)v) and R, = R

*
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is an even (vv* Avv*, F) Kasparov module for the representation

0
n(a) = (a } ) for a € vv* Avv*.

0 v*av

Proof.  First observe that vv* Avv* is always unital, with unit 1,4, = vv*, and that n(a)
leaves Y, invariant for aevv*Avv*. Next, R, is clearly self-adjoint and moreover,
R_v*v =wvv*R_. Taking adjoints we obtain R,vv* = v*vR, so that R, also leaves Y,
invariant. Now since v and v* commute with P up to compacts we see that

(2) R_ = (2P — 1)v (mod compacts) = v(2P — 1) (mod compacts)
and

(3) R, = (2P — 1)v* (mod compacts) = v*(2P — 1) (mod compacts).
Hence,

0
R? = (US U*U> = ly, (mod compacts).

The compactness of commutators [R,, 7(a)] can be reduced by (2) and (3) to the equations:
a(2P — 1)v = (2P — l)vv*av and v avv* (2P —1) = v*(2P — 1)a (mod compacts).
This completes the proof using ¢ = vv*a = avv* and [P, a] compact. []

The following corollary is obvious once we note that

vw* 0

Corollary 3.8. We have the equality in Ko(F): [v] x (Y,2P —1) = [14,] %X [(Ys, Ry)].
Hence the pairing [v] x (Y,2P —1) depends only on [v] € Ko(M(F,A)) and the class
[(Y,, R,)] € KK°(vv* Avv*, F).

Remarks. In the Kasparov module (Y, R,) there is a dependence on v. This result
also shows that we can pair with any subprojection of vv* in F instead of vv* = 1, 4yp+.
The Kasparov module (Y,, R,) is formally reminiscent of the module obtained by a cap
product of an odd module with a unitary. The remaining homotopy invariance is for ho-
motopies of operators on Y, or operators on Y commuting with vv*.

It should be clear by now that the mapping cone algebra provides a partial suspen-
sion, but mixes odd and even in a fascinating way. In the next section we relate the even
index pairing for M (F, A) to the odd index pairing described here.

4. APS boundary conditions and Kasparov modules for the mapping cone

In this section we begin the substantially new material by constructing an even Kas-
parov module for the mapping cone algebra M (F, A) starting from an odd Kasparov F-



70 Carey, Phillips and Rennie, Atiyah-Patodi-Singer boundary conditions

module (X, Z) for A. In particular we are assuming that & is self-adjoint and regular on X,
has discrete spectrum and the eigenspaces are closed F-submodules of X" which sum to X.
Our even module X is initially defined to be the direct sum of two copies of the C*-module:
& = L*(R;) ®c X which is the completion of the algebraic tensor product in the tensor
product C*-module norm. That is, we take finite sums of elementary tensors which can nat-
urally be regarded as functions f : R, — X. The inner product on such f = Z fi ® xi,
g= Z g; ® yj is defined to be

0

Slos = f ) deixi| yiyx,

J o

where we have written {-|-)y for the inner product on X. Clearly the collection of all con-
tinuous compactly supported functions from R, to X is naturally contained in the comple-
tion of this algebraic tensor product and for such functions f, g the inner product is given
by:

Slode = f<f (6)>x dt.

The corresponding norm is

£l = 1< Dell 2

Remarks. While many elements in the completion & can be realised as functions it
may not be true that all of & consists of X-valued functions. We also note that the Banach
space L?(R., X) of functions f defined by square-integrability of ¢ — || £ (¢)|| is strictly con-
tained in &. However, we shall show below that the domain of the operator d;, ® 1 on &
(free boundary conditions) consists of X-valued functions which are square-integrable in
the C*-module sense above. We will define our operators using APS boundary conditions
on the domains.

4.1. Domains and APS boundary conditions. Let P be the spectral projection for &
corresponding to the nonnegative axis and let 7, = +0, ® 1 + 1 ® ¥ (= +0, + Z for brev-

ity) with initial domain determined by Atiyah-Patodi-Singer type boundary conditions,
namely

(4) domTiz{f:[R{+—>X@:f:Zf,-®x,~,
i=1
f 1s smooth and compactly supported,
xi € Xo, P(f(0)) =0 (+case), (1 — P)(f(0)) =0 (—case)}.

By smooth we mean C®, wusing one-sided derivatives at 0eR.. Then
T; :dom Ty < & — &. These are both densely defined, and so the operator

N 0o T7T°
9‘(& 0)
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is densely defined on & @ &. An integration by parts (using the boundary conditions) shows
that

(T+f19)s = (f1T29)g, [ edomTy, gedomTx.

Hence the adjoints are also densely defined, and so each of these operators is closable. This
shows that & is likewise closable, and symmetric.

The subtlety noted above, namely that the module & does not necessarily consist of
functions, forces us to consider some seemingly circuitous arguments. Basically, to prove
self-adjointness, we require knowledge about domains, and we must prove various proper-
ties of these domains without the benefit of a function representation of all elements of &.
However, we will prove below a function representation for elements in the natural domain
of 0, ® 1, and therefore in the domains of the closures of 7'y because if {fj} = dom T’y is a
Cauchy sequence in the norm of & such that {7’y f;} is also Cauchy then as T is closable,
the limit f* of the sequence f; lies in the domain of the closure, and lim 74 f; = T4 f.

Lemma 4.1. For f € dom T4, the initial domain, we have:

(1) Tof|Tef> =K@ @D ®@ s + 1@ 2)f | (1@ ) [ s
FLO12(£(0)))y

and
2 T 2(£0)), 2 0.

Proof. We do the case T ; the proof for 7_ is the same. After some computation, it
suffices to see:

(@1 ®D) 56 +<L(1®Z)f (0 ®@1)f>s = —(/(0)|2(/(0)))y
for f = Z fi ® x; with f; compactly supported and f(0) € ker P. Then, using integration

by parts:

(@D (1@ D) s =% T(Z%) (fi(0) dt - &xi| D3>

[7j 0

= =5 7040 + [ 70 G0 <) 75
— —<Zi:f,-(0)x,- ]ijw)@x,>x - <Zf ® X; %I 0fi ® 9xj>g

= —(f(O)|2(f(0))y =<6 ® D) [ .

But, since Z is self-adjoint and 1 ® ¥ commutes with J, ® 1 we have

SHa®2)f s =<A®L)f[(0:®1)))s
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and item (1) follows. To see item (2), we have P)(f(0)) = where
(1 =P) =% _,0(2) so we see that Z restricted to the range of (1—-P)is negatlve and
therefore —(f(0) [ 2(/(0))), = 0 in our C*-algebra. [J

Corollary 4.2. If {f,} < dom(Ty) is a Cauchy sequence in the initial domain of Ty
and {T+(f,)} is also a Cauchy sequence in || - ||, norm then both {(0,® 1)(fn)} and
{1 ® 2)(fn)} are also Cauchy sequences in the || - ||, norm. Therefore, the limit, f of {f,}
in & which is in the domain of the closure of Ty, is also in the domain of the closures of both

(0;®1) and (1 ® 2).

Proof- This follows from the lemma and the fact that if 4 = B+ C are all positive
elements in a C*-algebra, then ||4|| = ||B|| and ||4]| = ||C||. O

Lemma 4.3. (1) If g =)_ fi ® x; where the f; are smooth and compactly supported
then ‘

(9 ® g lgrs = =<9(0) [9(0)>x = <g[ (0 ® 1)g)s-
(2) With g as above

l9(0) 1% = 2012 ® Dglls - llglls-

Proof. Ttem (1) is an integration by parts similar to the previous computation and
item (2) follows from item (1) by the triangle and Cauchy-Schwarz inequalities. []

4.2. Elements in dom(J; ® 1) are functions.

Definition 4.4. For each 7€ R,, we define two shift operators S, and 7, on
L*(Ry) via: Sy(&)(s) = &(s+ 1) and T, = S;. Clearly both have norm 1 and 7,S, = 1 and
ST, = 1 — E, where E, is the projection, multiplication by 2’ ;. Hence, S, ® 1, T, ® 1,
and E, ® 1 are in ¥(&) and E; ® 1 converges strongly to 14 as t — oo.

Lemma 4.5. Let 0; ® 1 denote the closed operator on & with free boundary condition
at 0. That is, 0; ® 1 is the closure of 0; ® 1 defined on the initial domain dom'(@, ® 1) con-
sisting of finite sums of elementary tensors f ® x where f is smooth and compactly sup-
ported. Then:

(1) S; leaves dom(0; ® 1) invariant and commutes with 0, ® 1.
(2) If g e dom’(0; ® 1) then for each ty € R,

lg(to)lI < 2012 ® gl sllglle-

(3) If g e dom(d, ® 1) and {g,} is a sequence in dom'(0, ® 1) with g, — g in & and
(0, ®1)(gn) — (0, ®1)(g) in & then there is a continuous function §: Ry — X so that
gn — g uniformly on R. Moreover g € Cy(R,, X) and depends only on g, not on the partic-
ular sequence {g,}.

(4) If g edom(0, ® 1) and § is the function defined in item (3) then for all elements
h e & which are finite sums of elementary tensors of the form f ® x where f is compactly
supported and piecewise continuous we have
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{g|hys = f<g h()yy dt.

(5) If g e dom(0, ® 1) then

M
glgrs = lim Of@(l g(1)>x dr:= [<g(2) | 4(1))y dl.

Proof. To see item (1), one easily checks that S; ® 1 leaves dom’(d; ® 1) invariant
and commutes with d, ® 1 on this space. Since J; ® 1 is the closure of its restriction to
dom/(é, ® 1) and S; ® 1 is bounded the conclusion follows by an easy calculation.

To see item (2), we apply item (1) and the previous lemma:

L) = 1(Sug) O < 218 @ 1)S, (9) 1151 ()l
= 2]18,(6,® D@51 (9l

=2[[(0: @ 1)(9)llsll9lls-
To see item (3), apply item (2) to the sequence {(g, — gm)(%)} to see that the sequence
{gn(tp)} in X is uniformly Cauchy for ¢z, € R,. Since we can intertwine two such sequences
converging to g, we see that g is independent of the particular sequence. That § vanishes at

oo follows immediately from the uniform convergence.

To see item (4), let {g, } be a sequence satisfying the conditions of item (3). Then for /
supported on [0, M] satisfying the conditions of item (4):

glhye = nlg{‘lo gn|hs = nlgglo J<gn(t) | 1(2) )y dt
0

M
= lim [ <gu(2) [ A(1) )y di = f<g (0))x dt
0

I

g(1) [ h(1))x dt.
To see item (5), fix M > 0 and use item (4):

91 Em(9))s = lim {g|Epn(gn))s = lim ;fo<é(t> | En(92) (1)) x dt
M
= lim Of<é<t) |9 (1)x dt

()x dt.

I
o%g

Taking the limit as M — oo completes the proof. []
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Corollary 4.6. (1) If g € dom(d, ® 1)* then (3, ® 1)(g) is also given by a continuous
X-valued function as above.

(2) If gedom(0, ® 1)" for all n =1 then (6, ® 1)"(g) is given by a continuous X -
valued function for all n.

Proposition 4.7. (1) If g e dom(T) the domain of the closure of Ty on its initial do-
main then g € dom(0, ® 1) ndom(I ® Z). Moreover, g(0) is well-defined and P(g(0)) =0
in the T case while in the T_ case, (1 — P)(g(0)) = 0. Furthermore

L=, ® g+ (1® Z)g.
(2) If g € dom(T5) as above, then g(0) € dom(|2|"/?).

Proof. For the first item, by Corollary 4.2, g € dom(d; ® 1) ndom(l ® Z). Then,
by the previous Lemma ¢(0) is defined. Since P is a bounded operator on X, P (g(O)) =0
in the T case and (1 — P)(g(0)) =0 in the T_ case. To see item (2), we use part (2) of
Lemma 4.1 to see that for /' € dom(7) we have

F0)2(£(0)), = (121" (£(0)) [ 12](£(0))) 4-

If we apply this observation to f = g, — g,, where {g,} is a Cauchy sequence in dom(7% )
we get the conclusion of item (2). [

Remark. Note that evaluation at a point is continuous on dom(d, ® 1) in the
dom(d; ® 1)-norm, but not in the module norm.

4.3. Self-adjointness of & away from the kernel. To show that & is self-adjoint
we will follow the basic strategy of [1] and display a parametrix which is (almost) an
exact inverse. Note that we assume that & has discrete spectrum with eigenvalues ry
for k € Z where the spectral projection of & corresponding to the eigenvalue r; is de-
noted by ®;. We suppose that r; is increasing with k£ and if & > 0 then r, > 0, and con-
versely, so that the zero eigenvalue, if it exists, corresponds to the index k = 0. Moreover,
the eigenspaces Xy = @, (X) are F-bimodules which sum to X by hypothesis. We note that
XO = (D()(X> = ker 9.

We observe that if f is any real-valued function defined (at least) on {ry : k € Z}, the
spectrum of &, then f(2) is the self-adjoint operator with domain:

{x =>"xr € X Y f(r)xx converges in X}7
k k

and is defined on this domain by f(2)x = >_ f(rr)xx. The convergence condition on the
K

domain is equivalent to 3 | £ (r)|*(xk | Xk >y converges in F.
k

We further note that if g : R, — X is continuous and compactly supported then for
each k € Z, the function g; := ®; o g: Ry — X is continuous with supp(gx) < supp(g)
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and g = > g converges in &. Furthermore, if g is smooth then so is each g; and
&

d:(gx) = (0:(g)), and by the previous sentence 0,(g) = 6,(ng> =" 0:(gx).
X X

As both 0, ® 1 and 1 ® Z leave the subspaces L>(R,) ® X invariant, in order to
construct parametrices O, and Q_ for 7, and 7_ we can begin by considering homoge-
neous solutions f; to the equation

Ty i fie = (0 + 1) fe = 9k

where g i1s a smooth compactly supported function with values in X} for each & > 0. Set-
ting

t o0

Si(t) = Q1 1 (gi)(t) = Je_""(t_s)gk(s) ds = J H(t—s)e gy (s) ds,

where H = Z'r, (the characteristic function of R, ) is the Heaviside function, we get a solu-
tion satisfying the boundary conditions, as the reader will readily confirm.

Observe that for these homogeneous solutions our parametrix is given by a convolu-
tion operator

Je(t) = Q4 k(9x) (1) = (Gk * gi)(1) := L, gk(2).

Here Gi(s) = H(s)e " e L'(R), and |G|, = 1/rx. Since the operator norm of Lg, on
L?(R) is bounded by ||Gy||,, we have

10+ kll = (L6, ® O)lgna e = [1Gkll; = 1/
For k < 0 we set

0

Si(t) = Q4 1 (gi)(2) = —}Oe_"k(t_s)gk(s) ds = — [ X (o 0)(t — 5)e” gy (s) ds.

— 00

The verification that T, f; = g is again straightforward, and the solution is an L’-function
with values in ®;(X) since it is given by the convolution of an L'-function and an L>-
function.

Later when we have defined Q. o we will sum all the Q. ; to obtain the parametrix
Q.. At the moment we note that for a smooth compactly supported g we have

0.(1® (P 90))@)](1) = | 3 0s4(1® <I>k><g>] (1) = [z Q+,kgk] (0

k>0 k>0

t
=Y je"’k(t_s)gk (s) ds.

k>00

If we formally interchange the sum and the integral we get the equation
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t

[0:-(18 (P— ) ()] (1) =" | 32 e -Iu(g)(s) ds = [ 709 (P - @) (g(s) .

0 k>0 0

It is not hard to see that this convolution on the right actually converges to the expression
on the left in the norm of our module L*(R,) ® X.

Similarly for the equation 7_ i fi = (—0; + r¢) fi = gx we have the solutions

0 0

O_i(g)(t)= [ e””k(s”)gk(s) ds= [ X0t — s)e”‘(t’s)gk(s) ds, k>0,
t —0o0
t 0
O i(gr)(t) = —[e"gi(s)ds = — [ H(t —s)e""Dgi(s)ds, k <0,
0 —0

Again this solution is given by a convolution, and in all cases k+0 we get
|10+xc(1 @ Dy)|| < 1/|rk|]. We can get a similar operator convolution equation for

Z Q+,kgk~

k<0

Before proceeding we require a general lemma.

Lemma 4.8. Let Y be a C*-F-module and Yy = Y a dense F-submodule. Let
T : Yo — Yy be closable as a module mapping on Y, with closure T. Suppose there exists
a bounded module mapping S on Y such that (1) S(Yy) < Yo, and (2) ST =1dy, and
TS|y, =1dy,. Then S is one-to-one and T = S~':Image(S) — Y, dom T = Image(S),
SoT = Id,, .. 7, and ToS =Idy.

Proof. This is essentially just a careful check of the definitions of the domains and
closures in question. Let y € dom(T') so there exists a sequence {y,} = Y, converging to y
and Ty, — Ty also. Now, since S is bounded,

Yn = STy, — S(Ty) and y, — y,
so S(Ty) = yand So T =1dy,, 7. This also shows dom(T) < Image(S).
On the other hand, let y = Sy’ € Image(S). Then y’ = lim z,, where {z,} < Y, and

so y=_Sy’'=1limSz,. Since S: Yy, — Yy, we see that {Sz,} < Yy < dom(7T), and so
z, = TSz, converges to y' € Y. Hence y e dom T and Ty = y'. That is

Image(S) = dom(T),

and so they are equal. Finally, TSy’ = Ty = y’, and as y’ € Y was arbitrary, T'S = Idy.
Hence S is one-to-one, and 7 = S~!. [

Returning to the operators 7y and Q. on the module & © (1 ® ®y)&, we have the
following preliminary result. The proof is just a check of the hypotheses of the previous
lemma.
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Corollary 4.9. For k £ 0, let & = LZ(IR+) ® Xk and &x,0 < &y be the algebraic ten-
sor product of

Coo(Ry) :={g e C*(R;) : g(0) = 0 and supp(g) is compact}

with Xi. That is, &0 = Ciy(Ry) © Xk. Then T+ i, O+ x map &y to itself, and are mutual
inverses there. Hence dom(T4 i) = Image(Q4 ), O+ « is one-to-one, and the operators Ty j
and Qi are mutually inverse (on appropriate subspaces).

We extend this result by another application of Lemma 4.8:
Corollary 4.10.  Let the algebraic direct sum of the & o with k % 0 be denoted

Gago:= 2 Ero= > Cp(Ry)OXp=Cp(R)O > X
alg, k+0 alg, k+0 alg, k40

Define QO+ on a0 as the algebraic direct sum of the Q+ i, and similarly for T+. Then Q4
extends to an operator on the completion, &y where it is bounded and one-to-one. More-
over, Ty = Q;l : Image(Q+) — &y so that Qo Ty = Idyom 7 and Ti0Q4 =1dg,. We
observe that & = &y @ (L*(R,) ® Xo) as an internal orthogonal direct sum. That is,
st = (12(R) ® Xo).

4.4. The adjoint on L%(R,) ® X, and self-adjointness of . On L*(R.) ® X; the op-
erator 7' o becomes J, ® Idy, with boundary conditions £(0) = 0 while 7_ o = —0, ® Idy,
with free boundary conditions, and it is well-known that these two operators are mutual
adjoints, cf. [12], page 116. The parametrix Q. o for T, o is given by

0. 0(g)(1) = [g(t)di for g e range(T7 ),
0

while the parametrix Q_ o for 7_ ¢ is given by

0

0_0(g)(1) = — [ g(t)di for g & range(T_y).

t

Of course, both O ¢ and Q_  are unbounded operators and on L*(R,) ® X, we have
YT,OQi,O = Idrange(m) and Qi,OJT,O = Iddom(m).

Letting Q4 denote the (closure of the) direct sum of all the Q4 ;, we get the parametrix for
T-.

Proposition 4.11.  The adjoint of T+ : dom(T4) — & is T+. Moreover,

Proof. In the following we write 74 for the closure of 7. We write
Ty =T:(1®®) ®T:(ls — (1@ D)) and observe from our last comments that
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Restricting to (15 — (1 ® @y))& = & we have O} = Q<. To see this, recall that Q
is bounded, and so it suffices to check on the dense submodule &g, ¢ of Corollary 4.10. For
&, € Ealg,0, there is &y, ny € Ealg,0 such that & = T,¢&, and n = Ty, (&y = 0+¢ and simi-
larly for #,). Then

Q¢ m)s = LO+(T+C0) | T10>s = <o | T510Ys
= (T+&y|nyys by symmetry
= Qs

Hence Q7 = Q5 on (15 — (1 ® ®g))& = &. In order to deduce from this a similar relation
for the T+ on &y we need the following general considerations.

For a densely defined module map 7" : &y — & we have the relation between graphs

where v: &) @ &y — &y @ &) is the unitary given by v(x, y) = (», —x), [12], page 95. Also
for one-to-one module maps Q, G(Q~") = 0(G(Q)) where 0(x, y) = (y,x) and Gy = —v0.
So restricting 71 to &y we calculate:

G(T}) = [v(G(T)] " = [v(G(o:")]
= [v(0(G(0.)))]" = ~[0(»(G(0)))]* = ~0[v(G(Q.))"]

= ~0[G(Q})] = ~0[G(Q)] = ~[G(Q™)] = ~[G(T)]
= G(T)).

The same proof works for 7, and so 7} = Tz on all of &. [

The next step is to introduce the notion of extended solutions. In [1], the analogue of
our module was introduced as a model of a (product) neighbourhood of the boundary for a
manifold-with-boundary. Since the interest there, as here, was in the index of the operator
on the whole manifold-with-boundary, it was necessary to modify the space of solutions
considered to account for those functions on the boundary which extended to interior so-
lutions in a non-trivial way. Such functions are not L? on this product description of the
boundary, but are bounded. Nevertheless they contribute to the index, and so we make a
definition.

Definition 4.12. Let (X,%) be an unbounded odd Kasparov 4 — F-module. Let
&=1L*(R,)®X be the M(F,A) — F-module defined above. As seen in Lemma 4.5,
any element in the domain of the operator J, ® 1 (free boundary conditions) is given
by a uniformly continuous X-valued function g which vanishes at oo and the integral

m A
{glg>e = [<g(t)|g(t)>x dt converges in F™. We enlarge & to a space & consisting of
0

formal sums, f =g+ x where ge & and xe Xy. For gedom(d, ® 1), the element
f = g+ x is naturally a function on R, where f(7) = g(¢) + x and tlim f(t) =x€e Xo. We
—0



Carey, Phillips and Rennie, Atiyah-Patodi-Singer boundary conditions 79

call such an f an extended L?-function and we may regard f as a function f : R, — X with
a limit: llim f(t) := f(o0) such that f — f(c0) is in L?>(R;) ® X and f(x) € X, that is,
9f (0) = 0. Note we reserve the terms extended L*-function and extended solution to the
case where f(o0) * 0.

So, we have a new module & = {f =g +x:ge & and x € X;}. We let F act on the
left and right of this extra copy of X by its natural action. The F-valued inner product on
& is given by

Sftxlh+yy=Lf(O)[h(t))s+ x|y

The left action of M(F, A) on the extra component X is naturally defined to be zero since
M (F.A) consists of functions which vanish at co. However, when we extend the left action
to the unitization of M(F, A) the added identity will of course act as the identity on the
extra copy of Xyp. While & naturally acts as zero on this extra copy of Xj, functions f(2)
act as multiplication by f(0) so that in particular, P acts as the identity operator on this
copy of Xy and the operator 0, naturally extends here as the zero operator.

We now modify our earlier definition of X to include & only in the second compo-
nent. Hence, by definition
" &
X=1 ..

For the first component any solution (i.e. element of the kernel of 7', ) necessarily vanishes
on the boundary, and classically cannot contribute to the index and the same situation per-
sists in this noncommutative setting.

We extend the action of 7T_ to a map: & — & via T_(f +x) = T_(f). Similarly we

extend the action of T, to a map: & — & via T, (f) = T(f) + 0 and we extend the defi-
nitions of the actions of O, and Q_. In order to emphasize the extension of 7 we use the

somewhat clumsy notation:
. 0 T
9 = ©0 .
T, 0

The addition of the zero map does not affect the adjointness properties proved above, and
SO

(T-®0)"=T, and T;=T_@O0.
Thus & is self-adjoint. We summarise this lengthy discussion.

Proposition 4.13. Let X be a right C* — F-module, and & : dom% < X — X be a
self-adjoint regular operator with discrete spectrum. Then the operator

) = 0 (-0, ®1+1®2)®0 P
@_<51®1+1®@ 0 ) deﬁﬂedon((g;)
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satisfying APS boundary conditions, given in equation (4) and modified for extended solutions
as above, is self-adjoint and regular on X = (6 ® &)".

Proof. It remains only to show that 9 is regular, namely (1+ @2) has dense range.
We begin with 9 restricted to (6 @ éa) . We restrict ourselves further to the invariant sub-
space (&p @ éao) . To this end let R = Q. Q_. This is a bounded, positive endomorphism
on &( which is injective and has dense range (both Q., Q_ are injective with dense range,
and are mutual adjoints by Proposition 4.11). Hence the (unbounded) densely defined op-
erator R™' = (0, Q)" = 0~'0;! = T_T, on & is a one-to-one positive operator which
is onto. As the operator R + 1 is bounded, positive and (boundedly) invertible, it is surjec-
tive. Thus on dom(7_ T ) consider the operator

(R+HR'=14+R'=14+T_T,.

This is the composition of two surjective operators and so is surjective (on &). Sim-
ilar comments apply to 1+ 7, 7_ (on &). Thus (1 + 2?) restricted to (its domain in)
(& @ &))" maps onto (& @ &)

Next, inside &, we have &3 =L*(R)® Xp and & on (& @ &5)" is just
0 —0
( o0 Z) ® lx,. As regularity is automatic on (L*(R.) @ L*(Ry)) ", " we have regularity
t
onall of (6§ ® &)”. Now, on Xy — &, & is defined as zero, so (I+ @2)|X = ly,, which is
surjective. Putting the pieces together, 1 + 92 is surjective on X. [J

For use in the next proposition, we consider a more explicit discussion of regularity.
So we consider the equation

<1+TT+ 0 )(ﬁ) 1-0?+92° 0 (ﬁ)_(gl)
0 L+7,.T )\ f» 0 1-2+2* )\ ) \@¢)

Here we initially suppose each of (g1, gz)T is in C55(Ry) © > Xj. With the exception of
alg

the extra kernel term, such pairs are dense in X. We need to ﬁnd f=010) T in the do-
main of %2 satisfying this equation. In solving this equation we may therefore assume that
all terms are homogeneous, meaning that the general solution is built from functions that
map R, to a single eigenspace for 9, corresponding to the eigenvalue ri. Thus the equation
we must solve, for given (g, gz) eX,is

1— 07 +r} 0 (ﬁ)_(gl)
0 1—-07+r7 )\ L2 92/

The boundary conditions are
£1(0) =0, f2(0) =0
=0 {((—a, sy =0, {(w, +1)A)(0) = 0.

n1/2

We use the notation 7 := (1 4 r{)"/* as this term appears so often. The solution for f; is

fi(t) = (2r%)” (je (=) dw+fe Pie(1=w) 1(w)dw>—|—Ae@’,
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where for
] >
=20, A=——[e"%gi(w)dw,
and for
1 }’/'/; + i

0, A=r== gy (w) dw.
re <0, 7 i’k—l’k({e g1(w) dw

Observe that in terms of the Heaviside function H:

1 o ~
fi(t) = " [ H (- w)e™ = g1 (w) dw
—0
o0 Al _<e_ﬁ.7gl(')>e_’{l:t7 e = 0
+ [H(t—w)e " ™g(w)dw+ .
—© +,;]f T <eirk.7 gl(')>eirk[7 e < 0
Vi — I'

The point of this observation is that it displays the integral as a convolution by an L'-
function, plus a rank one operator, namely a multiple of the projection onto span{e "*'}.
Thus f; is an L>-function.

For f, the situation is analogous. We have

) = <za>1(

~—3

~ [ ~ ~
e gs (w) dw 4 [ e gy (w) dw) + Be ¥,
0

where for
1 ©
re <0, = 2_,:]; J" e Vg (W) dw,
0
and for
1 /g—re @ _ ~
re =0, Tk — Tk “ega (w) dw.

27k V{I;"‘Vk()

Now we consider elements of X which only have a nonzero component in X,. For such
elements (0,0 + x)” we have

(1-02+2)x=(1-040)x=x,

A

so we have surjectivity for such elements. Now write a general g = (g;, g2 + x) TeX as
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1=(o0)* (o)
g>»+0 0+x/
Then the above solutions show that for any g in a dense subspace of X, we can find

f e dom 9? with (1+ 9?2) f =g. Hence, we have a second proof that 9 is regular which
we now exploit.

In the next result AAPS boundar)f confiitions mean that & is defined on those
E=(5H@E)T in (6@E)T such that 2¢ e X, PE(0) =0, (1 — P)&,(0) = 0. This is all
well defined thanks to Lemma 4.5.

Proposition 4.14. Let (X,2) be an ungraded unbounded Kasparov module for C*-
algebras A, F with F < A a subalgebra satisfying A - F = A. Suppose that & also commutes
with the left action of F < A, and that & has discrete spectrum. Then there is an unbounded
graded Kasparov module

wo-((0)( D) () Gl )

(with APS boundary conditions, equation (4)) for the mapping cone algebra M (F, A).

Proof. The most important observation is that the left action of M(F, A) on X pre-
serves the APS boundary condition, and therefore the boundary condition of & because for
every f € M(F,A), f(0) € F and hence commutes with the spectral projections defining the
boundary conditions. We note that to see that the action of M (F, A) on X is by bounded
module maps requires the strong boundedness property of all adjointable mappings [12],
Proposition 1.2. We let .« — A be the x-subalgebra of 4 such that for all a € &7, [Z, 4] is
bounded (on X) and «(1 +92)*1/ % is a compact endomorphism of X. We define the
algebra

M(F, o) ={f:R. — .o/ : f(0)eFand f e C{(R,)and [Z, f] is bounded}.

We observe that the *-algebra of finite sums:

{Zﬁ@ai:ﬁeCm(R+) andfi(O)zoifaietF}

is dense in M (F, A) and is a *-subalgebra of .Z(F,.<7).

By Proposition 4.13, the operator & is regular and self-adjoint, so we may employ
the continuous functional calculus [12], to prove that f(1 + 92)_1/ * is a compact endo-
morphism. It suffices to show that f(1+ %?)”" is compact. To see this, observe that
£ +92*)~"* is compact if and only if

SA+ @ = fU+ 2771+ 277

is compact and this follows if f(1 + 9?2)*1 is compact. The latter follows by observing that
from our second proof of Proposition 4.13 we have that each diagonal entry of
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) (1® dy) 0

fa +92)—1( 0 (0 ®®k)> =f1+2) (1@ D) ® 1,)

can be expressed as a finite sum of terms of the form f(L, ® D)+ f(Rr ® Di)
where L, is convolution by an L'-function and Ry is a rank one operator. We con-
sider a single elementary tensor in the above subalgebra of .#(F,.</): f = h ® a, where
a=ay-b, where be F and a; € A. For such an elementary tensor the diagonal entry is
(h-Ly +h-Re) ® a; - b®y. Since gy is in 2! the product / - L, is a compact operator
on L*(R,), and of course iRy is compact. Since b(1 + @2)*1/ *is a compact endomor-
phism on X, it is straightforward to check that h®y is a compact endomorphism. So as
End} (L*(Ry) ® X) = Endg (L*(R,)) ® Endj(X), (18], Corollary 3.38, the endomor-
phism

B == f((Ly, + Ri) @ i) = (1 @ a1) (h(Ly, + Ri) @ b®y) = (1 @ a1) Ck
is compact: indeed each Cj is compact on L?>(R,) ® X. The importance of this description
is that f(1+92%) "' = (1Qa)) (@ Ck) is a direct sum of compacts on @ (L*(R;) ® Xx)
times the bounded operator (1 ® 21). "

The operator norm of L, on L*(R,) is bounded by the L!-norm of g, and so

—-1/2
1Zgllop = llgally = (1 +r2) ™2

The norm of the rank one operator R; on L?(R,) is given by Cauchy-Schwarz as
-1
IRellop = (21 +77))

(This inequality is unaffected by multiplication by (7x + |r«|)/(7x — |r«|), so can be applied
to both r; < 0 and r; = 0.) Hence

1Ckllop = [1Allopll Lacllop1Dllop + Vallop [ Rl op 121l op

< [AlloplBllop (1 + )2 + 21 +r2)) 7.

N
Since 1 + 7 — oo as |k| — oo, the sequence of compact endomorphisms {(1 Ray) >, Ck}
N

converges in norm to f(l+ 92)_1, which is therefore compact. Since an arbitrary
f € (F, ) is the norm limit of finite sums ) | f; ® a; we see that f(1 + 2%~ is compact
for general f in the mapping cone algebra.

We can now show that we do indeed obtain a Kasparov module. First
V =91+ 2% % is self-adjoint. Also /(1 — V?) = f(1+ %% is a compact endomor-
phism for f e ./ (F,</). Since V clearly anticommutes with the grading operator
1 0 .
I'= (O 1), we only need to show that [V, f] is compact for all /'€ M(F,A). For f a
sum of elementary tensors (using smooth functions), we may write this commutator as

WV, f1=12, 11+ 2%+ 91+ 2*) 7', £).
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Now for an elementary tensor f ® a, we get (2, f ® a] = f @ a+ f @ [Z,d] and so the
first term in the above equation is compact. In the proof of [6], Proposition 2.4, we have
the formula

. o 1% 1y n . _
(1 + %) l/z,f]:%j/l V2091 + Z*+ 1)1
0

< {1+ 22+ 072l 90+ 2>+ 2) 90+ 9+ 4)7'
+ P20+ P>+ )90 + D%+ 7)Y da

where the integral converges in operator norm and we have grouped the terms in the
integrand so that they are clearly compact by the discussion above. It follows that
[V, f] is a compact endomorphism for f a sum of elementary tensors. Since these are
norm dense in M(F,A) and V is bounded, [V, f] is compact for all /'€ M(F,A). So we
have an even Kasparov module for (M (F,A),F ) with an unbounded representative for
(M(F,o),F). O

Remark. It should be noted that in this context, discreteness of the spectrum of &
does not imply that (1 4+ @2)_1/ Zisa compact endomorphism. We are assuming that we
have a Kasparov module, so that for all a € 4, a(1 + @2)_1/ ? is a compact endomorphism,
but these two compactness conditions are not equivalent unless A4 is unital. Kasparov mod-

ules corresponding to infinite graphs provide examples of this phenomenon, [15].

5. Equality of the index pairings from the Kasparov modules

We formulate our main theorem in this section demonstrating how even and odd
Kasparov modules give equal index pairings.

We recall that given a partial isometry v € A with range and source projections in F
1 —ov* v

¥ 1 —v*v
adjoint unitary in M>(A4), and hence there exists a norm continuous path of self-adjoint
unitaries in M>(A) from v; to the identity. We choose the path

(observe this includes unitaries in 4), we defined v; = < ) This is a self-

0i(1) =5 (¢ O = 1) + (11 + 1)),

N —

so that v;(0) = v; and v;(00) = 1,. Now define a projection e,() over M(F, A) by

1 —it

l ——w* v

- 10 . _ 142 1+
eU(l)_vl(t)(O O)UI(Z) - it v* ! 0¥ ,

1422 1+ 122

where we have used some elementary trigonometry to simplify the expressions. It is im-
portant to observe that this is a finite sum of elementary tensors ) f; ® a; with f; smooth
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and square integrable or f; — fi(oo ) smooth and square integrable. As such it maps
(€@ &) toitself and leaves (6 @ &)” invariant.

o[ 3)

lies in KO(M (F ,A)): see Lemma 3.2 and the discussion preceding it, as well as [17]. Let
1 0 : : . .
ez( ), a constant function, then the index pairing of [v] € Ko(M(F,A)) with

The difference of classes

0 0
(X, 2)] is

e] = [e], [(X, D)) = Index(e,](@ ® la)ey) — Index(e(@ ® la)e) € Ko(F).

Remarks. To explain this notation we review even index theory. On ( A),

&
. 0 T7T- . . 1 0 .oA .
9 :( ) while the grading operator I' = ( 0 _1>. That i1s & is odd while

T. 0

. . : : £ ® C?
the action of M(F,A) is even, ie., diagonal. Then, on é o2 we have:
- 2 0 r o :
9@12:<0 @> andF®12:<O F) whlleev:( >eM2 F, )) acts as
1 1 . . L
(ig ; zg é) Let (6@ @6@d) ~(6@éoéa @@]) be the obvious uni-
) . . ~ T_ ® 1> .
tary equivalence. Under this equivalence ¥ ® 1, becomes T ® I , while
+ @1
f g e, 0
=% .)€ M,(M(F, A)) acts as 0 o ) Also, Index(ev(@ ® lz)ev) really means

the index of the lower corner operator of

e, 0\ -~ e, 0 0 e(T-® 1a)e, \
(O ev)<@®12)<0 ev>_<ev(T+®12>ev 0 )

T, 0 as a mappin ¢ é
€y €y ey — € ~ .
0o T PPIE €vl o é

That is we must compute both:

ker(e,(T+ ® 12)e,) = ev(§> and ker(e,(T- ® la)e,) < ev(§> = <§)

. T 0
Similarly, Index (e(Z ® 1,)e) means the index of the lower corner operator: e( 0+ ; >e,
+

that is, 7. as a mapping from & — &, which we will write as Index(@). With this reminder,
and the convention that if 7 is an operator on the module Y, we write T for T ® 1; on the
module Y ® Ck, we now state our key result.
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Theorem 5.1.  Let (X, 2) be an ungraded unbounded Kasparov module for the (pre-)
C*-algebras o/ = A, F with F < A a subalgebra satisfying A-F = A. Suppose that &
also commutes with the left action of F = A, and that 9 has discrete spectrum. Let (X , @)
be the unbounded Kasparov M(F, A), F module of Proposition 4.14. Then for any unitary
u € My(A) such that Py and (D), both commute with uZu* and u* % u we have the follow-
ing equality of index pairings with values in Ky(F):

ul, (X, 2)]y := Index(Pxu* Py) = Index (e,(Zx ® 12)e,) — Index(Fy)

= {1l ={( o)]-1@.90) exair

Moreover, if v is a partial isometry, v e My(.</), with vv*,v*v € My (F) and such that Py and
(D), both commute with vZv* and v*Zv we have

(5) <[ev] — [(é g)] (X, .@)]> = —Index(PvP : v vP(X) — v0* P(X)) € Ko(F)
= Index(Pv*P: " P(X) — v'vP(X)) € Ko(F).

Remarks. (1) In the last statement we really are taking a Kasparov product when we
consider

Ko(M(F,A)) x KK"(M(F,A),F) — Ko(F).

Hence the index is well-defined, depends only on the class of [e,] — [1] = [v] and the class of
the ‘APS Kasparov module’.

(2) We note that our hypothesis that P and @, commute with v*Zv is equivalent to P
and @y commuting with v* dv since P, ®, commute with & and with v*v. Thus P, ®, com-
mute with all functions of v*%v, and in particular with each spectral projection v*®;v. Sim-
ilarly, the first set of commutation relations imply that & and all of &’s spectral projections
commute with v*Pv and v*®yv.

(3) Whether every class [v] € Ko(M(F, A)) possesses a representative satisfying the
hypotheses of the theorem is unknown to us in general. Just as with the issues of regularity,
it may be that one can always homotopy v and/or (X, Z) so that the hypotheses are satis-
fied. We leave this issue for future work, noting that for the applications we have in mind
the hypotheses are satisfied.

(4) With regards to the regularity of PvP (in the sense of having a pseudoinverse [7],
Definition 4.3), we observe that since P commutes with v* Pv, the operator PvP is regular as
an operator from v*vP(X) to vv*P(X), where the pseudoinverse of PvP is provided by
Pv*P. That is, (PvP)(Pv*P)(PvP) = PvP and (Pv*P)(PvP)(Pv*P) = Pv*P. Thus our hy-
potheses guarantee the regularity of PvP, and the independence of the index of PvP on
which regular ‘amplification’ we take gives some evidence that the hypotheses may be re-
laxed.

The proof of Theorem 5.1 will occupy the rest of the section.
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5.1. Preliminaries. As is usual for an index calculation such as this, we will assume
without loss of generality (by replacing .o7 by My (/) if necessary) that the partial isometry
v lies in .Z. To begin the proof it is helpful to write e, as an orthogonal sum of subprojec-
tions in ¥ (X’ DX ) which, of course, commute with e,:

1? o —it
I —ovv* 0 N
(6) e, = 1 —t‘llz 11—" 12 4 ( OUU 0) =e, + eg_

+2° 112

Note that to prove the theorem it suffices to demonstrate the equality in equation (5),
and that is what we shall do. Using the decomposition of ¢, into orthogonal subprojections
in (6) an elementary calculation now gives:

S| 4 E\ . e
éz) € <5) Then feev(@@> if and only if v'vé, =&,

and vv* & = —itvé,. In this case by equation (6) we get an orthogonal decomposition:

o (2)=e(2)=a(2)(2)=(2)+(5)

where ny = vv*&; = —itvé, and {; = (1 — vv*)E;; and both <Zl> and (%) lie in ev<§).
2

Lemma 5.2. (1) Let & = (

(2) The same statement (mutatis mutandis) holds for & = (? ) € (;)
2

In order to solve the differential equations to find the index in the theorem we need
the commutation relations recorded in the following lemma.

Lemma 5.3. The operators v*%v, v'vZ and v*dv preserve the subspaces of
v*o(X) (intersected with the appropriate domains where necessary) given by v*QuP(X),
v*Qu(1l — P)(X), where Q is any of the projections P, P — ®y, 1 — P, 1 — P 4+ @, ®y.

Proof. In the remarks after the statement of Theorem 5.1, we noted that all
spectral projections of v*v% commute with the projections v*Quv with Q. As v'vY
also commutes with P and 1 — P, v*vZ preserves these subspaces. Likewise, v*%v com-
mutes with v*Q’v for any spectral projection Q' of &, and by the hypotheses on v, v*Zv
commutes with P and so 1 — P. Thus v*%v preserves all these subspaces. The result for
v dv = v*9v — v*vZ follows immediately. []

5.2. Simplifying the equations. The main consequence of Lemma 5.2 is that we can
consider two orthogonal subspaces of solutions separately and this greatly reduces the com-
plexity of our task. In this subsection we will cover the 7', case: ker (e,(7T ® 1 z)eu).

1—ww* O

We observe that (0; + ) ® 1, commutes with the projection ( 0 O) (which

is < ¢,). Thus with Q. the parametrix for 7'y = 0, + & constructed earlier we have
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<(1_OUU*) 8>(Q+®12)<(1_0w*) 8)60((5,—%@)@12)&(1_0%* g)

_ ((1 —OUU*) 8>(Q+ R 1L)((6,+2)® 1,) <1 _OUD* 8)

(I—wv*) 0O 1 —ww* 0 1 —ow* 0
( 0 o )@ 0 0
Thus the kernel is {0} on this subspace, and so we only need to calculate the kernel on the

range of ¢,. Using the notation da := [Z, a| and recalling that vv* and v*v commute with &,
so that v*vdv* = dv* and vv* dv = dv we now obtain

&[(0+2) ® laJé,

! o* + & (0, + 2) + & vdv” i v+ i v(0;+2) + it dv
(1 +t2)2 1+12 t (1 —|—t2)2 (1 +t2)2 1+l2 t (1 +f2)2
B ! v+ it v (0, + 2) + it dv* -t v+ ! v'v(0; + D) + r “dv
1+ 12 (1+2)? (1+2)? [ (1+2)?
1 (tzvv*(é’, +2) —itw(d, + 52)) 1 <tuv* +2vdv itv—ittdv >
1+ 2\ it (0, +2)  vu(d + D) (1+ 2\ ' +itdv* —w'v+ v dv)
Using this formula, we obtain
100+ D) — — vy — e
—1v — 0 — Y
(?((ﬁﬂr@) 0 NG ! 22?1t
v v -
0 (0, +2) & t 1?
0+ 9)& + + v dv
( t )52 1 + lz 62 1 + [2 62

Since this vector is also in the range of ¢, we check that the first coordinate is —ifv times the
second coordinate as required by Lemma 5.2. We may rewrite the second coordinate in the
preceding equation:

v dv

P> () (8,+9)52+ fz-i-v dvé, — 1+l2

&
using & = v*v(&), and 1 — 1/(1 + %) = 2/(1 4 1?) as

1 20" dv ~
= 1 2 * = v
P, (1) < IHZa,ov +£2+v v@+1+t2>fz (D, + V)&,

- 1 12
where 9, = | ——0 1—}—12—1—1)*0@) and V:— v dv) =V, v* dv). So
(Srstio v ® (v"dv) i= Vo ® (v" o)

in order to compute the kernel of ¢,[(0; + Z) ® 1,]e, actlng on the range of ¢,, it suffices to
compute the kernel of &, + V acting on vectors & € dom(2) satisfying v*v(&,) = & and
& € Lz([RL) ® X. In the T, case only, such vectors are precisely those &, in dom(Z ) which
lie in L2 (R, (1 + %) dr) @ v*v(X). We make the important observation that %, is natu-
rally a densely defined closed operator on L?(R., (1 + %) dr) @ v*v(X) completely ana-
logous to the operator Ty = 0; + & of Section 4 which acts on L*(R,) ® X.
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Now we consider boundary values. For the equation eu((a, +92)® lz)evé =0 we
want to impose the boundary condition e,(0)(P ® 15)e,(0)E(0) = 0 where P is the non-
negative spectral projection for &. This projection is

eU(O)(g ?3)@0(0):((1_30*)}) U*(ZP).

Observe that our boundary projection is also the non-negative spectral projection of
e,(0)(2 ® 1;)e,(0). As noted above, the only solution which lies in the range of

0
cally satisfied. Hence, we need not concern ourselves any further with this subcase.

l—w*)P 0
ed(P® 1p)e? ( ( (1);1) ) ) is the zero solution, for which this condition is automati-

5.3. Solutions, integral kernels and parametrices. In the following we make some
notational simplifications. We replace v*vZ by &, and similarly for other operators, since
everything commutes with v*v and we will always be working on the subspace v*v(X). In
the notation of the previous subsection we aim to find the solutions of (2, + V)p =0 on
L*(Ry, (14 £2) dr) ® vu(X).

We will break our space up into orthogonal pieces preserved by 2, + V. We first split
our space as the image of 1 ® P and 1 ® (1 — P). On the image of 1 ® P we define a two
parameter family of bounded operators which will be the integral kernel of a local left in-
verse for Z, + V on this space. The reason for our notation &, + V is that we regard V as

a (time dependent) perturbation, and we will define our integral kernels using a variant of
the Dyson expansion for time dependent Hamiltonians, [19], X.12.

So for # = s = 0 define an operator on Pv*v(X) by

U(l, S) _ ef(tfs)P@ + i(_mﬂfff trjl (t—1,)P2 V( ) —(ti—0)PD . V(tn)ef(lnfs)l’@ dt,

n=1
where we write: dt,, - - - dt, dt; = dt, and where P2 really means & restricted to Pv*v(X).

Lemma 5.4. For all t = s = 0 the integrals and the infinite sum defining U (t,s) con-
verge absolutely in the operator norm on the space Pv*v(X). For all t = s = 0 we have

||U(Z7S)|| é ||e_(f—S)P§j|Ie([_S)Hv*dv”‘

Moreover U(t,s) satisfies the differential equations

;’ZtU(t s)=—(2+ V(t))U(t,s) and %U(l, s) = U(t,8) (2 + V(s)).

Proof. To see the convergence and the norm inequality, we use the crude estimate
1V (o)|| < ||v* dv|| together with the equalities

[ Ih—1

||ef(tkftk+|)P§Z|| _ ||efP@||(tk—tk+l) and J’J‘ . f ldln . ‘df] _ (I i S)n/l’l!,
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to obtain the inequality

—(t—s)PY = (I_S)n“v*dvnn —(t—s)PY —s)||v* dv
U < e 52 CEI I _ pemmoreaie

Differentiating formally yields the two differential equations but to see that the difference
quotients converge in operator norm to the formal derivative takes a little effort. For ex-
ample, using the mean value theorem and the functional calculus for unbounded self-
adjoint operators, one shows that for any f/ € C®?(R. ) which satisfies x?|f"”(x)| < C for all
d :
x € R, we have: = (f ((at+b)2)) = a2f"((at + b)Z) when (at + b) > 0 with norm con-
vergence of the difference quotient. Applying this to f(x) =e™* for (t—s) >0 we get
d

_ef(lfs)fi _ _@ef(tfs),@’ and ief(tfs)fl _ @ef(tfs)@'
dt ds

As for differentiating the integral terms, formally one uses a product rule which tech-
nically is invalid as one term is unbounded; however, by using the product rule trick of add-
ing in a term and subtracting it out, one shows the formal calculation works. Since the orig-
inal series and the series for the derivatives converge uniformly and absolutely, we are
done. []

Using these results we now construct a (local) left inverse for (2, + V)(1 ® P). We
define for any 7 > 0 and continuous function p € (L*(Ry, (1 4 %) df) ® Pv*v(X)),

. ‘ 1
S VI+2

Q
)
N—
—~
=
I
C—~

U(t,s)\V' 1 + s2p(s) ds.
Observe that (Qp)(0) =0, and is differentiable. First we need an elementary operator-
theoretic lemma.

Lemma 5.5. Let T be a closed densely defined operator on a Banach space B and let

9 < dom(T') be a dense subspace of dom(T) in the domain norm. Let A : dom(T) — B be a
bounded operator in the dom(T') norm, and let Q be a densely defined closable linear operator

whose domain contains T() and such that QT = 14 + A| . Then, range(T) < dom(Q) and
QT = 1dorn(T) + 4.

Proof. Let Tx erange(T), so there exists a sequence {x,} in & with x, — x and
Tx, — Tx. But then, the fact that

lim Tx, = Tx and lim Q(Tx,) = lim(x, + A(x,)) = x + A(x)
implies that Tx € dom(Q) and Q(Tx) = x + A(x). [
Lemma 5.6. The equation (2, + V)p = 0 has no nonzero solutions in

(L*(Ry, (1 + £%) dt) @ Po*v(X)).
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Proof.  Fix M >0 and let E); be the orthogonal projection of L*(R., (1 + *) dr)
onto the subspace L?([0, M], (1 + ¢*)dt). Then Ey ® 1 is the orthogonal projection of
(L*(Ry, (14 1*)dt) @ Pv*v(X)) onto the subspace (L*([0, M], (1 + ¢*)dr) ® Pv*u(X)).
Now, we see that @ defines a linear operator on the dense subspace of
(L*([0, M], (1 + ) dt) @ Pv*v(X)) consisting of continuous functions, call it Q,,. This op-
erator has a densely defined adjoint defined on the same subspace, QF,, given by the for-
mula

1 +s2p(s) ds.

M
Ot
@0 = s [ v
Thus, Q,, is not only densely defined, but also closable on
(L*([0, M], (1 + %) dt) ® Pv*v(X)).

The smooth functions p in the domain of (2, + V)(1 ® P) form a domain-dense sub-
space and

(Ev @ 1)(Zu+ V)(p) = (Do + V)(Ex ® 1)(p) € dom(Q).

Let py, = (Em ® 1)(p), fix ¢ € [0, M| and calculate:

(Ou(Zo + V)par) (1) = (Que(Zo + V)p) (1) = (Q(Z0 + V)p) (1)

— \/11+—z2£U(Z’ 5) (05 (V1 +52p(s)) + V1+ 522 + V(s))p(s)) ds
- m% (fas(wr, V1 + 52p(s)) ds

= [ V) VT (o) s

s [ UV T 2(2 4 V(9)ols) d
= () == U(1.0)p(0) = p(0) = pu (1)

As p(0) = P(p(0)) =0 the previous lemma implies that (%, + V)(Ey @ P) is injective
and (2, + V)p =0 has no nonzero local solutions on [0, M] for any M > 0. Hence,
(2, + V)p = 0 has no nonzero global solutions in (L*(Ry, (1 + %) dr) @ Pv*v(X)). O
Next we split the range of 1 ® (1 — P) into two pieces, namely
I1®(1-P)=1®v"(1 =P+ Dy)v(l —P)D1RQv"(P—Dy)v(l — P).

Lemma 5.7. The equation (2, + V)p = 0 has no nonzero solutions in the subspace

L*(Ry, (14 %) dt) @ v*(1 — P+ @g)v(1 — P)(X).
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Proof- Suppose we did have a solution

peL*(Ry,(1+2)d) @ v (1 — P+ Dy)v(l — P)(X).

We write p(t) = o(t), where ¢ is now an (ordinary) L? function with values in

1+
v*(1 = P+ ®y)v(1 — P)(X). A brief calculation shows that
1 d
N 1/ 2
1+ 12 dt<a([)|g(t)>)‘ \/—dt L+ 24p(0)

=(—(2+VW)p(0)]p(1)y + (p(O) | =(Z + V(1)p(1)) -

Since v*Zv is non-positive and & strictly negative on v*(1 — P 4+ ®p)v(1l — P)(X), we have
the estimate

T+ V(@) =(1+2) (P To+ 9) < —el /(1 +7),

where ¢ > 0 and 0 < ¢ < |r_;| where r_; is the first negative eigenvalue of & on this sub-
space. Thus

1 d 2
i g <e01e>x 2 150 p(0)x

Multiplying by 1 + #? and integrating from 0 to s gives (this is an integral of a continuous
function into the positive cone of the C*-algebra F)

S S

[ <0173 di = <ol0) [ o(5)3x = C@(0) | 0)x 2 2¢ [<p(t) | (1) .

l 0

The right-hand side is a nondecreasing function of s, and if p is nonzero, this function is
eventually positive. Hence <{a(s)|a(s)>y is a continuous non-decreasing function of s in
F*, and so can not be integrable as can be seen by evaluating on a state of F. Hence o is
not an element of L2 and there are no nonzero solutions p of (2, + ¥)(p) = 0 in the space
L*(Ry, (1+ ) dt) @ v* (1 — P+ Dp)v(1 — P)(X). O

Finally, we come to the subspace L*(R., (1 + ) dt) ® v*(P — ®g)v(l — P)(X). On
this subspace we will define a parametrix which is a right inverse, but is not a left inverse,
instead providing solutions to our equation. Thus, for ¢ = s > 0 define an operator H(t,s)
on the space v*(P — ®p)v(l — P)(X) b

e ST ()2

n=1 s

—(f—t v D 7
e (t—t1)v QLU* dv- v dve (ty—s)v* Jvdt

where v*Zv means v*Zv restricted to the subspace v*(P — ®@¢)v(1l — P)(X).

Lemma 5.8. For all t = s = 0 the integrals and the infinite sum defining H(t,s) con-
verge absolutely in norm. For t=s2=0, H(t,s) is an endomorphism of the module
v*(P — ®p)v(1 — P)(X) with norm
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N\ * -1 * (e -1 Sk
||H(Z, S)H < ||€ (t—s)v JbHetan (0)||v* dv|] <e (t s)rletan Gl du||’

where ry is the smallest positive eigenvalue of v*Zv on this subspace. The family of endomor-
phisms H (t,s) satisfies the differential equations

d

d
dt —H(t,s) = H(1,5)(2 + V(s)).

—H(t,s)=—(2+ V() H(1,5), =

Proof. Except for the final estimate the proof of this is similar to the proof of
Lemma 5.4. Now, the norm of H(¢,s) (on v*(P — ®y)v(1 — P)(X)) can be estimated as fol-
lows:

i th—1

1H () = He‘("s)”*@”H(l + il!v*dvlln(f({m J ()1 +lﬁ))1dt)

n=1

vk ¢ d
He (t—s)v JUH(I_i_E“U ||

n=1

(an'(0)")

* S A\ apn—1 *
He (t—s)v JLH tan~! (¢)||v* dv|| <e (¢ S)Iletdn (0)||v de7

where r; is the smallest positive eigenvalue of v*%v on the subspace. []
We now define a local parametrix on the space
L*(Ry, (1+£2)dt) @ v* (P — ®g)v(l — P)(X).

Let p be given by a continuous function in L?(R., (1 + 12) dr) @ v*(P — @g)v(1 — P)(X)
and let 1 = 0. Define

t
. [ H(t,5)\'1 + s2p(s) ds.
0
As in the proof of Lemma 5.6, R defines a closable linear mapping locally on [0, M] on it’s
initial dense domain of continuous functions. We note that R(p) is differentiable.
Lemma 5.9. For every vector x in the subspace v*(P — ®)v(1 — P)(X) there exists a

unique element pe L*(Ry, (1 +12)dr) ® v*(P—®g)o(l — P)(X) with p(0) =x and
(2, + V)p =0. Moreover, these are the only solutions in the space

LRy, (1+£2)dt) @ v* (P — ®g)v(l — P)(X).
Proof. As in the proof of Lemma 5.6 we work locally with ¢ in the interval [0, M],
however, we suppress the local notations p,,, etc. Take p a continuous function in

L*(Ry, (14 2) dt) @ v*(P — ®g)v(1 — P)(X) with values in dom(2) and compute using
the differential equations from Lemma 5.8

8\/1—|—t2 (Rp) (t)—\/l_ <fH(ts 1+32p(s)ds)

=p(t) = (Z+ V(1)) (Rp)().

\/1
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Thus (QU + V(1)) (Rp)(t) = p(t) and R is injective. The injectivity is first proved locally on
[0, M] by using Lemma 5.5 which easily implies global injectivity. On the other hand if p is
smooth and lies in the domain of &, + V' then (2, + V')(p) is continuous and so locally we
get

(R + V)o) () = s [ (1) (0. (VT+2906) VT 2(7 -+ V)l s
_ ¢11+—z2 jas(H(z, VI + 52p(s)) ds
s [ ) VT a0
s VT3 + Vo)) ds
= (1) == H(1.0(0)

where we have again used the differential equations from Lemma 5.8. Applying Lemma 5.5
we obtain this equation for all p € dom(Z, + V). By the estimate on ||H(z,0)|| in the pre-

H(t,0)p(0) is in

vious lemma, the function

1
ite
L*(Ry, (1 + £2) dt) ® v*(P — ®g)o(1 — P)(X),
and so if p is in the kernel of 2, + V we have locally and hence globally
(8) p(1) = (1+ )2 H(1,0)p(0).

Conversely, with x = p(0) € v*(P — @g)v(1 — P)(X), equation (8) defines a solution as R is
injective. []

Putting together Lemmas 5.6, 5.7, 5.9, we have the following preliminary result.

Corollary 5.10.  The kernel of 9, + V on L*(Ry, (14 2) dt) ® v*v(X) is isomorphic
to the right F-module v*(P — ®¢)v(1 — P)(X). Consequently

ker(e,((0, + 2) ® 1) ey) = ker(é,((0, + 2) ® 1,)é,)
>~ ker(Z, + V) = v*(P — ®g)v(l — P)(X).

Thus we have part of the index of (eU(Q ® lz)ev). To complete the calculation, we
compute the kernel of the adjoint operator e,(—0d, + Z)e,. We follow an essentially similar
path, but must take a little more care with the extended L>-space &.

5.4. The kernel of the adjoint. As explained above, we must compute the kernel

A

-0, +9 0 &
of the operator ev( ! 0+ o4 @)ev as a map from ev(§> to ev< 5) Recall
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that M(F,A) acts as zero on the constant Xj-valued functions but the added unit

N

) . ) ) X &
element acts as the identity. Thus for a pair of constant functions ( 1) € ((gA) we
X2

have ev(xl) = <x1>. Hence ev(@f) c <(g’) For éeeb(@f) to be in the domain of
X2 0 & & &

e, ((—0; + 2) ® 1,)e, we impose the boundary condition:

(1 —ovv*)(1 - P) 0
< 0 v*v(1 — P) )é(O) =0

. X & . L
For the constant function ( 01> € ev(g) to be in the domain this means that x;

must satisfy (1 —vv*)(1 — P)(x;) = 0. However, this is automatic as x; € Xy so that
(1 — P)(x1) =0. Thus the domain of e,((—d; + Z) ® 1»)e, extended to the constant
Xo-valued functions (Xo® Xo)” is (Xo@®0)". Of course, the extended operator
es((—0 + 2) ® 1,)e, is identically 0 here. It is important to note that:

dom(e, (=8, + 2) ® Lh)e,) Se(6 @ &)

As before we use the orthogonal decomposition of e, to enable separate analysis of
the two subspaces

Now,

(2)-s(2)e()

As in the case of ¢,((0,+ Z) ® 11)e, we have e,((—d,+ Z) ® 1,)e, is one-to-one on
(¢ @ &) and so the kernel there is 0. Since es((—0, + 2) ® 1,)e, is identically 0 on
ed((1—w*)(Xo) ®0)" = (1 —vv*)(Xp), we have the following result.

~

Proposition 5.11.  The kernel ofev((—(?, +2)® lz)ev restricted to e? <®f) is isomor-
phic to the right F-module (1 — vv*)(Xp). ¢

These solutions are a rather trivial type of extended solution to the adjoint equation.
Next:

: it? it3
~ ( (—0;+2) 0 (& —itv(—0, + 2)& + mvfz 112 dvé,
’ 0 (—a,+@)> ”(@)Z ¢ 2o
(C0+ D& = St s

That is, any vector (p;,p,)” in the range of &(0, + Z) ® 12]é; satisfies p, (1) = —itv(p,)(t)
and as before, after simplifying,
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-1 t2v*d .
po(1) = < Qo1+ +vvy +g> &H=(9,+ V)&

‘/l-l-lz 1+t2
. -1
where 9, = (ﬁ 0,0V 1 +12+ v*v@) and
+1
l»2
V:1+[2 ® (v dv) == Vo ® (v* dv).

So in order to compute the kernel of é,[(—0; + Z) ® 1,]e, acting on the range of é,, it suf-
fices to compute the kernel of &, + V acting on vectors &, € & satisfying v*v(&) = &, and
—itv(&,) € &. As opposed to the T case, such vectors &, only need to lie in the larger space
L*(Ry) ® v*o(X), while &, (1) = —itv(&,(t)) may have a nonzero limit at oo in X; subject to
the boundary conditions P(&,(0)) = &(0).

Again we split L?>(R,) ® v*v(X) into the range of 1 ® P and 1 ® (1 — P). On the im-
age of 1 ® (1 — P) we define a two parameter family of bounded operators which will be
the integral kernel of a local parametrix for &, + V on this space. Thus with Z standing for
(1 — P)Z and for t = s = 0, define an operator on (1 — P)v*v(X) by

Ih—1

[
W(l, S) = ell=9)7 + Z(—l)njj . J’ =1 V([l)e(ll—tz)f/) V(l2> . V(tn)e(tn_s)g dt.

©“

Lemma 5.12.  For all t = s = 0 the integrals and the infinite sum defining W (t, s) con-
verge absolutely in norm. For all t = s = 0 we have (in the operator norm for endomorphisms

of v*0(X))
W (2,9)|| < [|e"=97 [|el=llv" ol

Moreover W (t,s) satisfies the differential equations

%W(l, s) = (2 + V() W(t,s), %W(t, s) = =W (t,8)(2 + V(s)).

Proof. This is very similar to the proof of Lemma 5.4 so we omit the details. []

Using these results we construct a local parametrix for (2, + V) (1®(1—P)).Forp
a continuous function in L*(R,) ® (1 — P)v*v(X) define

A

(0)(1) i= —(1+ ) [ W(t,5)V/T + s2p(s) .
0

Observe that (QOp)(0) = 0, and is differentiable, and so if p has range in dom(%) then Q(p)
is locally in the domain of &, + V. As in the proof of Lemma 5.6, O defines a closable lin-
ear mapping locally on [0, M] on its initial dense domain of continuous functions. All our
calculations below are local as in Lemma 5.6.
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Lemma 5.13. In the space L*(R.)® (1 — P)v*v(X) the equation (9, + V)p =0
has no nonzero solutions and therefore it has no nonzero solutions in the subspace
L*(Ry, (1+ %) dt) ® (1 — P)o*o(X).

Proof. Let p be a smooth function in the domain of (2, 4+ V)(1 — P):

-1
1+1¢

(0(Ds+ V)p) (1) = W(t,s)(—0s(V1+s2p(s)) + V1+s2(Z + V(s))p(s)) ds

—_— 7
o
S TN

== J&S(W(t,s) 1+ 52p(s)) ds

¥

(Jj(as W (t, S)) 1+ s2p(s) ds

1+ 22

_I_

1

W(t,)V' 1+ s2(Z + V(s))p(s) ds

[\
C—~

1

_I_

4
= plt) = (1+ )" 2w (1,0)p(0) = (1),

where, as p has values in the range of (1 — P), we have p(0) = 0. Arguing as in the proof of
Lemma 5.6 this implies that (2, + V)(1 — P) is injective on its whole domain. Hence,
(2, + V)p = 0 has no nonzero solutions in L*(R,) ® (1 — P)v*o(X). [

Next we split the range of 1 ® P into three pieces, namely

1@ P=[1Qv"(P—Dy)vP| D[l ®v*(1 — P)uP]|® [l ® v DyuvP].
~ Lemma 5.14. In the subspace L*(R) ® v*(P — ®g)vPv*v(X) the equation

(2,+ V)p=0 has no nonzero solutions and therefore has no nonzero solutions in
L*(Ry, (14 ) dt) ® v* (P — ®g)vPv*v(X).

Proof. First, suppose we have a solution p with p(t) € v*(P — ®y)vPv*v(X) for all

120, and pe L*(R;) ® v*(P — ®g)vPv*v(X). Then —irv(p(r)) € (P — ®o)vPv*v(X) and
so if this has a limit at oo in ®y(X), the limit must be 0. That is,

—itv(p) € L*(Ry) ® (P — ®g)vPv*v(X)
and so our solution p actually lies in the smaller space
L*(Ry, (1 + £%) dt) ® v*(P — ®g)vPv*v(X).

Arguing as in Lemma 5.7 write p(7) = (1 + 12)"?a(1), where o is now an (ordinary) L>
function with values in v*(P — ®¢)vPv*v(X):

(1427 % Cal0) [ (>0 SN/ T+ 2p(0) | pl0)

=((Z+ VD)) [p(1)) x + (P() [ (Z + V(D) p(1)) x-
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Since v*Pv is strictly positive and & is non-negative on v* (P — ®@g)vPv*v(X), we have the
estimate

G+ V()= +) NP Do+ D) > /(1 + 1),
where 7| 1s the first positive eigenvalue of v*%v on this subspace and therefore

1 d 2r1t2
ma< a(t)|o(t))x 2 112

() p(1))x

Multiplying by 1 + ¢? and integrating from 0 to s gives

N

f ,<a(t) [o(1))y dt = <o(s) | a(s))x = <o(0) |0(0)>x = 2r1ft $p(@) | p(2)x dt.

0

The right-hand side is a nondecreasing function of s, and if p is nonzero, this function is
eventually positive. Thus arguing further as in Lemma 5.7 there are no nonzero solutions
p of (Zv+V)(p)=0in L*(Ry, (1 +1?) dt) ® v*(P — ®g)vPv*v(X), and hence none in
L*(R}) ® v*(P — ®p)vPvo(X). [

Next, we come to the subspace L?(R,) ® v*(1 — P)oPv*v(X). On this subspace we
will define a local parametrix which is a right inverse, but is not a left inverse, instead

providing solutions to our equation. So for #=s=0 define G(z,5) (on the module
v*(1 = P)vPv*v(X)) by

“ i — * * Gy
T S D) [ [ (L) (14 8)) Lelt=)o 7o ¥ dpeln =9V 7Y gy
s 8 N

n:

8
~
L

Lemma 5.15. For all t =z s = 0 the integrals and the infinite sum defining G(t,s) con-
verge absolutely in norm. For t = s 2 0, G(t,s) is a bounded endomorphism of the module
v*(1 = P)vPv*v(X) with norm bounded by

||G(l, S)“ < ”e(t—s)v*fjv”e(t—s)nv*dv|| < e(t—s)r,le(t—s)Hv*de7

where r_y is the largest negative eigenvalue of 9. The family of endomorphisms G(t,s) satis-
fies the differential equations

d d
EG(t,s) =(2+V(1)G(,s), %G(I s) = —G(1,8) (2 + V(s)).
Proof. The proof of this is very similar to the proof of Lemma 5.8. []

Now define a local parametrix on continuous functions p by

(Rp) (1) := (14 »)7'/? f G(t,9)V 1+ s2p(s)ds, peL*(R.)®v* (1 —P)oPv*o(X).
0
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As in the proof of Lemma 5.6, R defines a closable linear mapping locally on [0, M] on the
initial dense domain of continuous functions. We note that R(p) is differentiable.

Lemma 5.16.  For every vector x in the space v*(1 — P)vPv*v(X) there exists a unique
element pe L*(R.) ® v*(1 — P)oPv*v(X) with p(0) =x and (2, + V)p =0. Moreover,
these are the only solutions in the subspace L>*(R,) ® v*(1 — P)vPv*v(X). In fact these solu-
tions p clearly lie in L*(Ry, (1 4 1*) dt) ® v*(1 — P)vPv*v(X) and satisfy

lim —itv(p(1)) = 0.

Proof.  We work locally as in the proofs of Lemmas 5.6 and 5.9. Take p a continu-
ous function in L*(R,) ® v*(1 — P)vPv*v(X) with values in dom(%) and compute

! 0V 1+ t2(Rp)(1) = \/%_[25[ (ff G(t,9)V 1+ s%p(s) ds)

— pt) = (2 + V(1)) (Rp) (1),

where we have used the computations from Lemma 5.15. Thus (@U + V(l))(Rp)(t) = p(?)
and R is injective. The injectivity is first proved locally on [0, M| by using Lemma 5.5 which
easily implies global injectivity. On the other hand if p is smooth and lies in the domain of
9, + V then (2, + V)(p) is continuous and so locally we get

(R0 + V)p) (1) = 1_+lzz ch;(z,s)(_as( [ 52p(5)) + VI 52(2 + V($))p(s)) ds

I

_ <1
Y
C—~

35(G(1,)V1 + s2p(s)) ds

+

t

1
1+ 2

(0,G(1,9)) V1 + s2p(s) ds

_ <l
S

C—

G(t,5)V' 1+ s*(Z + V(s))p(s) ds

1+ 2

(1) — (1 + %) G(1,0)p(0),

S

where we have again used the derivative computations from Lemma 5.15. Applying
Lemma 5.5 we get this formula for all p € dom(Z, + V).

Now if p is in the kernel of &, + V we have locally and hence globally
9) p(0) = (1+2)"12G(1,0)p(0),
and this lies in L?>(R,) ® v*(1 — P)vPv*v(X) by the estimate:
||G([, O)H < etr,letan”(z)nv*dv”

where r_; is the largest negative eigenvalue of & on the subspace. Conversely, given any
vector p(0) € v*(1 — P)vPv*v(X), equation (9) defines a solution since R is injective. []
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Finally we need to consider the subspace L*(R,) ® v*®ovP(X). This subspace gives
rise to extended solutions. That is, the solutions we seek here are the second components &,
of a solution & = (¢,,&) T ine, (@ &) < (6@ &)” to the equation e,(—0; + Z)e,é = 0,
where &, € & satisfies ¢; = —ivt&,. Hence, a true extended solution (one where & ¢ &)
comes from those &, which behave like (1 + tz)_l/ % as t — oo. With this reminder, we have

Lemma 5.17.  For every vector x € v*(Po)vP(X) there exists a unique solution to the
equation (2, + V)p =0 in the space L*(R,) ® v*(®g)vP(X) with p(0) = x. Moreover,
every solution in this space is of the form p(t) = ( +12)” 12 e~ (™ ()0 dvy () and

(1) tlirglo —itv(p(1)) = —ive ™" ¥ (p(0)) € Dy(X)

and
(2) 1+ (—ivtp(t) + ive ™DV (p(0))) is in L*(Ry) ® v* (Do) vP(X).

Proof. We define a local parametrix for p a continuous function in
L*(R,) ® v*(®g)vP(X) by

(Ep)(1) = ——

t
—(tan~'(0))o* dv  (tan"'(s))v* dv 1 2
e e +s ds.
1+ g Pe)

We observe that (Ep) is differentiable and satisfies (Ep)(0) = 0. To show that this is a para-
metrix, first use v* dv = v*%Yv — v Y to rewrite

. —1 1
_ 2 ¥ _ *
D,+V = 1+t26[ 1+ +0v"%v 1+t20 dv.

As v*Pv acts as zero on v*®gyv(X), this reduces on v*Dyv(X) to

- -1 —
@L—’—V: 6, 1"’2

V12
Applying ———=0,V/1 + 2 to E ) and using the product rule gives
\/——
_1 A 1 —1 * ! —1 *

- /1-|—12 E H=—0w—"27 (e—(tan (1)v* dv e(tan (8))v* dv 1+S2 g dS)
\/H_—tzl (p><> 1+t2f 0‘[ p()
vidv | -
=p(t) ——— (Ep)(?).
pl0) =15 (Ep)(1)

Thus (2, + V)(Ep) = p locally for continuous functions. As in previous cases E is locally a
closable operator and so by Lemma 5.5 we get that (9, + V)(Ep) = p locally for all p in
the domain of E. Hence, E is globally injective. Integration by parts for smooth p in the
domain gives

~

(E(@u+ V)p)(0) = plt) — (14 2) P 0 dey (),
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Applying Lemma 5.5, we get this equation for all pedom(Z2,+ V). Hence if
peker(2,+ V) we have

p([> _ (1 + t2)71/26—tan*1(t)y*dvp(o).

On the other hand if x € v*(®g)vP(X) and we define p by this equation with p(0) = x then
we have a solution of (2, + V)(p) = 0 in the space p € L>(R;) ® v*(®g)vP(X). Since for
each 120 we have p(7) € v*®ov(X), we also have —itv(p(r)) € ov(X) = Dy(X), and
therefore

lim —itv(p(t)) = —ive’”/z”*d"(p(O)) € Dy (X).

t— 0

It is an exercise to check that ¢ — (—ivtp(t) + ive /2" % (p(0))) is in
L*(Ry) @ v*(Po)vP(X). [

Putting together Proposition 5.11 and Lemmas 5.13, 5.14, 5.16, 5.17, we have the fol-
lowing.

Corollary 5.18. The kernel of (2, + V) on L*(R,) ® v*v(X) is isomorphic to the
right F-module

ker(9, + V) = [v"(1 — P)oP(X)] @ [v*DovP(X)],

where the first summand consists of ordinary solutions in L*(Ry,(1+ ?)dt) ® v'v(X),
while the second summand consists of extended solutions whose second component is in
L*(R,) ® v*v(X). Consequently, taking into account the (trivial ) extended solutions of Pro-
position 5.11, (1 — vv*)Dy(X) we have the full kernel

ker(e,((—=0; + 2) ® 12)e,) = [v*(1 — P)vP(X)] @ [v"@ouP(X)] @ [(1 — v0*)Dy(X)].

. - 1 0 .
5.5. Completing the proof of Theorem 5.1. Consider the pairing of ( 0 0> with

0; + . Examining our earlier parametrix computations shows that d, + £ with boundary
condition P has no kernel, while —d, + & with boundary condition 1 — P has extended so-
lutions: the constant functions with value in Xj. The projection onto these extended solu-
tions is @y and Index(d; + Z) = —[Xy|. Since the mapping cone algebra is nonunital, we
(1) g)} We have com-
puted the pairing of ()? , @) with both these terms, and so we have the following intermedi-
ate result:

can not just pair with the class of e,, but must pair with [e,] — K

Proposition 5.19.  The pairing of |e,| — K 0 0

I 0 PN
)} with (X, 9) is given by

Index (e, (0, + Z)e,;) — Index (0, + Z) = Index (e, (0, + Z)e,) + [Xo]
= [0"(P — Do)o(1 — P)(X)] — [v"(1 — P)vP(X)]
— [v"@ouP(X)] — [(1 — vv")(Xo)] + [Xo]
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= [v"Po(1 = P)(X)] = [v"@ov(1 — P)(X)]

= [0"(1 = P)oP(X)] = [v"@ouP(X)] + [v0"(X),]
= [v"Po(1 = P)(X)] = [v"(1 = P)oP(X)] = [0"®ou(X)] + [v0" (Xo)]
= [0"Pu(1 = P)(X)] = [v"(1 — P)oP(X)].

The last line follows because w = v*®, is a partial isometry with ww* = v*®yv and
w*w = vv*®y, showing that the modules defined by these projections are isomorphic.

Now we can finalise the proof of the theorem by computing the index of
PoP : v'vP(X) — ww*P(X),
where P is the non-negative spectral projection for &. The kernel of PvP is given by the set
{EevvP(X):véew (1 —-P)(X)=(1-PuX)} =Pl —PuX),
while the cokernel is given by
{EewP(X)=Po(X):{=w,nevv(l —P)(X)} = (1 - P Pu(X).
Thus
Index(PvP) = [Pv*(1 — P)v(X)] — [(1 — P)v" Pv(X)] € Ko(F).
Hence, since Pv*(1 — P)v = v*(1 — P)vP and so on,
Index(PvP : v*voP(X) — w*P(X)) = —(Index (e, (0, + Z)e,) — Index(d, + 2)),
and the proof of Theorem 5.1 is complete.
Remark. When [Z,v* dv] = 0, enormous simplifications occur in the preceding ana-

lysis. In this case one can verify that for the equation 9, + V in v*vé, a solution of
p = (9, + V)¢ vanishing at zero is given by

v*dvtan~!(2) ¢

e * ¢, L ok -1/

é f) = eV Dv(t—s) 1 S2€ v* dvtan~' (s) s dS,
O =—=7 Of Vi1+ p(s)

and we require p € v*(P — ®y)vé. This formula can be obtained by performing the sums
and integrals in the definition of our more general parametrix. Similar comments apply to
the other cases.

In the next section we apply Theorem 5.1 to graph algebras and the Kasparov mod-
ule constructed from the gauge action in [15]. We will see that in this case we can always
assume that v*dv commutes with &, so that we are in the simplest situation described
above.
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6. Applications to certain Cuntz-Krieger systems

For a detailed introduction to Cuntz-Krieger systems as graph algebras see [20]. A
directed graph E = (E°, E',r,s) consists of countable sets E® of vertices and E! of edges,
and maps r,s: E! — E° identifying the range and source of each edge. We will always
assume that the graph is locally-finite which means that each vertex emits at most fi-
nitely many edges and each vertex receives at most finitely many edges. We write E”
for the set of paths u = u;u, - - - i, of length || := n; that is, sequences of edges y; such that
r(y;) = s(u;y1) for 1 <i < n. The maps r, s extend to E* := |J E” in an obvious way. A

n=0
sink is a vertex v e E® with 57! (v) = 0, a source is a vertex w € E® with r~!(w) = () however

we will always assume there are no sources.

A Cuntz-Krieger E-family in a C*-algebra B consists of mutually orthogonal projec-
tions {p, : ve E°} and partial isometries {S, : e € E'} satisfying the Cuntz-Krieger rela-
tions

S;Se = prey foreeE ' and p, = { ”(Z); ‘}SeSe* whenever v is not a sink.

There is a universal C*-algebra C*(E) generated by a non-zero Cuntz-Krieger E-family
{Se,ps} [11], Theorem 1.2. A product S, : =S, S,, ---S, 1is non-zero precisely when
U= -+ i, 1s a path in E". The Cuntz-Krieger relations imply that words in {S,, S;‘}
collapse to products of the form S, S for u,v e E* satistying r(u) = r(v) and we have

(10) C*(E) = span{S,S; : u,v e E* and r(u) = r(v)}.

There is a canonical gauge action of T on 4 := C*(E) determined on the generators via:
7.(py) = py and y.(S.) = zS.. Because T is compact, averaging over y with respect to nor-
malised Haar measure gives a faithful expectation ® from 4 onto the fixed-point algebra
F=4A4"

®(a) := 1 [7.(a)d0 forae C*(E), z=e".

2n g

As described in [15], right multiplication by F makes 4 into a right (pre-Hilbert) F-module
with inner product: (a|b), := ®(a*h). Then X denotes the Hilbert F-module completion
of 4 in the norm

lall = (@l a)glly = I®(aa)ll-

For each k € Z, the projection ®; onto the k-th spectral subspace of the gauge action is
defined by

The generator of the gauge action on X, & = >  k®y, is determined on the generators of
A = C*(E) by the formula kez
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9(5.857) = (J2] ~ [B)S.S5.
The following result is proved in [15].

Proposition 6.1. Let A be the graph C*-algebra of a directed graph with no sources.
Then (X, 2) is an odd unbounded Kasparov A-F-module. The operator & has discrete spec-
trum, and commutes with left multiplication by F = A. Set V = Z(1 + 2%)~V% Then (X, V)
defines a class in KK'(A, F).

We are going to investigate relations in K (M (F, A)) As graph algebras are gener-
ated by partial isometries in 4 with range and source in F, so Kj (M (F, A)) contains a lot
of information about 4 and the underlying graph. The main result of Section 5 will give us
more information.

Proposition 6.2. Let A be the graph C*-algebra of a locally finite directed graph. Let
o = a0y - - - o)y be a path in the graph, and S, the corresponding partial isometry in A. If p is
also a path let P, = S,S;. Then in Ko (M(F,A)) we have the relations

Jo—1
[SOCP,U] = Zl [deS1j+lS0€j+2 T SanPllS;n S, S, ] + [SOCMP//‘]7
j:

%427 Ot
[S2S5] = [Sa] — [Spl, o, B paths.

Proof. This proceeds by induction on |«|. If |¢| =0 then [S,] = [py,] =0 and if
|| = 1, there is nothing to prove. So suppose the relation is true for all « with |«| < n. Let
o be a path with |«| = n and write « = oo, where |«| = n — 1. Then

(S, P,] = [SuSu, Pu] = [SuSu, Py S Pl = [S4S, PuS: ] + [, P,] by Lemma 3.3

|or|—2
= Z [SOC/SOC/'H S1j+2 U S%P/lS;n o 'SOZ+2S;;+1] + [S“\ﬁ\*IS“"P/‘S:n] + [SO‘"P/‘]’
the last line following by induction. The application of Lemma 3.3 requires
(S%S%Pﬂs;n)*<S@S1nPuS;,,) = SanPuS;n = (SocnPu)(anPu)*-

The second relation follows from Lemma 3.3 also, since S, S, = py,) = SESﬂ. O

Lemma 6.3. Let A be the graph C*-algebra of a locally finite directed graph E with
no sources. Then for all edges e € E', the class [S,] € Ko(M(F, A)) is not zero. Similarly if
r(e) = s(a) then [S.P,] + 0.

Proof. The assumptions on the graph ensure the existence of the Kasparov module
(X,2) constructed from the gauge action. The pairing {[S.P,], [(X,Z)])> is given by
[SeP,Si®Dy| = [S.P,S;] € Ko(F), where @ is the kernel projection of &, whose range is
the trivial F-module F. This class is nonzero since F' is an AF algebra, and so satisfies can-
cellation. [

Remark. The hypothesis of ‘no sources’ was introduced so that we could use the
nonzero index pairing to infer nonvanishing of the class [S,P,]. This restriction may be
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loosened provided we use other ways of deducing the nonvanishing. For instance, if the
class [P,| — [SeP.S)| = ev.([SePy]) * 0 in Ko(F), then the class [S.P,| cannot be zero. On
the other hand, if [P,] = [S.P,S)] in Ko(F), then since F is AF, there exists a partial iso-
metry v € F such that S.P,S; = vv* and P, = v*v. Thenu =1 — P, + v*S.P, is a unitary,
and so defines a class in K;(4). Since the map K;(A4) — Ko(M(F, A)) is an injection, and
takes [u] to [S.P,], we would know that [S.P,] % 0 if we knew that [u] =+ 0.

Corollary 6.4. Let A be the graph C*-algebra of a locally finite connected directed
graph with no sources. Two nonzero classes [S.P,), [SrP,|, with e, f edges in the graph and

o an arbitrary path, are equal if and only if r(e) = r(f). Two nonzero classes [S,|, [Sy], r(e) a
sink, are equal, [S,] = [Sy], if and only if r(e) = r(f).

Proof. Suppose that r(e) = r(f), and that [S.P,| + 0 (otherwise there is nothing to
prove). Then as SeP,S; € F we have

0 = [SePyS/] = [SePy] — [Sy Pyl
by Lemma 3.3. Conversely, if 7(e) # r(f) at least one of these classes is zero.

For the second statement we observe that if r(e) = r(f) then S.S; is nonzero, and
then [S,] = [S.S7] + [Sy] = [Sy] by Lemma 3.3. If r(e) # r(f), we suppose [S,] = [S;], for
a contradiction, and compute the index pairing with the Kasparov module (X, %) con-
structed from the gauge action. The pairing is given by

<[Se]7 [(Xv@)]> = _[SeS:] = _[SfS):k] = <[Sf]7 [(Xv @)]>

Hence the class of S,.S; in Ko(F) (F is the fixed point algebra) coincides with the class of
SyS;. Since F is an AF algebra, there exists a partial isometry v € span{S,Sy : |u| = [v|}
such that S.S; = vS;S7v™. Thus

Prie) = S uSrS;v"Se = Z ¢jCkSe S Sy SrSySu S, Se-

J

Here the paths g start from s(e) and end at some vertex v;, while the corresponding path v
starts from s(/)) and ends at the same vertex v;. Moreover there is at least one path x; with
S¢Sy #+ 080 p; = ep;, - - w;,, where |w;| = k. However, r(e) is a sink, so any such path is of
the form g; = e. This forces the length of the corresponding v; to be 1, and v; = f. The only

way the product S, S, = S.S; can now be non-zero is if r(e) = r(f), contradicting our as-
sumption. []

Corollary 6.5. Let A be the graph C*-algebra of a locally finite connected directed
graph with no sources. Then if two partial isometries of the form [S.], [Ss| satisfy
[Se] = [Sy] € Ko(M(F, A)) then there exists a partial isometry p in F such that pS, = Sy
and p*pSe = Se = p*Sy.

Proof.  The required partial isometry p is SyS;. The remaining statements are imme-
diate. [

Lemma 6.6. Let E be a row-finite directed graph. Then the group
Ko(M(C*(E)”,C*(E))) is generated by the classes [S.P,], where ¢ is an edge and o. is a path.
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Proof.  Let [v] € Ko(M(C*(E)”, C*(E))) and consider
ev,[v] = [v"v] — [v0*] € Ko (C*(E)").

Now Ko (C*(E)”) is generated by the classes [p,], p, = S,S,;, where u € E* is a path, [14].
As C*(E)” is an AF algebra, there are partial isometries W, Z over C*(E)” such that

(11) W*W =v*v, WW~* :Zpﬂ/’ ZZ" =", Z*Z:Zka’
J k

and [v] = [Z*vW*]. The latter follows because Z, W are partial isometries over F and so
represent zero, while [Z*vW*| = [Z*] + [v] + [W*]. In equation (11) the sums are necessar-
ily orthogonal, and may be in a matrix algebra over C*(E)’, and some zeroes (place-
holders to make the matrix dimensions equal) may have been omitted from the sums. Ob-

serve that ev.[Z*oW*| = > [py] — >_[py]- By considering p,, Z*vW*p, we may suppose
k J
without loss of generality that we have only one summand so that WW* = p, and

Z*Z = py. Then
V(20 S,S] = [p] — [p] = 0.

Hence [v] = [Z*vW*] = [S,S;] modulo the image of i,, and Lemma 6.2 completes the
proof for [v] ¢ Image(i.). Observe that S,S; + 0 (and so r(x) = r(v)) is a consequence.

In the case ev,[v] = 0, so that [v] € Image(i.) we observe that there is a partial isome-
try X over C*(E)” such that X*X = v*v and XX* = vv* so that 1 — v*v + X *v is unitary.
Then, again since all partial isometries are over F,

o] = (WX oW*] = [WX*ZZ"vW*] = [WX*ZS,S}] = i.[l — p, + WX *ZS,S]]

gives a unitary representative of v. Since i.[l — p, + WX*ZS,S;] = [S,S;], Lemma 6.2
completes the proof. []

The structure of K, (M(F, A)) is even simpler.

Lemma 6.7. If E is a row-finite directed graph, A = C*(E) and F = C*(E)’, then
Ki(M(F,A)) =0.

Proof. The exact sequence 0 — 4 ® Cy(0,1) - M(F,A) - F — 0 and K;(F) =0
yields

ev,

(12) 00— Ki(A4) — Ko(M(F,A)) = Ko(F) — Ko(A4) — K\ (M(F, A)) — 0.

By Lemma 3.1, the map Ky(F) — Ko(A4) is induced (up to sign and Bott periodicity)
by inclusion j:F — 4. This map is surjective on Ky by [14], Lemma 4.2.2, and so
Kl(M(F,A)) =0. [

In [14], the K-theory of a graph algebra C*(E), where E has no sources or sinks, was
computed as the kernel (K;) and cokernel (Kj) of the map given by the vertex matrix on
7 (there are subtleties when sinks are involved). The proof of this result involves the
dual of the gauge action and the Pimsner-Voiculescu exact sequence for crossed products.
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In equation (12), we see the K-theory again expressed as the kernel and cokernel of a map,
but this time it arises with no serious effort. The difference of course is that the groups
Ko(M(F, A)) and Ko(F) are in general harder to compute.

While the map ev. : Ko(M(F,A)) — Ko(F) is neither one-to-one nor onto in general,
we can deduce that the two groups Ko(M(F, A)) and Ko(F) are in fact isomorphic in a
wide range of examples. We let (X , 9) be the APS Kasparov module arising from the Kas-
parov module (X, 2).

Proposition 6.8. Let A be the graph C*-algebra of a locally finite connected directed
graph with no sources and no sinks. Then the map Index,, : Ko(M(F,A)) — Ko(F) given by
the Kasparov product with the Kasparov module of the gauge action is an isomorphism.

Proof.  First the index map is a well-defined homomorphism, [10]. We begin by
showing that the index map is one-to-one. So suppose that we have edges e, g and paths
o, f in our graph (with no range a sink), and suppose that

Index ([S.P,]) = Index, ([S,Ps]).
A simple computation using Theorem 5.1 yields
Index ([SePu]) = [SePuS; | = [SyPpS,] = Index,; ([SyPpl).
As F is an AF algebra, we can find a partial isometry v in F such that
SePyS; = vSyPpS,v".
Then setting w = P,S;vS,Pg + 0 we have
Py, =ww" =wPgw® and Pg=w'w=w"P,w.

We will use Lemma 3.3 below and need to check that some partial isometries have the same
source projections. First observe that (S, P,wPg)"(S.PywPp) = Pg = w*w, so

[SeP.] = [SePywPpw™| = [S,P,wPg| + (W] = [SePywPg| = [SePyS; vS,Ppl,
the second last equality following since w is a partial isometry in F. Now since

(ngﬂ)(SgPﬂ)* = SyPgS; and (S.P,S;v)"(SePyS;v) = SyPsS,, we can apply Lemma 3.3
again to find

[SePa] = [SePuS;vSy Py = [SePuS,v] + [SyPp] = [SyPp].
Thus Index, is one-to-one. Now supposing that our graph has no sinks, every class in
Ko(F) is a sum of classes [p,| = [S,S,], where x is a path in the graph of length at least
one. For a given u =y - p,, define i = p, - -~ . Then it is straightforward to check
that
IndeXQ([SﬂSE]) = [pul-

Hence the index map is onto and we are done. []
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Observe that this does not mean that the K-theory of the graph algebra is zero! The
evaluation map and the index map are very different. For the Cuntz algebra O,, n = 2, for
example, the fixed point algebra has K-theory Ko(F) = Z[1/n] and so we have

v ([0) = 1]~ 8,53 ~ 1~ = G — 1)

with ker(ev,) = K;(0,) = 0 and coker(ev,) = Ky(O,) = Z,—. The index map gives us
=
j=

This equality follows from Theorem 5.1, and to determine the right-hand side more
explicitly, set 1=y ---p, and define the partial isometry W =8,5;D. Then
WW=* =8,5,®; and W*W = §;5;®. Thus in Ko(F) we have

|u—1 . R . R . |1 (el e — 1\ 1
Index; (15,) = 2 15,8,0] = T 1555;00] = 2 (85571 ~ X o 00 = (1)
=0 =0 =0 =0 n—1/)nk

The evaluation map and the mapping cone exact sequence gives us
Ko(M(0],0,)) = (n—1)Z[1/n]

(those polynomials all of whose coefficients have a factor of n — 1) which is of course iso-
morphic to Z[1/n] = Ky(F) as an additive group.
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