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ABSTRACT 

 

Previous studies indicate that apolipoprotein-D (apoD) may have a lipid antioxidant function 

in the brain. We have shown that apoD can reduce free radical-generating lipid 

hydroperoxides to inert lipid hydroxides in a reaction that involves conversion of surface 

exposed apoD methione-93 (Met93) residue to Met93-sulfoxide (Met93-SO). One 

consequence of this reaction is the formation of a stable dimerized form of apoD. As cerebral 

lipid peroxidation is associated with Alzheimer’s disease (AD), in the present study we aimed 

to assess the possible presence of apoD dimers in postmortem hippocampal and cerebellar 

tissues derived from a cohort of pathologically defined cases ranging from control to late 

stage AD. Both soluble and insoluble (requiring guanidine HCl extraction) fractions of tissue 

homogenates were analyzed for apoD and its dimerized form. We also assessed amyloid-beta 

levels by ELISA and levels of lipid peroxidation by lipid conjugated diene and F2-

isoprostane analysis. Our studies reveal a significant association between soluble apoD levels 

and AD Braak stage whereas apoD dimer formation appears to increase predominantly in the 

advanced stages of disease. The formation of apoD dimers is closely correlated to lipid 

conjugated diene levels and occurs in the hippocampus but not in the cerebellum. These 

results are consistent with the hypothesis that apoD acts as a lipid antioxidant in the brain. 
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Introduction 

 

Alzheimer’s disease (AD) is the most prevalent form of dementia as it accounts for 60-80% 

of all dementia cases. According to the recent World Alzheimer’s Report, the population of 

patients suffering from AD is expected to reach 115.4 million by 2050. The disease is 

characterized by the presence of senile plaques, neurofibrillary tangles and loss of neurons 

that together result in cognitive impairment and memory loss [1-3]. The multifactorial nature 

of AD presents significant challenges, both in terms of understanding pathological 

mechanisms and for the development of therapeutics [4]. The oxidative stress hypothesis of 

AD identifies lipid and protein oxidation as potential initiators and propagators of the 

pathways contributing to AD [5-7]. Interestingly, oxidative stress is one of the early events in 

AD pathology and may even precede amyloid plaque formation [8, 9]. 

 

Oxidative stress involves oxidation of proteins, lipids, nucleic acids and sugars. Evidence 

from an increasing number of studies indicates biochemical markers of oxidative stress are 

significantly increased in the AD brain [10-12]. The brain is suggested to be highly 

susceptible to lipid peroxidation due to high levels of polyunsaturated fatty acids, high 

metabolic oxidative rate, high level of transition metal ions and relatively low levels of 

antioxidants [13]. It has been reported that the levels of lipid peroxidation increase before 

amyloid plaque formation in AD [9, 14, 15]. Products of lipid peroxidation that are found to 

be elevated in several brain regions of AD patients compared to control subjects include lipid 

conjugated dienes, 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE), acrolein, 

thiobarbituric acid reactive-substances (TBARS), and F2-isoprostanes [9, 16-20]. 
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Apolipoprotein D (ApoD) is a multifunctional, phylogenetically conserved glycoprotein with 

widely distributed expression in mammalian tissues [21-23]. Although it is mainly 

synthesized by glial cells in the brain, apoD may also be expressed in neurons in association 

with aging and in several pathological conditions [24, 25]. ApoD is upregulated in the brain 

under oxidative stress conditions including in aging, AD, Parkinson’s disease and 

Schizophrenia [26-31]. Several lines of evidence including the increase in apoD expression 

with AD progression [26, 29, 32], colocalisation of apoD with diffuse amyloid plaques in AD 

brain [33], and induction of apoD synthesis in hippocampal cells treated with Aβ 25-35 [34], 

raise the possibility that apoD may be upregulated as a neuroprotective response in AD. 

 

ApoD has been highlighted as a brain lipid antioxidant in previous studies. ApoD null (apoD-

/-) mice show increased sensitivity to oxidative stress whereas transgenic mice over-

expressing human apoD (h-apoDtg) show a reduction in brain lipid peroxidation levels when 

treated with paraquat as an inducer of oxidative stress [35]. Similarly, deletion of glial 

lazarillo, a homolog of apoD, reduced oxidative stress resistance in Drosophila [36], whereas 

over-expression of apoD was associated with reduced accumulation of aldehydic end-

products of lipid peroxidation in an aged Drosophila model [37]. In addition, apoD provides 

protection against kainic acid lesion in rat hippocampal neurons by inhibiting lipid 

peroxidation as assessed by reduced levels of F2-isoprostanes, 7-ketocholesterol and 4-HNE 

[38]. It is therefore plausible that apoD may act as a neuroprotectant in AD by reducing brain 

lipid peroxidation. 

 

In our previous studies we demonstrated that apoD acts as a lipid antioxidant by reducing 

lipid hydroperoxides to lipid hydroxides in a 2-electron reduction that is dependent on a 

single surface-exposed Met residue at position 93 [23]. As a consequence of this reaction, 
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apoD Met93 is converted to Met sulfoxide (MetSO). Our in vitro and in silico studies revealed 

that this modification of apoD Met93 to MetSO was found to destablilize the protein structure 

and promote self association that resulted in the formation of a stable (but non-covalent) 

homodimer [23, 39]. Interestingly, such apoD dimers were also observed in the insoluble 

fractions of postmortem hippocampal tissue homogenates derived from a small set (n=3) of 

late stage AD cases [23]. 

 

The objective of the current study was to assess a larger cohort of age-matched control and 

AD subjects (classified according to Braak staging) to determine the stage of disease at which 

apoD dimers may be formed and to examine the relationship between apoD dimer formation 

and measures of brain lipid peroxidation. 

 

 

Material and Methods 

 

Human brain tissue 

Human brain tissues were received from the New South Wales Tissue Resource Centre and 

the Sydney Brain Bank. Patient data and brains were collected for research purposes as 

approved by institutional Human Ethics Committees. The use of human brain tissue for this 

project was approved by the University of Wollongong Human Research Ethics Committee 

(HE10/327). ). Cases were screened using standardized protocols to confirm the presence of 

AD and exclude coexisting cerebrovascular and degenerative pathologies. Tissue pH was 

determined on a sample of cerebellum from each case. Braak staging of AD type pathology 

was performed on sections of the hippocampal formation and temporal cortex according to 

published criteria [40]. We confirm that all procedures involving experiments on human 
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subjects are done in accord with the Helsinki Declaration of 1975. The APOE genotype of all 

samples was determined by PCR as described previously [41]. Briefly, genomic APOE was 

amplified using the forward: TCCAAGGAGCTGCAGGCGGCGCA and reverse: 

ACAGAATTCGCCCCGGCCTGGTACACTGCCA primers and double digested with HaeII 

and AflIII. The presence of an ε4 allele was indicated by resistance to AflIII digestion, whilst 

the presence of an ε2 allele was indicated by resistance to HaeII digestion. 

 

Protein analysis - sample preparation 

Brain tissue homogenates were prepared by homogenizing ~60 mg tissue in 6 volumes of ice 

cold Tris-buffered saline (TBS) extraction buffer containing protease and phosphatase 

inhibitors using a Precellys 24 (Bertin Technologies)	
  automatic homogenizer with 1.4 mm 

ceramic beads and a setting of 6000 rpm for 2 x 30 sec. After centrifugation at 20,000 g for 

15 min at 4°C, the TBS soluble fraction was collected as the supernatant. The pellet was re-

homogenized in 4 volumes of 6M guanidine HCl (gHCl) in the Precellys homogenizer as 

above. The homogenized mixture was further incubated on a rotator at 22°C for 16 h. It was 

then centrifuged at 20,000 g for 15 min at 4°C and the supernatant was collected as the gHCl 

fraction of the samples. 

 

Western blotting 

Sample protein concentrations were determined using BCA assay and equal amounts of 

protein were separated on 12% SDS PAGE gels at 140 V for 80 min, followed by transfer at 

100 V for 30 min onto 0.45 µm nitrocellulose membranes. The membranes were blocked in 

5% skim milk in phosphate-buffered saline (PBS) for 1 h at 22°C and then probed with anti 

apoD mouse monoclonal antibody (Sapphire Bioscience 36C6 clone, 1/2000 dilution) at 4°C 

for 16 h followed by incubation with horseradish-conjugated rabbit anti mouse (Dako 1/2000 
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dilution) polyclonal antibody for 1 h at 22°C. Membranes were washed and protein was 

detected using enhanced chemiluminescence (ECL, Amersham Biosciences) and X-ray film. 

Membranes were stripped and re-probed for β-actin to confirm equal protein loading. The 

signal intensity was quantified using NIH ImageJ software. All samples were analysed by 

western blotting with mean values of the resulting data presented in the histograms and 

representative samples selected for display in the western blot panels. 

 

ELISA 

The concentration of Aβ40 and Aβ42 in brain homogenates was determined using Beta Mark 

x-40 and 42 ELISA kits (following the manufacturer’s instructions). The samples derived 

from gHCl soluble fractions were diluted 1:10 and 1:2000 for Aβ40 and for Aβ42 

quantification, respectively. For quantification of Aβ40 and Aβ42 in TBS soluble fractions, 

dilutions of 1:10 and 1:5, respectively, were used. 

 

Lipid analysis - sample preparation 

Samples for lipid analysis were prepared by homogenizing 20 mg of frozen tissue in 0.6 ml 

methanol, 0.01% (v/v) butyalted hydroxytoluene (BHT) with internal standards for GC-MS 

analysis. Homogenized fractions were divided into aliquots that were processed separately 

for analysis of conjugated dienes by HPLC or for F2-isoprostanes by GC-MS. To the aliquots 

(0.4 ml) to be used for conjugated diene analysis, (methyl-tert-butyl ether) MTBE was added 

so that the methanol to MTBE ratio was 3:10 (v/v). Sodium hydroxide (final concentration 

0.7 M) was added for hydrolysis of ester bonds and the samples were vortex mixed and 

incubated at 4°C for 16 h in a rotator. This was followed by the addition and mixing of 0.15 

M ammonium acetate (0.19 ml / ml solvent). Samples were centrifuged at 2000 g for 10 min 

at 4°C and the upper phase removed. The lower phase was re-extracted with MTBE: 
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methanol: 0.15 M ammonium acetate (20: 6: 5, v/v/v). Upper phases were pooled, dried 

under nitrogen gas and re-suspended in 200 µl methanol. Sample preparation for F2-

isoprostane analysis (200 µl) was achieved by addition of 100 µl 1M NaOH with 16 h 

incubation at 22°C on a sample mixer to hydrolyze ester bonds. This was followed by 

addition of 328 µl 1M formic acid and 2.2 ml H2O. The samples were then allowed to flow 

under gravity through solid phase extraction (SPE) columns, preconditioned with 2 ml 

methanol and followed by 2 ml 40 mM formic acid (pH 4.5). The samples were washed with 

2 ml 40 mM formic acid (pH 4.5) containing 40% (v/v) methanol, eluted from the SPE 

columns with MTBE containing 20% (v/v) methanol and 1% (v/v) formic acid and dried 

under nitrogen gas for 1-2 min. 

 

Analysis of lipid oxidation markers by HPLC and GC-MS 

Conjugated dienes and free fatty acids (40 µl aliquot) were analyzed using a 5µm, 25 x 0.46 

cm, C18 reversed phase column at a flow rate of 1 ml / min at 22°C. The mobile phase used 

was 0.1% acetic acid in H2O-acetonitrile-tetrahydrofuran (45:45:10 v/v/v) with UV234 nm 

absorbance detection. Lipid conjugated dienes are formed as a consequence of free radical-

mediated hydrogen abstraction from lipid methylene groups and subsequent molecular 

rearrangement to stabilize the resulting carbon-centered radical [42]. Lipid conjugated dienes 

are a relatively stable marker of lipid peroxidation that have been shown to be increased in 

postmortem human Alzheimer’s disease brain tissues compared to controls [43] and are also 

induced in animal models of neurodegeneration and injury [44]. 

 

The solvent extracted isoprostane fraction (see “Lipid sample preparation” above) was dried 

down under nitrogen at 37°C and derivatized with 30 µl of pentafluorobenzylbromide 

(PFBBr, 10% in acetonitrile) and 15 µl of N,N-diisopropylethylamine (DIPEA, 10% in 
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acetonitrile) at 37°C for 30 min. Excess reagents were evaporated under N2. The F2-

isoprostane PFBenzyl esters were then derivatized with 15 µl acetonitrile + 30 µl BSTFA + 

1% TMCS for 1 h at 37°C. After drying under N2 and reconstitution in 30 uL toluene, 

derivatized samples were analyzed by an Agilent 7000B triple quadrupole mass selective 

detector interfaced with an Agilent 7890A GC system gas chromatograph, equipped with an 

automatic sampler and a computer workstation. The injection port and GC-MS interface were 

kept at 270°C. Separations were carried out on a fused silica capillary column (20 m x 0.18 

mm i.d. x 0.18 µm film thickness, Restek Rxi-5ms). Helium was the carrier gas with a flow 

rate of 0.8 ml/min (average velocity = 59 cm/sec). Selected-reaction monitoring (SRM) was 

performed using the NCI mode (70eV) with Ar as the reagent gas (1.25 ml/min) and the 

collision gas (0.6 ml/min). The ion source was maintained at 150°C and the quadrupoles at 

150°C. For F2-isoprostane analysis derivatized samples (1 µl) were injected splitless into the 

GC injection port.  Column temperature was increased from 180°C to 280°C at 40°C / min 

after 1 min at 180°C, then temperature was raised to 290°C at 2°C / min, then at 40°C / min to 

305°C with a final hold for 4 min. Quantification of F2-isoprostanes was calculated by 

comparison of specific SRM transitions with their corresponding heavy isotope internal 

standards. 

 

Statistics 

Group comparisons were made using ANOVA with Fisher’s least significant difference 

(LSD) post-hoc analysis. Where specific comparisons were made between two groups a t-test 

was applied. Pearson correlations were used to assess relationships between biochemical 

parameters and linear regression analysis was used to assess the strongest correlates of apoD 

dimer formation. Variance inflation factor (VIF) values were assessed in order to quantify 

multicolinearity. VIF values greater > 5 were considered as an indicator of high 
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multicolinearity [45]. Statistical testing was performed using SPSS Statistics (version 19) 

software, IBM Company). 

 

 

Results 

 

Characterisation of AD brain samples 

Basic clinical and demographic data for the samples used in this study are provided in Table 

1. The samples were stratified into four groups of disease severity using clinically and 

pathologically defined National Institute on Aging-Reagan criteria as described previously 

[46, 47]. Thirty four samples were obtained in total including nine cases of normal control 

brain. The “severity of disease” groupings according to Braak pathology are provided in 

Table 1. There were no significant group effects for age, postmortem interval (PMI) or 

sample pH as assessed by ANOVA. Post-hoc analysis using Fisher’s LSD test revealed a 

lower average PMI in Group V/VI samples compared to both Group I/II and Group III/IV 

(both p < 0.05). There were no significant correlations between PMI and any of the 

demographic or biochemical parameters measured (data not shown) in any of the groups and 

it is therefore unlikely that PMI is a confounding factor in this study. 

 

Braak staging of disease progression is based on the distribution of neurofibrillary tangles. 

The formation of neurofibrillary tangles is a tau-mediated process and is not unique to AD; 

hence tissue concentrations of Aβ were measured as an additional biochemical marker for 

late stage AD status. An ELISA method was used to measure Aβ40 and Aβ42 in TBS-

soluble fractions of the tissue homogenates and in the TBS-insoluble fractions (that required 

treatment with 6M gHCl in order to solubilize). 
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The levels of insoluble and Aβ42 and Aβ40 in the hippocampus were significantly different 

across the stages of disease as assessed by ANOVA (both p = 0.001) as shown in Figure 1. 

Post-hoc analysis by Fisher’s LSD test indicated that hippocampal insoluble Aβ42 and Aβ40 

levels were significantly higher (p = 0.001 and p = 0.0004, respectively) in the late stage AD 

(Group V/VI) samples compared to the controls (Group 0). Levels of hippocampal soluble 

Aβ42 were also significantly different across the stages of disease as assessed by ANOVA (p 

= 0.007), where post-hoc analysis by Fisher’s LSD revealed a significant increase (p = 0.001) 

in hippocampal soluble Aβ42 levels in the late stage AD (Group V/VI) samples compared to 

the controls (Group 0). There were no significant differences detected for either Aβ42 or 

Aβ40 in the cerebellum (Fig. 1). Levels of hippocampal soluble Aβ40 did not change 

significantly when the different groups were analyzed (Fig. 1).  

 

The lack or correlation between the Braak staging and Aβ levels across AD stages is most 

likely due to differences in topographic distributions of neurofibrillary tangles and plaque 

pathology in AD. Neurofibrillary tangles (which form the basis of the Braak staging used in 

the current study) begin to appear in the allocortex of the medial temporal lobes (including 

the hippocampus) and only in the late stages of disease do they appear in the isocortical areas 

[48]. In contrast, Aβ accumulates mainly in the isocortex whereas the allocortex (including 

the hippocampus) is generally involved to a lesser extent until the final stages of disease [48, 

49]. The changes we observed in Aβ40 levels are very minor when compared to Aβ42; in 

agreement with previous studies indicating Aβ42 as the predominant pathological Aβ species 

[1]. 
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Overall, these data confirm the diagnosis of the late stage AD cases and also confirm that 

deposition of insoluble Aβ is more pronounced in the hippocampus compared to the 

cerebellum. These two regions can therefore be used to assess relative changes in affected 

versus non-affected brain regions, respectively. 

 

Hippocampal apoD expression is associated with AD Braak stage 

Previous studies have shown that apoD levels are increased in human AD brain tissues 

compared to controls [23, 26, 32, 33]. One study has also shown that the expression of apoD 

in the hippocampus increases with disease severity as assessed by Braak staging [29]. In the 

current study we first assessed apoD levels in different stages of AD in both the hippocampus 

and cerebellum. In agreement with previous observations, hippocampal TBS-soluble apoD 

levels were significantly associated (ANOVA p = 0.038) with AD Braak stage (Fig 2A). 

Post-hoc analysis by Fisher’s LSD revealed a significant increase (p = 0.006) in hippocampal 

apoD levels in the late stage AD (Group V/VI) samples compared to the controls (Group 0). 

There were no significant differences detected for apoD in the cerebellum (Fig. 2B). 

 

One of the earlier studies showing that apoD is increased in the AD hippocampus reported 

that the increase was dependent on APOE genotype, whereby AD cases who carried at least 

one ε4 allele did not show significant variations in hippocampal apoD expression [29]. 

Intriguingly, another study published in the same year showed that the increase in apoD 

levels detected in the prefrontal cortex from AD cases was not related to APOE genotype 

[32]. In our current study, the numbers of subjects expressing each of the APOE genotypes 

was not sufficiently powered to examine the impact of genotype on apoD expression across 

all groups; however, a t-test analysis comparing the four APOE ε3/4 heterozygotes in the 

control group (Group 0) samples to the five APOE ε3/4 heterozygotes in the late stage AD 
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(Group V/VI) samples indicated a significant increase in relative hippocampal apoD levels 

(Group 0, 1.00 + 0.16 versus Group V/VI, 1.90 + 0.12; values are means + SE; p = 0.003). 

This suggests that increased hippocampal apoD expression in AD is not influenced by the 

presence of a single ε4 allele. 

 

Hippocampal apoD dimerization increases in late stage AD 

In our previous study we revealed that apoD exists as a dimer in the gHCl soluble fraction of 

a relative small number (n = 3) of late stage AD hippocampal samples compared to controls 

[23]. We therefore next examined the formation of apoD dimers in association with AD 

stages. Western blot analysis revealed that apoD dimers were detected at increased levels 

(ANOVA p = 0.0164) in the AD cases (Fig. 3A). Although the ~50kDa apoD dimer band was 

occasionally detected in less severe AD cases, post-hoc analysis revealed a significant 

increase only in the Group V/VI samples (p = 0.009, p = 0.012, p = 0.012 compared to Group 

0, Group I/II and Group III/IV, respectively). We could detect only very low levels of apoD 

in the gHCl soluble fractions of the cerebellum samples and apoD dimers were also not 

reliably detected in the cerebellum (Bhatia S. and Garner B., unpublished observations). 

 

It is interesting to note that overall hippocampal apoD expression appears to increase in 

proportion to disease severity (Fig 2A), whereas the levels of apoD dimer appear to 

significantly increase only in the later stages of AD (Fig. 3A). It is also noteworthy that 

neither apoD nor apoD dimer levels appear to increase in the cerebellum (a region that is 

relatively unaffected in AD). This suggests that the altered apoD expression may be related to 

AD pathological processes. 

 

Lipid peroxidation markers increase in AD hippocampus  
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To investigate possible associations between apoD and lipid peroxidation in AD, we 

measured levels of lipid-associated conjugated dienes (by absorbance at UV234 nm) and 

levels of F2-isoprostanes (by GC-MS). Both are established methods for assessing lipid 

peroxidation in brain tissues [42]. We detected a significant increase (ANOVA p = 0.002) in 

conjugated dienes in late stage AD (Fig. 4A). Post-hoc analysis revealed a significant 

increase only in the Group V/VI samples (p = 0.001, p = 0.001, p = 0.006 compared to Group 

0, Group I/II and Group III/IV, respectively). There were no changes in conjugated dienes in 

relation to AD status in any of the cerebellum samples (Fig 4B). Levels of F2-isoprostanes 

did not differ significantly in relation to AD status in either the hippocampus or cerebellum as 

assessed by ANOVA (Fig. 5). Post-hoc analysis revealed a significant increase in 

hippocampal F2-isoprostane levels only in the Group III/IV samples (p = 0.025) compared to 

Group 0 (Fig. 5). 

 

Previous studies have suggested that markers of brain lipid peroxidation may increase in 

specific brain regions with extended PMI [50, 51]. In the present study cohort the median 

PMI was 17.5 h (20.5 + 2.8 h, mean + SE, n = 34). Importantly, PMI was not significantly 

associated with increased conjugated diene or F2-isoprostane levels (Pearson correlation 

coefficients r2 = -0.178 and 0.004, respectively). It is therefore unlikely that PMI was a 

confounding factor in our assessment of lipid peroxidation as a function of AD stage; 

however, we cannot rule out a possible global contribution of PMI to overall levels of 

conjugated dienes or F2-isoprostanes across the study cohort.  

 

Associations between hippocampal apoD dimer formation and markers of lipid peroxidation 

The data presented above indicate that apoD dimer formation is significantly higher in late 

stage AD, although clearly there are cases in other groups where the dimer was detected (Fig. 
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3). In order to understand which of the factors we have assessed correlates with apoD dimer 

levels, Pearson correlations were examined. The data presented in Table 2 indicates that lipid 

conjugated diene concentration (UV234 absorbance) was the only variable signficiantly 

correlated (p = 0.006) with apoD dimer levels. Interestingly, soluble apoD and soluble Aβ42 

were also correlated (p = 0.025 and p = 0.004, respectively) with conjugated diene 

concentration (Table 2). Levels of both insoluble and soluble Aβ42 and Aβ40 were all 

significantly intercorrelated (Table 2), whereas there were no significant correlates of F2-

isoprostanes in this analysis (Table 2). To gain additional insights into the strengths of these 

correlations, we performed linear regression analysis. 

 

Using apoD dimer as the dependent variable, the other seven variables measured (apoD 

monomer, insoluble Aβ42, soluble Aβ42, insoluble Aβ40, soluble Aβ40, conjugated dienes 

and F2-isoprostanes) were analyzed in the linear regression model. The results indicated that 

conjugated dienes were a strong predictor of apoD dimer levels (t = 3.481, p = 0.002). Both 

insoluble and soluble Aβ42 were also significant in this model (t = 2.422, p = 0.024 and t = -

2.785, p = 0.011, respectively). We measured variance inflation factor values (VIF), that 

quantify the severity of multicolinearity for these variables, and found them to be 5.861 and 

7.034, respectively. VIF values greater > 5.0 are considered as an indicator of high 

multicolinearity [45]. We therefore removed the soluble Aβ42 and soluble Aβ40 variables 

from the regression analysis to resolve the potential confounding affects of multicolinearity 

[45]. The revised model revealed that conjugated dienes were the only significant predictor of 

apoD dimer levels (t = 2.151, p = 0.041). All VIF values were < 2.6 in this analysis. 

Furthermore, when conjugated diene concentration was assigned as the dependent variable in 

this model, only apoD dimer levels were significantly correlated (t = 2.237, p = 0.034). 
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Overall this analysis suggests that conjugated diene levels are the strongest predictor of apoD 

dimer levels in the AD hippocampus. In addition, the association between apoD dimer levels 

and Aβ deposition appears to be secondary to the conjugated diene marker of lipid 

peroxidation. The F2-isoprostane marker of lipid peroxidation does not appear to correlate 

with either Aβ accumulation or apoD dimerization in this cohort of post-mortem samples. 

 

 

Discussion 

 

The data presented in this study show that soluble apoD levels increase as the severity of AD 

pathology increases. This change in apoD expression occurs in the hippocampus but not in 

the cerebellum; the latter representing an area of the brain that is relatively spared in AD. 

Interestingly, the level of the dimerized form of apoD, that we have previously shown is 

promoted as a consequence of the interaction between apoD Met93 with L-OOHs [23, 39], is 

predominantly increased in the latest stages of AD pathology. Moreover, this late increase in 

apoD dimerization appears to be more closely related to lipid conjugated diene levels (a lipid 

peroxidation marker) than it is to insoluble Aβ levels. While such associations cannot be used 

to define a precise mechanism for the increased apoD dimerization in AD, one plausible 

explanation is that during the course of AD progression lipid peroxidation begins to increase. 

This may be related to the radical formation induced by Aβ42 [12, 52] as well as several 

other pathways [53, 54]. We speculate that along with other small molecule (e.g. ascorbate, 

glutathione) and enzymatic (e.g. superoxide dismutase, glutathione peroxidase) antioxidant 

defenses, apoD upregulation represents a homeostatic response that helps to combat lipid 

peroxidation. 
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The hydrophobic patch located close to the entrance of the apoD ligand binding pocket 

contains an exposed Met93 side chain that can directly reduce radical-propagating L-OOHs 

[23, 39]. So long as this crucial Met residue can be maintained in a native state via the action 

of methionine sulfoxide reductase (MSR), the lipid antioxidant function of apoD can be 

theoretically maintained. However, if the levels of lipid peroxidation in the hippocampus 

surpass the antioxidant capacity of apoD and other antioxidant defenses, we predict that the 

steady state concentration of apoD containing Met93 sulfoxide (Met93SO) will be increased 

such that its propensity to self-associate is increased and the presence of apoD dimers in the 

insoluble fraction of hippocamapal homogenates will also increase. In this respect, apoD 

dimerization may be considered as a de facto marker of the extent of hippocampal lipid 

peroxidation. 

 

The factors that may trigger the increase in lipid peroxidation (assessed as lipid conjugated 

dienes) and apoD dimerization in late stages of AD are not clear. This could be related to 

higher levels of both soluble and insoluble Aβ42 we have detected in the Group V/VI 

samples (which could promote radical production [52]), or it may be related to an impaired 

capacity for redox cycling of apoD Met93SO back to Met93. In line with this latter suggestion, 

MSR levels are decreased by ~50% in the AD hippocampus but unchanged in the cerebellum 

[55]. 

 

Another intriguing finding in our current study relates to the apparent discrepancy when the 

lipid conjugated diene levels and F2-isoprostane levels were compared. Unexpectedly, these 

markers of lipid peroxidation were not significantly correlated either in the hippocampus 

(Table 2) or across the whole data set including the cerebellum and hippocampus (data not 

shown). The reasons for this lack of correlation are not clear. It should be noted that F2-
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isoprostanes are derived from arachidonic acid whereas lipid conjugated dienes are derived 

from all unsaturated acyl chains that have been subjected to radical attack; i.e. the methods 

are measuring different products as indices of lipid peroxidation. It is clear, however, that F2-

isprostane levels are increased in the Braak stage III/IV cases in the hippocampus while there 

were no changes in the cerebellum of the same cases (Fig 5A and Fig 5B, respectively). This 

is in general agreement with previous findings that suggest cerebrospinal fluid F2-isoprostane 

levels may reflect cerebral lipid peroxidation and thus be a useful biomarker for subjects who 

may proceed to AD [54, 56]. 

 

In summary, our studies reveal that soluble apoD levels are associated with AD Braak stage, 

whereas apoD dimer formation appears to increase predominantly in the advanced stages of 

disease. The formation of apoD dimers is closely correlated to lipid conjugated diene levels 

and occurs in the hippocampus but not in the cerebellum. These results are consistent with 

the hypothesis that apoD acts as a lipid antioxidant in the brain until lipid peroxidation 

overwhelms antioxidant capacity, at which point apoD may aggregate and accumulate in a 

dimeric form in amyloid plaques or other insoluble deposits. 
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Table 1. Human brain sample basic clinical and demographic data 
 

	
  
F, female; M, male; PMI, postmortem interval. Mean values and standard error (in 

parentheses) are listed for each group. * p <0.05 compared with Group I/II and Group II/IV 

assessed by Fisher’s LSD test post-hoc analysis. 

Sample 
ID No. 

Group 
assignment 

Braak 
stage 

Age (y) 
APOE 

genotype 
Gender PMI (h) Cause of death Tissue pH 

1 0 0 85 3/3 F 23 Pneumonia 6.44 

2 0 0 93 2/3 F 21 Cardiac failure 6.96 

3 0 0 84 3/4 F 6 Respiratory arrest 6.51 

4 0 0 66 3/4 M 23 Cardiac 6.74 

5 0 0 68 3/4 M 45 Cardiac 6.12 

6 0 0 69 3/3 M 52 Cardiac 6.95 

7 0 0 57 3/4 M 18 Cardiac 6.39 

8 0 0 64 3/3 M 17 Cardiac 6.55 

9 0 0 79 2/3 M 8 Pulmonary embolism 6.65 

   74 (4)   24 (5)  6.59 (0.09) 

10 I/II I 104 2/3 F 27 Respiratory 5.89 

11 I/II I 78 3/4 F 45 Toxicity 6.05 

12 I/II I 63 3/3 M 24 Cardiac 6.94 

13 I/II I-II 62 2/3 M 46 Cardiac 6.95 

14 I/II II 85 3/3 F 10 Respiratory 6.63 

15 I/II II 69 3/3 M 19 Cardiac 6.34 

16 I/II II 91 2/3 M 16 Pneumonia 6.52 

17 I/II II 103 3/3 M 20 Myocardial infarct 6.06 

   82(6)   26 (5)  6.42 (0.09) 

18 III/IV III 81 3/3 F 28 Respiratory 6.20 

19 III/IV III 73 3/3 F 45 Cardiac 6.86 

20 III/IV III 92 3/3 F 14 Cancer 5.60 

21 III/IV III 67 3/4 M 25 Cardiac 6.70 

22 III/IV II-IV 83 2/4 F 64 Stroke 6.31 

23 III/IV IV 98 3/3 F 6 Cardiac/Respiratory 6.70 

24 III/IV  IV 92 3/3 F 5 Pancytopaenia 6.08 

   84 (4)   27 (8)  6.35 (0.17) 

25 V/VI V 94 3/3 F 7 Cardiac arrest 6.08 

26 V/VI V 83 3/3 F 3 Uraemia 5.88 

27 V/VI V 100 3/4 F 3 Aspiration pneumonia 6.44 

28 V/VI V 98 3/3 F 11 Cerebrovascular occlusion 6.11 

29 V/VI  VI 84 3/4 F 6 Aspiration pneumonia 6.32 

30 V/VI  VI 80 3/4 F 32 Cardiorespiratory failure 6.54 

31 V/VI  VI 85 3/4 F 10 Cardiorespiratory failure 5.91 

32 V/VI  VI 68 3/4 M 23 Cardiorespiratory failure 6.00 

33 V/VI  VI 69 3/3 M 3 Colon cancer 6.73 

34 V/VI  VI 67 3/3 M 9 Cardiorespiratory failure 6.52 

   83 (4)   11 (3)*  6.25 (0.09) 
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Table 2. ApoD dimer correlations 
	
  

 ApoD  Insol. Aβ42 Insol. Aβ40 Sol. Aβ42 Sol. Aβ40 UV234 F2-Isop. 

ApoD dimer 
.263 

.146 

.253 

.162 

.182 

.318 

.136 

.458 

.038 

.834 

.482 

.006 

-.140 

.444 

ApoD  
.344 

.054 

.172 

.348 

.305 

.090 

.069 

.708 

.403 

.025 

.259 

.152 

Insol. Aβ42   
.755 

<.0001 

.868 

<.0001 

.440 

.009 

.317 

.073 

.219 

.214 

Insol. Aβ40    
.743 

<.0001 

.560 

<.0001 

.313 

.076 

.242 

.169 

Sol. Aβ42     
.623 

<.0001 

.487 

.004 

.129 

.469 

Sol. Aβ40      
.268 

.131 

-.002 

.991 

UV234       
.099 

.583 

	
  
Pearson correlations are presented as the upper value in each cell. Significance (2-tailed) is 

presented as the lower value in each cell. 
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Figure Legends 

 

Fig 1. Amyloid-β levels in the hippocampus and cerebellum. The levels of insoluble (A-B) 

and soluble (C-D) Aβ42 and Aβ40 were measured in hippocampal (black bar) and cerebellar 

(grey bar) regions of postmortem brain. Both soluble and insoluble (solubilized with 6M 

guanidine HCl) protein fractions were analyzed by ELISA. **p < 0.01 by Fischer’s LSD post 

hoc analysis between stage 0 and stage V/VI. 

 

Fig 2. Expression of apoD in soluble protein fractions. Western blotting was used to measure 

soluble apoD levels in hippocampal (A) and cerebellar (B) regions of postmortem brain. 

Representative western blots of each brain region show apoD and β-actin levels in the 

different stages of the disease. Hippocampal apoD expression is significantly associated with 

Braak stage (ANOVA p < 0.05). ** p < 0.01 by Fischer’s LSD post hoc analysis between 

stage 0 and stage V/VI. 

 

Fig 3. Expression of apoD in insoluble (guanidine HCl-extracted) protein fractions. Western 

blotting was used to measure insoluble (gHCl-solublized) apoD levels in the hippocampal 

region of postmortem brain tissues. Representative western blots show apoD and β-actin 

levels in the different stages of the disease. ** p < 0.01 by Fischer’s LSD post hoc analysis 

between stage 0 and stage V/VI. Arrows indicate position of apoD dimer. 

 

Fig 4. Tissue lipid peroxidation levels assessed as conjugated dienes. Hippocampal (A) and 

cerebellar (B) tissue samples of postmortem brain were solvent extracted and the fatty acids 

anlaysed for total conjugated diene content by HPLC with spectrophotometric absorption 

monitoring at UV 234 nm. The values represent HPLC peak area units at 234 nm / mg tissue. 
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Error bars represent ± SE. ** p < 0.01 by Fischer’s LSD post hoc analysis between Group 0 

and Group V/VI. 

 

Fig 5. Tissue lipid peroxidation levels assessed as F2-isoprostanes. Hippocampal (A) and 

cerebellar (B) tissue samples of postmortem brain were solvent extracted and analyzed for F2-

isoprostane by GC-MS. The values are means and the error bars represent ± SE. ** p < 0.05 

by Fischer’s LSD post hoc analysis between Group 0 and Group III/IV. 
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