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Abstract— Improving the safety of a wide range of launch 

and recovery operations is of great international maritime 
interest. Deterministic sea wave prediction (DSWP) is a 
relatively new branch of science that can offer such 
opportunities by predicting the actual shape of the sea 
surface and its evolution for short time in the future. Fourier 
transform technique is the main building block in DSWP, 
which requires measurements of the sea surface. 
Nonetheless, uniformly sampled measurements of the sea 
surface cannot be practically achieved for various reasons. 
Conventional X-band radars are the most realistic candidate 
to provide a low-cost convenient source of two-dimensional 
wave profile information for DSWP purposes. Ship 
movement and mechanically rotating scanning antennas are 
among sources of irregularity in sea surface sampling. This 
in turn introduces errors when traditional Fourier 
transform based wave prediction methods are used. In this 
paper we show that by modelling the radar sampling 
instants as random variables and using the estimator of 
Tarczynski and Allay to process the samples, a reliable 
solution for DSWP can be constituted.   

Keywords— DSWP, Fourier transform, random sampling, 
smeared data 

I. INTRODUCTION 
Deterministic Sea Wave Prediction (DSWP) is a relatively 

new maritime technology which aims to predict the actual 
shape of the sea surface and its evolution in a location of 
interest, around a vessel for example, typically in the timescale 
of several tens of seconds ahead [1], [2]. This new technology 
has a few applications threads which already have very 
significant client interest. Mainly, it can extend the sea state at 
which maritime operations can be carried out safely. These 
include: (a) the launch and recovery of helicopters, small 
surface craft and remotely controlled submersibles to mother 

ships, (b) cargo and personnel transfers. DSWP can achieve that 
by identifying quiescent periods that are known to exist in large 
seas where runs of consecutive waves occur with amplitudes 
significantly less than the mean [3], [4]. 

DSWP takes measurements of the sea surface profile, 
construct a linear spectral wave model, and then propagates the 
wave model in time to the location of interest, e.g. the vessel's 
site.  The spectral coefficients in the linear model are obtained 
by determining the Fourier transform over the measurements 
(spatial and temporal) window. Satellite wave measurements 
cannot provide either the required resolution or coverage, 
leaving the available sensor technologies such as: wave sensor 
buoys, scanning wave-profiling LIDAR, or ship mounted wave 
radar.  Wave buoys are not practical for ships and moving 
vessels, although they do have a research role and can provide 
accurate representation of the wave profile.  Furthermore, wave 
buoys provide time series of the wave profiles at a single point, 
which are not enough to describe highly two dimensional seas.  
Scanning wave-profiling LIDAR systems have the necessary 
functionality, but they are still at infancy, and the commercially 
available versions have a short range for DSWP purposes. So 
for suitable range, convenience and cost, X-band navigation 
radars are the most attractive sensing technology for DSWP. 
The typical wave radar data is captured using a mechanically 
rotated antenna, and hence the sampling points per scan vary in 
space and in time by up to the rotation period which is about 2-
3 s. Additionally, as more than one scan can be needed in 
building a reliable sea model, sea surface waves travel between 
scans leading to further, yet trackable, variation in the spatial 
sampling points in the data. The simplest approach is to ignore 
all the temporal and spatial variation in the collected data and 
use a classical Fourier transform, which leads to inevitable 
errors. Other solutions include a least-squares fitting of the data 
to all the spectral components simultaneously which is 
computationally prohibitive considering the size of the data and 
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the live nature of the application. In [1], we fit the data to pairs 
of sinusoidal components in a one-by-one manner and showed 
very promising results when applied to a single time-smeared 
scan.  In this paper, we provide an alternative, generalised 
solution and justification that is based on random sampling 
estimators. Fourier transform estimation from random sampling 
fits under the paradigm of Digital Alias-Free Signal Processing 
(DASP) [5], [6]. The typical objective of these random 
sampling estimators is to reduce the sampling rates below the 
required threshold of Nyquist. Generally speaking, these 
approaches rely on randomising the sampling instants in 
specific modes and tailor an unbiased Fourier transform 
estimators to process the samples. Research in this field is 
usually focused on reducing the estimation error for a given 
sampling rate [7]-[10]. In this paper, we address a different 
problem. We show by modelling the radar irregular sampling 
instants as random variables and process the collected samples 
using a Fourier transform estimator, we can create a reliable sea 
wave model which in turn can generate accurate predictions   

II. SEA WAVE MODEL AND MEASUREMENTS 
The fundamental linear oceanographic wave model of the 

sea surface, ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡) , at the coordinates 𝑥𝑥, 𝑦𝑦 , and time 𝑡𝑡  is 
given by,  

ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ℛ���𝑐𝑐𝑛𝑛,𝑞𝑞𝛼𝛼𝑛𝑛,𝑞𝑞(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
𝑁𝑁

𝑛𝑛=1

𝑄𝑄

𝑞𝑞=1

   �                (1) 

with, 
𝛼𝛼𝑛𝑛,𝑞𝑞(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) ≜ exp �−𝑗𝑗�𝑘𝑘𝑛𝑛𝑥𝑥 cos�𝜃𝜃𝑞𝑞� + 𝑘𝑘𝑛𝑛𝑦𝑦 sin�𝜃𝜃𝑞𝑞� −

  𝜔𝜔𝑛𝑛𝑡𝑡�� , (2)  
 

where 𝑐𝑐𝑛𝑛,𝑞𝑞 is the directional spectral coefficient at the wave 
number 𝑘𝑘𝑛𝑛 and its angular frequency 𝜔𝜔𝑛𝑛 in the propagation 
direction 𝜃𝜃𝑞𝑞 ,  𝑁𝑁 is the number of spectral components per 
direction, 𝑄𝑄 is the number of wave directions, and ℛ{. } is the 
real part operator. The wave number 𝑘𝑘𝑛𝑛 and its angular 
frequency 𝜔𝜔𝑛𝑛  are related by the deep water dispersion 
relationship. The directions of the wave systems �𝜃𝜃𝑞𝑞  �

𝑞𝑞=1
𝑄𝑄

are set 
to span [0,2𝜋𝜋). The wavenumbers  {𝑘𝑘𝑛𝑛 }𝑛𝑛=1𝑁𝑁  are set to uniformly 
range over the longest and shortest waves to represent. Let 𝑧𝑧 =
(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), the spectral coefficients are obtained through 

𝑐𝑐𝑛𝑛,𝑞𝑞 = � ℎ(𝑧𝑧)𝛼𝛼𝑛𝑛,𝑞𝑞(𝑧𝑧)𝑑𝑑𝑑𝑑
𝒯𝒯

,                          (3) 

where 𝒯𝒯 is a window in time and space where/when the wave 
model (1) can represent the sea surface waves. It is a trivial task 
to find the coefficients of (1) if an error-free perfect snapshot of 
the sea surface was available at a signal time instant: a classical 
Fourier transform techniques (2DFFT for computational 
efficacy) could be used. However, this is not the case for several 
reason. First, the sea surface is captured using a radar with a 
rotating antenna of a period of few seconds. Accordingly, the 
sampling points vary in space and time. Second, waves travel 
(at different speeds) during the measurements. Thus, if more 
than one scan is used in obtaining the coefficients to reduce the  

 
Figure 1: Example wave profile measurement.  The shading 
represents the sea surface elevation, according to the metre 

scale shown on the right. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Space-Time diagram for spatial measurment µ 
for waves with fastest velocity v1 and slowest velocity v2. The 
shadowed triagled area is the prediction zone with lines of slope 

v1 and v2. 
 

effect of errors in the measurements, the data will be 
nonuninform in space and time. Additionally ship movement is 
another source for irregularity. Simply ignore the sampling 
jitter and treat the radar scan data as a perfect snapshot would 
constitute a considerable source of error in the prediction as we 
show in Section IV. Figure 1 shows an example surface profile 
measured and processed by a commercial wave profiling 
system during the Golden Arrow sea trial undertaken by the 
University of Exeter and supported by the Ministry of Defense. 
The shading indicates the surface elevation, in metres, as given 
by the colourbar on the right. We can see that the sea surface 
image suffers from errors. 

It is practical and computationally efficient to choose a 
subdomain from each radar scan, where the measurements are 
most reliable. The dimensions and the relative location of the 
reliable  measurement  zone is  determined by few  factors: the 
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Figure 3.  An example of a radar measurement zone from the Golden 
Arrow sea trial.  

 
 

prevailing sea condition, radar height and characteristics, and 
the application requirements. It is usually located in the 
directions of the waves traveling from towards the radar. Based 
on these measurements, the built wave model in turn will be 
used to predict the sea surface profile at future location in time 
and space, referred to by the prediction zone. The location and 
dimensions of the prediction zone for a prediction horizon is 
determined by the Space-Time diagrams [11]. These diagrams 
yield all the necessary information about the relationship 
between the properties of the measurement process, the 
corresponding prediction zone, and available prediction 
horizon. These diagrams and their extensions show that there is 
always a user defined compromise to be achieved between 
prediction zone/horizon and accuracy. The essential features of 
this information propagation process are shown in Figure 2 of 
a single polychromatic wave systems along the radar range 𝑟𝑟 
(𝑟𝑟 = 0 is where waves are coming from). For the case of two-
dimensional linear seas, the worst case parameters are extracted 
from sets of such diagrams taken over the dominant wave 
directions prevailing at the time. In Figure 3, we show an 
example of the measurement zone from the Golden Arrow sea 
trial, where the waves were mainly travelling from the west 
towards the ship. The ship/radar is in the centre, and the 
measurement zone is the square on its left. 

III.  RANDOM SAMPLING ESTIMATION 
From the radar measurements, we assume M sequence of 

temporal-spatial sampling points {𝑧𝑧𝑚𝑚}𝑚𝑚=1
𝑀𝑀  , where 𝑧𝑧𝑚𝑚 =

(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑡𝑡𝑚𝑚) are available to us along with the data samples of 
the sea elevation{ℎ(𝑧𝑧𝑚𝑚)}𝑚𝑚=1

𝑀𝑀 . To obtain the spectral coefficient 
𝑐𝑐𝑛𝑛,𝑞𝑞 in (1), we assume that {𝑧𝑧𝑚𝑚}𝑚𝑚=1

𝑀𝑀  are i.i.d random variables 
with 𝑝𝑝𝑛𝑛,𝑞𝑞(𝑧𝑧) distribution function over the measurement zone 
𝒯𝒯, and construct a Fourier transform like estimator as:   

𝑐̂𝑐𝑛𝑛,𝑞𝑞 =
1
𝑀𝑀
�

𝛼𝛼𝑛𝑛,𝑞𝑞(z𝑚𝑚)ℎ𝑠𝑠(z𝑚𝑚)
𝑝𝑝𝑛𝑛,𝑞𝑞(𝑧𝑧𝑚𝑚)

𝑀𝑀

𝑚𝑚=1

.                        (4) 

We note that the expectation of the estimator (4) is identical 
with the target (2): 

𝐸𝐸�𝑐̂𝑐𝑛𝑛,𝑞𝑞� =
1
𝑀𝑀
� � 𝛼𝛼𝑛𝑛,𝑞𝑞(𝑧𝑧)ℎ(𝑧𝑧)𝑑𝑑𝑑𝑑

𝒯𝒯

𝑀𝑀

𝑚𝑚=1

, 

= � ℎ(𝑧𝑧)𝛼𝛼𝑛𝑛,𝑞𝑞(𝑧𝑧)𝑑𝑑𝑑𝑑
𝒯𝒯

= 𝑐𝑐𝑛𝑛,𝑞𝑞 ,                 (5) 

where 𝐸𝐸[. ] is the expectation operator. Thus, 𝑝𝑝𝑛𝑛,𝑞𝑞(𝑧𝑧)must be 
determined to achieve (5), and hence 𝑐̂𝑐𝑛𝑛,𝑟𝑟 becomes an unbiased 
estimator of 𝑐𝑐𝑛𝑛,𝑞𝑞 . As wave components travel at different 
speeds, 𝑝𝑝𝑛𝑛,𝑞𝑞(𝑧𝑧) is a wavenumber-dependent function and it can 
be configured over the measurement window in each wave 
direction in polar coordinates as follows. Let 𝑟𝑟 ∈ (0,𝑅𝑅] be the 
radial range of the measurement zone where 𝑟𝑟 = 0 represents 
the point in the scan where new waves are coming from, and 𝑅𝑅 
is the radial length of the zone, in the direction 𝜑𝜑. The function 
depends on the number of scans 𝑆𝑆 used in (4) and follows a 
staircase function (a function composed of a set of equally 
spaced jumps of equal length) in each direction over the 
range  𝑟𝑟 ∈ (0, 𝑆𝑆𝐷𝐷𝑛𝑛] , where 𝐷𝐷𝑛𝑛 = 𝜔𝜔𝑛𝑛/2𝑘𝑘𝑛𝑛 is the distance 
travelled by the waves at wave component at (𝜔𝜔𝑛𝑛, 𝑘𝑘𝑛𝑛) : 
𝑝𝑝𝑛𝑛,𝑞𝑞(𝑟𝑟,𝜑𝜑) = ⌈𝑟𝑟 𝐷𝐷𝑛𝑛⁄ ⌉ 𝑆𝑆‖𝒯𝒯‖⁄ ,  and 𝑝𝑝𝑛𝑛,𝑞𝑞(𝑟𝑟,𝜑𝜑) = 1/𝑆𝑆‖𝒯𝒯‖  for 
(𝑆𝑆𝐷𝐷𝑛𝑛 ,𝑅𝑅], where ‖𝒯𝒯‖ is the size of the observation window. If 
a single scan is used, and the ship is stationary, 𝑝𝑝𝑛𝑛,𝑞𝑞(𝑟𝑟,𝜑𝜑) will 
be a uniform function of value 1/‖𝒯𝒯‖.  

IV. NUMERICAL RESULTS 
The aim of this section is to compare the prediction results 

of the estimator (4) with the traditional two-dimensional 
Fourier transform based method where the data is 
assumed/approximated to be perfectly captured with no 
temporal variation. For simple illustration of the capability of 
(4) at handling the unevenly collected data, we use one radar 
scan with varying rotation scanning time. The ship is assumed 
stationary.  The comparison is conducted using numerical 
simulations of various sea states. JONSWAP spectra are used 
here to simulate the sea surface with peakedness parameter of 
3.3 and a spread function of 12 in the original Cartwright form 
leading to directional spectra spread under one half plane. The 
standard linear method of adding a large number of sinusoidal 
components is used to generate the data. The phases were 
generated from a uniform random distribution over [0,2𝜋𝜋) and 
in order to obtain waves with the correct randomness, the 
amplitudes of the components were obtained by sampling from 
a frequency dependent Rayleigh distribution [12]. The variance 
of the Rayleigh distribution at each frequency was obtained 
from the spread JONSWAP power density spectra.   

The sea states are described in terms of the wave spectral 
parameters: the significant wave height ℋ and mean period 𝒫𝒫 
in the first columns of Table 1 and 2. The radar rotation period 
∆𝑡𝑡 is set to 2 and 3 s. The simulated data covers a 2 km radius 



circle with an angular resolution of 0.5 deg and range resolution 
of 3 m. The simulated radar measurements vary in time and 
space. However, no other sources of error such as shadowing 
and measurement noise are introduced to the synthetic data.  

Each Experiment was run for 1 hour, predicting the wave 
profile for prediction horizon of [0,120] s, every minute. The 
correlation and the normalized error between the predicted and 
the actual wave profiles are determined. For each experiment 
the sea state is stationary and therefore it was deemed sufficient 
to depict the results in terms of the mean correlation 𝐴𝐴 and the 
mean normalised RMS error 𝐶𝐶 in Table 1 and 2. Under all the 
sea conditions the random sampling estimators using the correct 
temporal and spatial sampling locations performs significantly 
better than the traditional two-dimensional Fourier approach 
that assume a spatial snapshot of the surface not accounting for 
the time variation. The approximation approach is worse for 
longer radar rotation period and shorter wave periods as 
expected because of the worsen snapshot approximation. 
However, there is no effect on the random sampling estimator.  

 
 
 

Table 1. The performance of the traditional Fourier technique. 

Sea State  
∆𝑡𝑡=2 s ∆𝑡𝑡= 3 s 

𝐴𝐴,  
𝐶𝐶 

𝐴𝐴,  
𝐶𝐶 

ℋ= 4.7 m 
𝒫𝒫= 8.7 sec 

0.91, 
0.41 

0.78, 
 0.61 

ℋ= 6 m 
𝒫𝒫 = 9.4 sec 

0.92,  
0.39 

0.86, 
0.52 

ℋ= 6.7 m 
𝒫𝒫 = 9.7 sec 

0.94,  
0.33 

0.85,  
0.55 

ℋ = 7.3 m  
𝒫𝒫 = 10 sec 

0.94,  
0.34 

0.83,  
0.57 

 

Table 2. The performance of the random sampling estimator. 

Sea State  
∆𝑡𝑡=2 s ∆𝑡𝑡= 3 s 

𝐴𝐴,  
𝐶𝐶 

𝐴𝐴,  
𝐶𝐶 

ℋ= 4.7 m 
𝒫𝒫= 8.7 sec 

0.99,  
0.11 

0.98,  
0.13 

ℋ= 6 m 
𝒫𝒫 = 9.4 sec 

0.99,  
0.10 

0.99,  
0.08 

ℋ= 6.7 m 
𝒫𝒫 = 9.7 sec 

0.99,  
0.12 

0.99,  
0.11 

ℋ = 7.3 m  
𝒫𝒫 = 10 sec 

0.99,  
0.08 

0.99,  
0.13 
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