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Abstract

In this paper we construct OD(4pqr(q+1); pqr, pqr, pqr, pqr, pqr+1, pqr+1,
pqr+1, pqr+1) for each core order q ≡ 3(mod 4), r ≥ 0 or q = 1, p odd,
p ≤ 21 and p ∈ {25, 49}, and COD(2qr(q + 1); qr, qr, qr+1, qr+1) for any
prime power q ≡ 1(mod 4) (including q = 1), r ≥ 0.

1 Introduction

An orthogonal design (OD) X of order n and type (s1, . . . , sm), si positive integers,
is an n× n matrix with entries {0,±x1, . . . ,±xm} (the xi are commuting indetermi-
nates) satisfying

XXT = (
m∑

i=1

six
2
i )In,

where In is the identity matrix of order n. This is denoted by OD(n; s1, . . . , sm).
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Such generically orthogonal matrices have played a significant role in the con-
struction of Hadamard matrices (see, e.g., [3], [6]) and they have been extensively
used in the study of weighing matrices (e.g. [3] and [8]).

Since Baumert and Hall [9] gave the first example of Baumert-Hall arrays, or
OD(4t; t, t, t, t), and Plotkin [7] defined Plotkin arrays, or OD(8t; t, t, t, t, t, t, t, t), to
construct Hadamard matrices, many research results have been published for T -
matrices that are used in the construction of Plotkin arrays (see [3], [5], [9], [10]).

Turyn [11] introduced the notion of a complex Hadamard matrix, i.e., an n × n
matrix C whose entries are chosen from {±1,±i} and satisfy CC∗ = nIn (∗ is con-
jugate transpose). He further showed how such matrices could be used to construct
Hadamard matrices, and gave several examples. Further examples of such matrices
are given in [3] and [4].

For a complex analogue of orthogonal designs there are several possible general-
izations; we choose the one which gives real orthogonal designs as a special case.

A complex orthogonal design (COD) [4] of order n and type (s1, . . . , sm) (si

positive integers) on the real commuting variables x1, . . . , xm is an n × n matrix X,
with entries chosen from {ε1x1, . . . , εmxm : εi a fourth root of 1} satisfying

XX∗ = (

m∑
i=1

six
2
i )In.

For further discussion we need the following definitions from [6].

Definition 1 [Amicable Matrices; Amicable Set] Two square real matrices of
order n, A and B, are said to be amicable if ABT − BAT = 0.

A set {A1, . . . , A2n} of square real matrices is said to be an amicable set if

n∑
i=1

(A2i−1A
T
2i − A2iA

T
2i−1) = 0.

It is easy to generalize an amicable set to the case of square complex matrices.
For this, we just need to replace AT by A∗, the conjugate transpose of A.

Definition 2 [T -matrices] (0,±1) type 1 matrices T1, T2, T3 and T4 of order n are
called T -matrices if the following conditions are satisfied:

(a) Ti ∗ Tj = 0, i �= j, 1 ≤ i, j ≤ 4, where ∗ denotes Hadamard product;

(b)
∑4

i=1 TiT
T
i = nIn.

T -matrices can be used to construct orthogonal designs (see [1]).
The following definition was first used by Holzmann and Kharaghani in [5].

Definition 3 [Weak amicable] The T -matrices T1, T2, T3 and T4 are said to be
weak amicable if

T1(T3 + T4)
T + T2(T3 − T4)

T = (T3 + T4)T
T
1 + (T3 − T4)T

T
2 .
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Definition 4 [Core] Let Q be a matrix of order n, with zero diagonal and all other
elements ±1 satisfying

QQT = nIn − Jn, QJn = JnQ = 0,

where Jn is the matrix of order n, consisting entirely of 1’s. Further if n ≡ 1 (mod 4),
QT = Q, and if n ≡ 3 (mod 4), then QT = −Q. Here Q is called the core and n is
the core order.

If H = In +K is an Hadamard matrix of order n with KT = −K, we call it skew
type Hadamard matrix.

Here we rewrite the following theorem as

Theorem 1 ([12]) If there exists a skew type Hadamard matrix of order q +1, then
there exists a core of order q.

It is well-known that if q +1 = 2tn1 . . . ns, each ni of the form pr +1 ≡ 0(mod 4),
and p is prime, then q is a core order. Moreover, if q ≡ 3 (mod 4) is a core order,
then qr is a core order for any odd r ≥ 1 (see [9], p. 497).

In Section 2 we give an infinite class of OD with 8 variables. In Section 3 we
construct several families of COD with 4 variables. In Section 4 we construct weak
amicable T -matrices.

2 The construction of OD

The Goethals-Seidel (or Wallis-Whiteman) array has been proven to be a very useful
tool for construction of orthogonal designs. Such arrays are essential for construction
of orthogonal designs with more than four variables.

For convenience we need following definition:

Definition 5 [Additive property] A set of matrices {B1, . . . , Bm} of order n with
entries in {0,±x1, . . . ,±xk} is said to satisfy the additive property, with weight∑k

i=1 six
2
i , if

m∑
i=1

BiB
T
i = (

k∑
i=1

six
2
i )In. (1)

Kharaghani [6] gave an infinite number of arrays which are suitable for any ami-
cable set of 8 type 1 matrices. Here suitable means a set of matrices satisfying the
additive property. If one substitutes the matrices in an orthogonal design, or the
Goethals-Seidel array, one can get an orthogonal design. We rewrite the following
theorems without proof.

Theorem 2 ([6]) There is an 8 × 8 array which is suitable to make an 8n × 8n
orthogonal matrix for any amicable set of 8 type 1 matrices of order n satisfying an
additive property.
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Theorem 3 ([6]) For each prime power q ≡ 3 (mod 4) there is an array suitable
for any amicable set of eight matrices Ai satisfying

4∑
i=1

(A2i−1A
T
2i + A2iA

T
2i−1) = cIq+1,

where c is a constant expression.

More general results are given in [2]. As an application we give an example of
such an OD.

If A is a circulant matrix of order n with the first row (a1, . . . , an), we denote it
by

A = circ(a1, . . . , an).

Example 1 Let x1, x2, x3, x4 and x5 be real commuting variables and

A1 = circ(x1, x2, x3, x4,−x4,−x3, x2), A2 = circ(−x1, x2, x3,−x4, x4,−x3, x2),
A3 = circ(x1,−x2, x3,−x4, x4,−x3,−x2), A4 = circ(x1, x2,−x3,−x4, x4, x3, x2),
A5 = circ(x5, x2, x3, x4, x4, x3,−x2), A6 = circ(−x5, x2, x3, x4, x4, x3,−x2),
A7 = circ(x5,−x2, x3,−x4,−x4, x3, x2), A8 = circ(−x5,−x2, x3,−x4,−x4, x3, x2).

It is easy to verify that

4∑
i=1

(A2i−1A
T
2i − A2iA

T
2i−1) = 0 and

8∑
i=1

AiA
T
i = (4(x2

1 + x2
5) + 16(x2

2 + x2
3 + x2

4))I7.

From the proof of Theorem 2, using the method in [6], one can construct an OD(56;
4, 4, 16, 16, 16).

Theorem 4 Let q ≡ 3 (mod 4) be a core order. Then there is an OD(4qr(q +
1); qr, qr, qr, qr, qr+1, qr+1, qr+1, qr+1) for any integer r ≥ 0.

Proof. Let Q be a core of order q, and let a1, . . . , a8 be real commuting variables.
Set

A2i−1(0) = a2i, A2i(0) = a2i−1, i = 1, 2, 3, 4.

It is clear that, as Ai(0) are commuting variables,

A1(0), . . . , A8(0) are type 1 ,

A2i−1(0)AT
2i(0) = A2i(0)AT

2i−1(0), i = 1, 2, 3, 4,

and (with q0 = 1),

A2i−1(0)AT
2i−1(0) + qA2i(0)AT

2i(0) = q0(qa2
2i−1 + a2

2i)Iq0 , i = 1, 2, 3, 4.
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Suppose that for r ≥ 1 we have

A1(r − 1), . . . , A8(r − 1) are all type 1

A2i−1(r − 1)AT
2i(r − 1) = A2i(r − 1)AT

2i−1(r − 1), and

A2i−1(r − 1)AT
2i−1(r − 1) + qA2i(r − 1)AT

2i(r − 1) = qr−1(qa2
2i−1 + a2

2i)Iqr−1 ,

i = 1, 2, 3, 4.

Write

A2i−1(r) = Jq × A2i(r − 1), A2i(r) = Iq × A2i−1(r − 1) + Q × A2i(r − 1),

where × is the Kronecker product. Then A1(r), . . . , A8(r) are type 1 of size qr.
It is easy to verify that

A2i−1(r)A
T
2i(r) = A2i(r)A

T
2i−1(r),

A2i−1(r)A
T
2i−1(r) + qA2i(r)A

T
2i(r) = qr(qa2

2i−1 + a2
2i)Iqr , i = 1, 2, 3, 4.

Now let Bi of size (q + 1)qr be given by

Bi = Iq+1 × A2i−1(r) + K × A2i(r), i = 1, 2, 3, 4, K =

[
0 eT

−e Q

]
,

where eT = (1, . . . , 1) is a row vector with q components.
Then B1, B2, B3 and B4 are of type 1 and

4∑
i=1

BiB
T
i =

4∑
i=1

qr(qa2
2i−1 + a2

2i)Iqr(q+1).

From Theorem 3 it follows that there is an OD(4qr(q + 1); qr, qr, qr, qr, qr+1, qr+1,
qr+1, qr+1). �

Note that Corollary 5 of [6] is a special case of Theorem 4 with r = 0.
If there are type 1 T -matrices of order n, then there exist an OD(4n; n, n, n, n)

(see [9]). Further, from [5], weak amicable sets can be used to get the following.

Lemma 1 For p odd, 1 ≤ p ≤ 21, p ∈ {25, 49}, there exists an OD(8p; p, p, p, p,
p, p, p, p).

Proof. For each p ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 49}, there exist T -matrices
T1, T2, T3 and T4 of order p satisfying weak amicability.

The explicit construction of such T -matrices of these orders can be found in
Table 1 of [5] and the Appendix of this paper. From Theorem 5 and Corollary 6 of
[5], there exist OD(8p; p, p, p, p, p, p, p, p). �

Theorem 5 Let T1, T2, T3 and T4 be T -matrices of order p with weak amicability.
Then there is an OD(4pqr(q + 1); pqr, pqr, pqr, pqr, pqr+1, pqr+1, pqr+1, pqr+1) for each
core order q ≡ 3 (mod 4) and r ≥ 0.
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Proof. Write

f(a, b, c, d) = T1a + T2b + T3c + T4d.

Here a, b, c and d are real commuting variables. Let A1, . . . , A8 be defined as follows:

A1 = f(x1, x2, x3, x4), A2 = f(−x8,−x7, x6, x5),
A3 = f(x2,−x1, x4,−x3), A4 = f(x7,−x8,−x5, x6),
A5 = f(x3,−x4,−x1, x2), A6 = f(x5, x6, x7, x8),
A7 = f(x4, x3,−x2,−x1), A8 = f(x6,−x5, x8,−x7),

where x1, . . . , x8 are real commuting variables. Set

A2i(0) = A2i−1, A2i−1(0) = A2i, i = 1, 2, 3, 4.

For r ≥ 1 let

A2i−1(r) = Jq × A2i(r − 1),

A2i(r) = Iq × A2i−1(r − 1) + Q × A2i(r − 1), i = 1, 2, 3, 4,

where Q is a square matrix of order q defined as in Theorem 4. Replacing

A2i−1(r)A
T
2i(r) = A2i(r)A

T
2i−1(r),

A2i−1(r)A
T
2i−1(r) + qA2i(r)A

T
2i(r) = qr(qa2

2i−1 + a2
2i)Iqr , i = 1, 2, 3, 4, r ≥ 0,

by

4∑
i=1

(A2i−1(r)A
T
2i(r) − A2i(r)A

T
2i−1(r)) = 0,

4∑
i=1

(A2i−1(r)A
T
2i−1(r) + qA2i(r)A

T
2i(r)) = pqr

4∑
i=1

(qx2
i + x2

i+4)Ipqr ,

respectively, and repeating the procedure of the proof of Theorem 4, one can obtain
the theorem. �

Corollary 1 For p odd, 1 ≤ p ≤ 21 and p ∈ {25, 49}, there exists an OD(8pqr(q +
1); pqr, pqr, pqr, pqr, pqr+1, pqr+1, pqr+1, pqr+1) with each core order q ≡ 3 (mod 4)
and integer r ≥ 0.

3 The construction of COD

In this section we give several infinite classes of COD.

Theorem 6 There exists a COD(2qr(q + 1); qr, qr, qr+1, qr+1) for each prime power
q ≡ 1 (mod 4) and r ≥ 0.
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Proof. Let Q be the symmetric core of order q ≡ 1 (mod 4).
Now let

A2i−1(0) = a2i−1, A2i(0) = a2i, i = 1, 2,

where a1, a2, a3 and a4 are real commuting variables. Note that q0 = 1. It is clear
that

A2i−1(0)A∗
2i(0) = A2i(0)A∗

2i−1(0),

A2i−1(0)A∗
2i−1(0) + qA2i(0)A∗

2i(0) = q0(a2
2i−1 + qa2

2i)Iq0 , i = 1, 2,

Ai(0)Aj(0) = Aj(0)Ai(0), 1 ≤ i, j ≤ 4.

Suppose that for r ≥ 1 we have

A2i−1(r − 1)A∗
2i(r − 1) = A2i(r − 1)A∗

2i−1(r − 1),

A2i−1(r − 1)A∗
2i−1(r − 1) + qA2i(r − 1)A∗

2i(r − 1) = qr−1(a2
2i−1 + qa2

2i)Iqr−1 ,

i = 1, 2,

Ai(r − 1)Aj(r − 1) = Aj(r − 1)Ai(r − 1),

1 ≤ i, j ≤ 4.

Write

A2j−1(r) = Jq × A2j(r − 1), A2j(r) = Iq × A2j−1(r − 1) + iQ × A2j(r − 1),

i =
√−1, j = 1, 2. It follows that

A2i−1(r)A
∗
2i(r) = A2i(r)A

∗
2i−1(r),

A2i−1(r)A
∗
2i−1(r) + qA2i(r)A

∗
2i(r) = qr(a2

2i−1 + qa2
2i)Iqr , i = 1, 2,

Ai(r)Aj(r) = Aj(r)Ai(r), 1 ≤ i, j ≤ 4.

Let

K =

[
0 eT

e Q

]
.

Put
Fj = Iq+1 × A2j−1(r) + iK × A2j(r), i =

√−1, j = 1, 2.

We have

FjF
∗
j = qr(a2

2j−1 + qa2
2j)Iqr(q+1), j = 1, 2,

F1F2 = F2F1.

Finally, let

X =

(
F1 F2

−F ∗
2 F ∗

1

)
.

Then X is a COD(2qr(q + 1); qr, qr, qr+1, qr+1), as required. �
From the proof of Theorem 6 we can obtain the following theorem.

Theorem 7 There is a COD(qr(q+1); qr, qr+1) for each prime power q ≡ 1 (mod 4)
and r ≥ 0.
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4 The construction of weak amicable T -matrices

It is convenient to use the group ring Z[G] of the group G of order p over the ring
Z of rational integers with the addition and multiplication. Elements of Z[G] are of
the form

a1g1 + a2g2 + · · · + apgp, ai ∈ Z, gi ∈ G, 1 ≤ i ≤ p.

In Z[G] the addition, +, is given by the rule(∑
g

a(g)g

)
+

(∑
g

b(g)g

)
=
∑

g

(a(g) + b(g))g.

The multiplication in Z[G] is given by the rule(∑
g

a(g)g

)(∑
h

b(h)h

)
=
∑

k

(∑
gh=k

a(g)b(h)

)
k.

For any subset A of G, we define ∑
g∈A

g ∈ Z[G],

and by abusing the notation we will denote it by A.
Let a set {X1, . . . , X8} be a C-partition of an abelian additive group G of order

p, i.e.,
Xi ⊂ G, Xi ∩ Xj = ∅, i �= j,

and
8∑

i=1

Xi = G,
8∑

i=1

XiX
(−1)
i = p +

4∑
i=1

(
XiX

(−1)
i+4 + Xi+1X

(−1)
i

)
,

where the equations above hold in the group ring Z[G]; (see [13]).
For any A ⊂ G, set

I(A) = (aij)1≤i,j≤n , aij =

{
1, if gj − gi ∈ A,
0, otherwise,

where g1, . . . , gp are elements of G in any order. That is, I(A) is the (0, 1) incidence
matrix of A of type 1. Now let

Ti = I(Xi) − I(Xi+4), i = 1, 2, 3, 4;

then T1, T2, T3 and T4 are T -matrices of order p.
Let

∑
g a(g)g ∈ Z[G] where a(g) ∈ Z and g ∈ G. If, for any g ∈ G, we have

a(g) = a(−g), then we call
∑

g a(g)g symmetric in the group ring Z[G].
It is clear that T -matrices T1, T2, T3 and T4 of order p satisfy weak amicability,

if and only if T1(T3 + T4)
T + T2(T3 − T4)

T is symmetric, and if and only if (X1 −
X5)(X

(−1)
3 −X

(−1)
7 + X

(−1)
4 −X

(−1)
8 ) + (X2 − X6)(X

(−1)
3 −X

(−1)
7 −X

(−1)
4 + X

(−1)
8 ) is

symmetric in the group ring Z[G].
The following theorem and corollary will simplify the verification of weak amica-

bility in some cases.
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Theorem 8 Let G be an abelian group of order n and let {X1, . . . , X8} be a C-
partition of G. If both X1 −X5 + X2 −X6 and X3 −X7 + X4 −X8 are symmetric in
the group ring Z[G], then there exist T -matrices of order n satisfying weak amicability

if and only if (X2 − X6)(X
(−1)
4 − X

(−1)
8 ) is also symmetric in the group ring Z[G].

Using the same assumptions as in Theorem 8, we have the following corollary.

Corollary 2 If X4 = X8 = ∅, then there exist T -matrices of order n satisfying weak
amicability.

Appendix

Now we give decomposition of the sum of four squares and the new sets of T -matrices
which have weak amicability for p = 9, 25, 49. The values 1 ≤ p ≤ 21 are given in
Holtzmann and Kharaghani [5].

p = 9 = 32 + 02 + 02 + 02, Q1 = {0, 1, x + 1}, Q2 = {2} − {x + 2},
Q3 = {2x} − {2x + 2}, Q4 = {2x + 1} − {x}.

p = 25 = 52 + 02 + 02 + 02, Q1 = {0} − E0 ∪ E1, Q2 = E2 − E6, Q3 = E3 − E7,
Q4 = E4 − E5,
where Ei = {g8j+i : j = 0, 1, 2}, i = 0, . . . , 7},
and g = x + 1(mod x2 − 3, mod 5) is a generator

of GF(25).
p = 49 = 72 + 02 + 02 + 02, Q1 = {0} ∪ E0 ∪ E1 ∪ E6 ∪ E12 − E3 ∪ E7,

Q2 = E4 ∪ E10 ∪ E15 − E8 ∪ E11 ∪ E13,
Q3 = E9 − E2, Q4 = E5 − E14, where
Ei = {g16j+i : j = 0, 1, 2}, i = 0, . . . , 15, and
g = x + 2 (mod x2 + 1, mod 7) is a generator

of GF(49).

Remark. Holzmann and Kharaghani [5] have given constructions of weak amicable
T -matrices of order 9 in Z9 and for 9 = 22 + 22 + 12 + 02, However, our construction
is given in GF(9) and for 9 = 32. These constructions are different in essence.
Conjecture ([5]) There exist infinite orders of T -matrices satisfying weak amica-
bility for all odd integers.
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