University of Wollongong

Research Online

Faculty of Engineering and Information Sciences - Papers: Part A

Faculty of Engineering and Information Sciences

Metadata, citation and similar papers at core.ac.uk

2013

CORE

Provided by Research Online

Some new constructions of orthogonal designs

Tianbing Xia University of Wollongong, txia@uow.edu.au

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Mingyuan Xia Central China Normal University, xiamy@mail.ccnu.edu.cn

Shangli Zhang Beijing Jiaotong University, shlzhang@center.njtu.edu.cn

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Xia, Tianbing; Seberry, Jennifer; Xia, Mingyuan; and Zhang, Shangli, "Some new constructions of orthogonal designs" (2013). *Faculty of Engineering and Information Sciences - Papers: Part A*. 2258. https://ro.uow.edu.au/eispapers/2258

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Some new constructions of orthogonal designs

Abstract

In this paper we construct OD(4pq^r(q+1); pq^r, pq^r, pq^r, pq^r, pq^{r+1}, pq^{r+1}, pq^{r+1}, pq^{r+1}, pq^{r+1}) for each core order q $\equiv 3 \pmod{4}$, $r \geq 0$ or q = 1, p odd, $p \leq 21$ and $p \in \{25, 49\}$, and COD(2q^r(q + 1); q^r, q^r, q^{r+1}, q^{r+1}) for any prime power $q \equiv 1 \pmod{4}$ (including q = 1), $r \geq 0$.

Keywords

era2015, constructions, designs, orthogonal

Disciplines

Engineering | Science and Technology Studies

Publication Details

Xia, T., Seberry, J., Xia, M. & Zhang, S. (2013). Some new constructions of orthogonal designs. Australasian Journal of Combinatorics, 55 121-130.

Some new constructions of orthogonal designs

TIANBING XIA JENNIFER SEBERRY

School of CS and SE, Informatics University of Wollongong NSW 2522 Australia txia@uow.edu.au j.seberry@uow.edu.au

Mingyuan Xia

School of Mathematics and Statistics Central China Normal University Wuhan, Hubei 430079 China xiamy@mail.ccnu.edu.cn

Shangli Zhang

School of Science Beijing Jiaotong University Beijing China shlzhang@center.njtu.edu.cn

Abstract

In this paper we construct $OD(4pq^r(q+1); pq^r, pq^r, pq^r, pq^r, pq^{r+1}, pq^{r+1}, pq^{r+1}, pq^{r+1}, pq^{r+1})$ for each core order $q \equiv 3 \pmod{4}$, $r \geq 0$ or q = 1, p odd, $p \leq 21$ and $p \in \{25, 49\}$, and $COD(2q^r(q+1); q^r, q^r, q^{r+1}, q^{r+1})$ for any prime power $q \equiv 1 \pmod{4}$ (including q = 1), $r \geq 0$.

1 Introduction

An orthogonal design (OD) X of order n and type (s_1, \ldots, s_m) , s_i positive integers, is an $n \times n$ matrix with entries $\{0, \pm x_1, \ldots, \pm x_m\}$ (the x_i are commuting indeterminates) satisfying

$$XX^T = (\sum_{i=1}^m s_i x_i^2) I_n,$$

where I_n is the identity matrix of order *n*. This is denoted by $OD(n; s_1, \ldots, s_m)$.

Such generically orthogonal matrices have played a significant role in the construction of Hadamard matrices (see, e.g., [3], [6]) and they have been extensively used in the study of weighing matrices (e.g. [3] and [8]).

Since Baumert and Hall [9] gave the first example of Baumert-Hall arrays, or OD(4t; t, t, t, t), and Plotkin [7] defined Plotkin arrays, or OD(8t; t, t, t, t, t, t, t, t), to construct Hadamard matrices, many research results have been published for *T*-matrices that are used in the construction of Plotkin arrays (see [3], [5], [9], [10]).

Turyn [11] introduced the notion of a complex Hadamard matrix, i.e., an $n \times n$ matrix C whose entries are chosen from $\{\pm 1, \pm i\}$ and satisfy $CC^* = nI_n$ (* is conjugate transpose). He further showed how such matrices could be used to construct Hadamard matrices, and gave several examples. Further examples of such matrices are given in [3] and [4].

For a complex analogue of orthogonal designs there are several possible generalizations; we choose the one which gives real orthogonal designs as a special case.

A complex orthogonal design (COD) [4] of order n and type (s_1, \ldots, s_m) $(s_i$ positive integers) on the real commuting variables x_1, \ldots, x_m is an $n \times n$ matrix X, with entries chosen from $\{\varepsilon_1 x_1, \ldots, \varepsilon_m x_m : \varepsilon_i \text{ a fourth root of } 1\}$ satisfying

$$XX^* = (\sum_{i=1}^m s_i x_i^2) I_n.$$

For further discussion we need the following definitions from [6].

Definition 1 [Amicable Matrices; Amicable Set] Two square real matrices of order n, A and B, are said to be *amicable* if $AB^T - BA^T = 0$.

A set $\{A_1, \ldots, A_{2n}\}$ of square real matrices is said to be an amicable set if

$$\sum_{i=1}^{n} (A_{2i-1}A_{2i}^{T} - A_{2i}A_{2i-1}^{T}) = 0.$$

It is easy to generalize an amicable set to the case of square complex matrices. For this, we just need to replace A^T by A^* , the conjugate transpose of A.

Definition 2 [*T*-matrices] $(0, \pm 1)$ type 1 matrices T_1, T_2, T_3 and T_4 of order *n* are called *T*-matrices if the following conditions are satisfied:

(a) $T_i * T_j = 0, i \neq j, 1 \leq i, j \leq 4$, where * denotes Hadamard product;

(b)
$$\sum_{i=1}^{4} T_i T_i^T = n I_n$$
.

T-matrices can be used to construct orthogonal designs (see [1]).

The following definition was first used by Holzmann and Kharaghani in [5].

Definition 3 [Weak amicable] The *T*-matrices T_1 , T_2 , T_3 and T_4 are said to be weak amicable if

$$T_1(T_3 + T_4)^T + T_2(T_3 - T_4)^T = (T_3 + T_4)T_1^T + (T_3 - T_4)T_2^T.$$

Definition 4 [Core] Let Q be a matrix of order n, with zero diagonal and all other elements ± 1 satisfying

$$QQ^T = nI_n - J_n, \ QJ_n = J_nQ = 0,$$

where J_n is the matrix of order n, consisting entirely of 1's. Further if $n \equiv 1 \pmod{4}$, $Q^T = Q$, and if $n \equiv 3 \pmod{4}$, then $Q^T = -Q$. Here Q is called the *core* and n is the *core order*.

If $H = I_n + K$ is an Hadamard matrix of order n with $K^T = -K$, we call it skew type Hadamard matrix.

Here we rewrite the following theorem as

Theorem 1 ([12]) If there exists a skew type Hadamard matrix of order q+1, then there exists a core of order q.

It is well-known that if $q + 1 = 2^t n_1 \dots n_s$, each n_i of the form $p^r + 1 \equiv 0 \pmod{4}$, and p is prime, then q is a core order. Moreover, if $q \equiv 3 \pmod{4}$ is a core order, then q^r is a core order for any odd $r \ge 1$ (see [9], p. 497).

In Section 2 we give an infinite class of OD with 8 variables. In Section 3 we construct several families of COD with 4 variables. In Section 4 we construct weak amicable *T*-matrices.

2 The construction of OD

The Goethals-Seidel (or Wallis-Whiteman) array has been proven to be a very useful tool for construction of orthogonal designs. Such arrays are essential for construction of orthogonal designs with more than four variables.

For convenience we need following definition:

Definition 5 [Additive property] A set of matrices $\{B_1, \ldots, B_m\}$ of order *n* with entries in $\{0, \pm x_1, \ldots, \pm x_k\}$ is said to satisfy the *additive property*, with weight $\sum_{i=1}^k s_i x_i^2$, if

$$\sum_{i=1}^{m} B_i B_i^T = (\sum_{i=1}^{k} s_i x_i^2) I_n.$$
(1)

Kharaghani [6] gave an infinite number of arrays which are suitable for any amicable set of 8 type 1 matrices. Here **suitable** means a set of matrices satisfying the **additive property**. If one substitutes the matrices in an orthogonal design, or the Goethals-Seidel array, one can get an orthogonal design. We rewrite the following theorems without proof.

Theorem 2 ([6]) There is an 8×8 array which is suitable to make an $8n \times 8n$ orthogonal matrix for any amicable set of 8 type 1 matrices of order n satisfying an additive property.

Theorem 3 ([6]) For each prime power $q \equiv 3 \pmod{4}$ there is an array suitable for any amicable set of eight matrices A_i satisfying

$$\sum_{i=1}^{4} (A_{2i-1}A_{2i}^{T} + A_{2i}A_{2i-1}^{T}) = cI_{q+1},$$

where c is a constant expression.

More general results are given in [2]. As an application we give an example of such an OD.

If A is a circulant matrix of order n with the first row (a_1, \ldots, a_n) , we denote it by

$$A = \operatorname{circ}(a_1, \ldots, a_n).$$

Example 1 Let x_1, x_2, x_3, x_4 and x_5 be real commuting variables and

 $\begin{array}{ll} A_1 = \operatorname{circ}(x_1, x_2, x_3, x_4, -x_4, -x_3, x_2), & A_2 = \operatorname{circ}(-x_1, x_2, x_3, -x_4, x_4, -x_3, x_2), \\ A_3 = \operatorname{circ}(x_1, -x_2, x_3, -x_4, x_4, -x_3, -x_2), & A_4 = \operatorname{circ}(x_1, x_2, -x_3, -x_4, x_4, x_3, x_2), \\ A_5 = \operatorname{circ}(x_5, x_2, x_3, x_4, x_4, x_3, -x_2), & A_6 = \operatorname{circ}(-x_5, x_2, x_3, x_4, x_4, x_3, -x_2), \\ A_7 = \operatorname{circ}(x_5, -x_2, x_3, -x_4, -x_4, x_3, x_2), & A_8 = \operatorname{circ}(-x_5, -x_2, x_3, -x_4, -x_4, x_3, x_2). \end{array}$

It is easy to verify that

$$\sum_{i=1}^{4} (A_{2i-1}A_{2i}^{T} - A_{2i}A_{2i-1}^{T}) = 0 \text{ and } \sum_{i=1}^{8} A_{i}A_{i}^{T} = (4(x_{1}^{2} + x_{5}^{2}) + 16(x_{2}^{2} + x_{3}^{2} + x_{4}^{2}))I_{7}.$$

From the proof of Theorem 2, using the method in [6], one can construct an OD(56; 4, 4, 16, 16, 16).

Theorem 4 Let $q \equiv 3 \pmod{4}$ be a core order. Then there is an $OD(4q^r(q+1); q^r, q^r, q^r, q^r, q^{r+1}, q^{r+1}, q^{r+1})$ for any integer $r \geq 0$.

Proof. Let Q be a core of order q, and let a_1, \ldots, a_8 be real commuting variables. Set

$$A_{2i-1}(0) = a_{2i}, A_{2i}(0) = a_{2i-1}, i = 1, 2, 3, 4.$$

It is clear that, as $A_i(0)$ are commuting variables,

$$A_1(0), \dots, A_8(0)$$
 are type 1,
 $A_{2i-1}(0)A_{2i}^T(0) = A_{2i}(0)A_{2i-1}^T(0), \quad i = 1, 2, 3, 4,$

and (with $q^0 = 1$),

$$A_{2i-1}(0)A_{2i-1}^{T}(0) + qA_{2i}(0)A_{2i}^{T}(0) = q^{0}(qa_{2i-1}^{2} + a_{2i}^{2})I_{q^{0}}, \quad i = 1, 2, 3, 4.$$

Suppose that for $r \ge 1$ we have

$$A_{1}(r-1), \dots, A_{8}(r-1) \text{ are all type 1} A_{2i-1}(r-1)A_{2i}^{T}(r-1) = A_{2i}(r-1)A_{2i-1}^{T}(r-1), \text{ and} A_{2i-1}(r-1)A_{2i-1}^{T}(r-1) + qA_{2i}(r-1)A_{2i}^{T}(r-1) = q^{r-1}(qa_{2i-1}^{2}+a_{2i}^{2})I_{q^{r-1}}, i = 1, 2, 3, 4.$$

Write

$$A_{2i-1}(r) = J_q \times A_{2i}(r-1), \quad A_{2i}(r) = I_q \times A_{2i-1}(r-1) + Q \times A_{2i}(r-1),$$

where \times is the Kronecker product. Then $A_1(r), \ldots, A_8(r)$ are type 1 of size q^r .

It is easy to verify that

$$A_{2i-1}(r)A_{2i}^{T}(r) = A_{2i}(r)A_{2i-1}^{T}(r),$$

$$A_{2i-1}(r)A_{2i-1}^{T}(r) + qA_{2i}(r)A_{2i}^{T}(r) = q^{r}(qa_{2i-1}^{2} + a_{2i}^{2})I_{q^{r}}, \quad i = 1, 2, 3, 4.$$

Now let B_i of size $(q+1)q^r$ be given by

$$B_i = I_{q+1} \times A_{2i-1}(r) + K \times A_{2i}(r), \quad i = 1, 2, 3, 4, \quad K = \begin{bmatrix} 0 & e^T \\ -e & Q \end{bmatrix},$$

where $e^T = (1, ..., 1)$ is a row vector with q components.

Then B_1 , B_2 , B_3 and B_4 are of type 1 and

$$\sum_{i=1}^{4} B_i B_i^T = \sum_{i=1}^{4} q^r (q a_{2i-1}^2 + a_{2i}^2) I_{q^r(q+1)}.$$

From Theorem 3 it follows that there is an OD($4q^r(q+1)$; q^r , q^r , q^r , q^r , q^{r+1} , q^{r+1} , q^{r+1} , q^{r+1}).

Note that Corollary 5 of [6] is a special case of Theorem 4 with r = 0.

If there are type 1 T-matrices of order n, then there exist an OD(4n; n, n, n, n) (see [9]). Further, from [5], weak amicable sets can be used to get the following.

Lemma 1 For p odd, $1 \le p \le 21$, $p \in \{25, 49\}$, there exists an OD(8p; p, p).

Proof. For each $p \in \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 49\}$, there exist *T*-matrices T_1, T_2, T_3 and T_4 of order *p* satisfying weak amicability.

The explicit construction of such *T*-matrices of these orders can be found in Table 1 of [5] and the Appendix of this paper. From Theorem 5 and Corollary 6 of [5], there exist OD(8p; p, p, p, p, p, p, p, p).

Theorem 5 Let T_1 , T_2 , T_3 and T_4 be *T*-matrices of order *p* with weak amicability. Then there is an $OD(4pq^r(q+1); pq^r, pq^r, pq^r, pq^r, pq^{r+1}, pq^{r+1}, pq^{r+1}, pq^{r+1})$ for each core order $q \equiv 3 \pmod{4}$ and $r \geq 0$. **Proof.** Write

$$f(a, b, c, d) = T_1 a + T_2 b + T_3 c + T_4 d.$$

Here a, b, c and d are real commuting variables. Let A_1, \ldots, A_8 be defined as follows:

$$\begin{array}{ll} A_1 = f(x_1, x_2, x_3, x_4), & A_2 = f(-x_8, -x_7, x_6, x_5), \\ A_3 = f(x_2, -x_1, x_4, -x_3), & A_4 = f(x_7, -x_8, -x_5, x_6), \\ A_5 = f(x_3, -x_4, -x_1, x_2), & A_6 = f(x_5, x_6, x_7, x_8), \\ A_7 = f(x_4, x_3, -x_2, -x_1), & A_8 = f(x_6, -x_5, x_8, -x_7), \end{array}$$

where x_1, \ldots, x_8 are real commuting variables. Set

$$A_{2i}(0) = A_{2i-1}, \ A_{2i-1}(0) = A_{2i}, \ i = 1, 2, 3, 4.$$

For $r \ge 1$ let

$$\begin{array}{rcl} A_{2i-1}(r) &=& J_q \times A_{2i}(r-1), \\ A_{2i}(r) &=& I_q \times A_{2i-1}(r-1) + Q \times A_{2i}(r-1), \quad i=1,2,3,4, \end{array}$$

where Q is a square matrix of order q defined as in Theorem 4. Replacing

$$A_{2i-1}(r)A_{2i}^{T}(r) = A_{2i}(r)A_{2i-1}^{T}(r),$$

$$A_{2i-1}(r)A_{2i-1}^{T}(r) + qA_{2i}(r)A_{2i}^{T}(r) = q^{r}(qa_{2i-1}^{2} + a_{2i}^{2})I_{q^{r}}, \ i = 1, 2, 3, 4, \ r \ge 0,$$

by

$$\sum_{i=1}^{4} (A_{2i-1}(r)A_{2i}^{T}(r) - A_{2i}(r)A_{2i-1}^{T}(r)) = 0,$$

$$\sum_{i=1}^{4} (A_{2i-1}(r)A_{2i-1}^{T}(r) + qA_{2i}(r)A_{2i}^{T}(r)) = pq^{r} \sum_{i=1}^{4} (qx_{i}^{2} + x_{i+4}^{2})I_{pq^{r}},$$

respectively, and repeating the procedure of the proof of Theorem 4, one can obtain the theorem. $\hfill \Box$

Corollary 1 For p odd, $1 \le p \le 21$ and $p \in \{25, 49\}$, there exists an $OD(8pq^r(q+1); pq^r, pq^r, pq^r, pq^{r+1}, pq^{r+1}, pq^{r+1})$ with each core order $q \equiv 3 \pmod{4}$ and integer $r \ge 0$.

3 The construction of COD

In this section we give several infinite classes of COD.

Theorem 6 There exists a $COD(2q^r(q+1); q^r, q^r, q^{r+1}, q^{r+1})$ for each prime power $q \equiv 1 \pmod{4}$ and $r \geq 0$.

126

Proof. Let Q be the symmetric core of order $q \equiv 1 \pmod{4}$.

Now let

$$A_{2i-1}(0) = a_{2i-1}, \ A_{2i}(0) = a_{2i}, \ i = 1, 2,$$

where a_1, a_2, a_3 and a_4 are real commuting variables. Note that $q^0 = 1$. It is clear that

$$\begin{aligned} A_{2i-1}(0)A_{2i}^*(0) &= A_{2i}(0)A_{2i-1}^*(0), \\ A_{2i-1}(0)A_{2i-1}^*(0) &+ qA_{2i}(0)A_{2i}^*(0) = q^0(a_{2i-1}^2 + qa_{2i}^2)I_{q^0}, \quad i = 1, \ 2, \\ A_i(0)A_j(0) &= A_j(0)A_i(0), \ 1 \le i, \ j \le 4. \end{aligned}$$

Suppose that for $r \ge 1$ we have

$$A_{2i-1}(r-1)A_{2i}^{*}(r-1) = A_{2i}(r-1)A_{2i-1}^{*}(r-1),$$

$$A_{2i-1}(r-1)A_{2i-1}^{*}(r-1) + qA_{2i}(r-1)A_{2i}^{*}(r-1) = q^{r-1}(a_{2i-1}^{2} + qa_{2i}^{2})I_{q^{r-1}},$$

$$i = 1, 2,$$

$$A_{i}(r-1)A_{j}(r-1) = A_{j}(r-1)A_{i}(r-1),$$

$$1 \le i, j \le 4.$$

Write

$$A_{2j-1}(r) = J_q \times A_{2j}(r-1), \quad A_{2j}(r) = I_q \times A_{2j-1}(r-1) + iQ \times A_{2j}(r-1),$$

$$i = \sqrt{-1}, \ j = 1, \ 2.$$
 It follows that

$$\begin{aligned} A_{2i-1}(r)A_{2i}^*(r) &= A_{2i}(r)A_{2i-1}^*(r), \\ A_{2i-1}(r)A_{2i-1}^*(r) + qA_{2i}(r)A_{2i}^*(r) &= q^r(a_{2i-1}^2 + qa_{2i}^2)I_{q^r}, \quad i = 1, 2, \\ A_i(r)A_j(r) &= A_j(r)A_i(r), \qquad 1 \le i, j \le 4. \end{aligned}$$

Let

$$K = \left[\begin{array}{cc} 0 & e^T \\ e & Q \end{array} \right]$$

Put

$$F_j = I_{q+1} \times A_{2j-1}(r) + iK \times A_{2j}(r), \ i = \sqrt{-1}, \ j = 1, \ 2$$

We have

$$\begin{array}{rcl} F_{j}F_{j}^{*} &=& q^{r}(a_{2j-1}^{2}+qa_{2j}^{2})I_{q^{r}(q+1)}, & j=1,\ 2,\\ F_{1}F_{2} &=& F_{2}F_{1}. \end{array}$$

Finally, let

$$X = \left(\begin{array}{cc} F_1 & F_2 \\ -F_2^* & F_1^* \end{array}\right).$$

Then X is a $\operatorname{COD}(2q^r(q+1);q^r,q^r,q^{r+1},q^{r+1}),$ as required.

From the proof of Theorem 6 we can obtain the following theorem.

Theorem 7 There is a $COD(q^r(q+1); q^r, q^{r+1})$ for each prime power $q \equiv 1 \pmod{4}$ and $r \geq 0$.

4 The construction of weak amicable *T*-matrices

It is convenient to use the group ring Z[G] of the group G of order p over the ring Z of rational integers with the addition and multiplication. Elements of Z[G] are of the form

 $a_1g_1 + a_2g_2 + \dots + a_pg_p, \ a_i \in Z, \ g_i \in G, \ 1 \le i \le p.$

In Z[G] the addition, +, is given by the rule

$$\left(\sum_{g} a(g)g\right) + \left(\sum_{g} b(g)g\right) = \sum_{g} (a(g) + b(g))g.$$

The multiplication in Z[G] is given by the rule

$$\left(\sum_{g} a(g)g\right)\left(\sum_{h} b(h)h\right) = \sum_{k} \left(\sum_{gh=k} a(g)b(h)\right)k$$

For any subset A of G, we define

$$\sum_{g \in A} g \in Z[G],$$

and by abusing the notation we will denote it by A.

Let a set $\{X_1, \ldots, X_8\}$ be a C-partition of an abelian additive group G of order p, i.e.,

$$X_i \subset G, \ X_i \cap X_j = \emptyset, \ i \neq j,$$

and

$$\sum_{i=1}^{8} X_i = G, \quad \sum_{i=1}^{8} X_i X_i^{(-1)} = p + \sum_{i=1}^{4} \left(X_i X_{i+4}^{(-1)} + X_{i+1} X_i^{(-1)} \right),$$

where the equations above hold in the group ring Z[G]; (see [13]).

For any $A \subset G$, set

$$I(A) = (a_{ij})_{1 \le i,j \le n}, \quad a_{ij} = \begin{cases} 1, & \text{if } g_j - g_i \in A, \\ 0, & \text{otherwise,} \end{cases}$$

where g_1, \ldots, g_p are elements of G in any order. That is, I(A) is the (0, 1) incidence matrix of A of type 1. Now let

$$T_i = I(X_i) - I(X_{i+4}), \quad i = 1, 2, 3, 4;$$

then T_1 , T_2 , T_3 and T_4 are T-matrices of order p.

Let $\sum_{g} a(g)g \in Z[G]$ where $a(g) \in Z$ and $g \in G$. If, for any $g \in G$, we have a(g) = a(-g), then we call $\sum_{g} a(g)g$ symmetric in the group ring Z[G].

It is clear that *T*-matrices T_1 , T_2 , T_3 and T_4 of order *p* satisfy weak amicability, if and only if $T_1(T_3 + T_4)^T + T_2(T_3 - T_4)^T$ is symmetric, and if and only if $(X_1 - X_5)(X_3^{(-1)} - X_7^{(-1)} + X_4^{(-1)} - X_8^{(-1)}) + (X_2 - X_6)(X_3^{(-1)} - X_7^{(-1)} - X_4^{(-1)} + X_8^{(-1)})$ is symmetric in the group ring Z[G].

The following theorem and corollary will simplify the verification of weak amicability in some cases. **Theorem 8** Let G be an abelian group of order n and let $\{X_1, \ldots, X_8\}$ be a Cpartition of G. If both $X_1 - X_5 + X_2 - X_6$ and $X_3 - X_7 + X_4 - X_8$ are symmetric in the group ring Z[G], then there exist T-matrices of order n satisfying weak amicability if and only if $(X_2 - X_6)(X_4^{(-1)} - X_8^{(-1)})$ is also symmetric in the group ring Z[G].

Using the same assumptions as in Theorem 8, we have the following corollary.

Corollary 2 If $X_4 = X_8 = \emptyset$, then there exist *T*-matrices of order *n* satisfying weak amicability.

Appendix

Now we give decomposition of the sum of four squares and the new sets of *T*-matrices which have weak amicability for p = 9, 25, 49. The values $1 \le p \le 21$ are given in Holtzmann and Kharaghani [5].

$$\begin{split} p &= 9 = 3^2 + 0^2 + 0^2 + 0^2, \quad Q_1 = \{0, 1, x + 1\}, \ Q_2 = \{2\} - \{x + 2\}, \\ Q_3 &= \{2x\} - \{2x + 2\}, \ Q_4 = \{2x + 1\} - \{x\}. \\ p &= 25 = 5^2 + 0^2 + 0^2 + 0^2, \quad Q_1 = \{0\} - E_0 \cup E_1, \ Q_2 = E_2 - E_6, \ Q_3 = E_3 - E_7, \\ Q_4 &= E_4 - E_5, \\ \text{where } E_i &= \{g^{8j + i}: \ j = 0, 1, 2\}, \ i = 0, \dots, 7\}, \\ \text{and } g &= x + 1(\text{mod } x^2 - 3, \text{mod } 5) \text{ is a generator} \\ \text{of GF}(25). \\ p &= 49 = 7^2 + 0^2 + 0^2 + 0^2, \quad Q_1 = \{0\} \cup E_0 \cup E_1 \cup E_6 \cup E_{12} - E_3 \cup E_7, \\ Q_2 &= E_4 \cup E_{10} \cup E_{15} - E_8 \cup E_{11} \cup E_{13}, \\ Q_3 &= E_9 - E_2, \ Q_4 &= E_5 - E_{14}, \text{ where} \\ E_i &= \{g^{16j + i}: \ j = 0, 1, 2\}, \ i = 0, \dots, 15, \text{ and} \\ g &= x + 2 \pmod{x^2 + 1}, \ \text{mod } 7) \text{ is a generator} \\ \text{of GF}(49). \end{split}$$

Remark. Holzmann and Kharaghani [5] have given constructions of weak amicable T-matrices of order 9 in Z_9 and for $9 = 2^2 + 2^2 + 1^2 + 0^2$, However, our construction is given in GF(9) and for $9 = 3^2$. These constructions are different in essence. **Conjecture ([5])** There exist infinite orders of T-matrices satisfying weak amicability for all odd integers.

Acknowledgements

We are grateful to the referees for their helpful comments.

References

 J. Cooper and J. Seberry Wallis, A construction for Hadamard arrays, Bull. Austral. Math. Soc. 7 (1972), 269–278.

- [2] R. Craigen and H. Kharaghani, A recursive method for orthogonal designs, *Metrika* 62 (2005), 185–193.
- [3] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Lec. Notes Pure Appl. Math., Marcel Dekker, Inc., New York and Basel, 1979.
- [4] A. V. Geramita and J. M. Geramita, Complex orthogonal designs, J. Combin. Theory Ser. A 25 (1978), 211–225.
- [5] W. H. Holzmann and H. Kharaghani, Weak amicable *T*-matrices and Plotkin arrays, J. Combin. Des. 16 (2008), 44–52.
- [6] H. Kharaghani, Arrays for orthogonal designs, J. Combin. Des. 8 (2000), 166– 173.
- [7] M. Plotkin, Decomposition of Hadamard matrices, J. Combin. Theory Ser. A 13 (1972), 127–130.
- [8] J. Seberry Wallis, Hadamard designs, Bull. Austral. Math. Soc. 2, (1970), 45–54.
- [9] J. Seberry and M. Yamada, Hadamard matrices, sequences, and block designs, Contemporary Design Theory: A Collection of Surveys, (J. H. Dinitz and D. R. Stinson, eds.), John Wiley & Sons, Inc., 1992, pp. 431–560.
- [10] J. Seberry and R. Craigen, Orthogonal designs, in CRC Handbook of Combinatorial Designs, (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press, 1996, pp. 400–406.
- [11] R. J. Turyn, Complex Hadamard matrices, Combinatorial Structures and their Applications, Gordon and Breach, London, 1970, pp. 435–437.
- [12] W. D. Wallis, A. P. Street and J. Seberry Wallis, *Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices*, Lec. Notes in Math. 292, Springer Verlag, Berlin, 1972.
- [13] M. Xia and T. Xia, A family of C-partitions and T-matrices, J. Combin. Des. 7 (1999), 269–281.

(Received 7 July 2011; revised 10 May 2012, 5 June 2012)