University of Wollongong

Research Online

Some new constructions of orthogonal designs

Tianbing Xia
University of Wollongong, txia@uow.edu.au
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au
Mingyuan Xia
Central China Normal University, xiamy@mail.ccnu.edu.cn
Shangli Zhang
Beijing Jiaotong University, shlzhang@center.njtu.edu.cn

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Xia, Tianbing; Seberry, Jennifer; Xia, Mingyuan; and Zhang, Shangli, "Some new constructions of orthogonal designs" (2013). Faculty of Engineering and Information Sciences - Papers: Part A. 2258. https://ro.uow.edu.au/eispapers/2258

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Some new constructions of orthogonal designs

Abstract

In this paper we construct $O D\left(4 p q^{r}(q+1) ; q^{r}, p^{r}, p q^{r}, \mathrm{pq}^{r}, \mathrm{pq}^{\mathrm{r}+1}, \mathrm{pq}^{\mathrm{r}+1}, \mathrm{pq}^{\mathrm{r}+1}, \mathrm{pq}^{\mathrm{r}+1}\right)$ for each core order q $\equiv 3(\bmod 4), r \geq 0$ or $q=1, p$ odd, $p \leq 21$ and $p \in\{25,49\}$, and $\operatorname{COD}\left(2 q^{r}(q+1) ; q^{r}, q^{r}, q^{r+1}, q^{r+1}\right)$ for any prime power $q \equiv 1(\bmod 4)$ (including $q=1), r \geq 0$.

Keywords

era2015, constructions, designs, orthogonal

Disciplines

Engineering | Science and Technology Studies

Publication Details

Xia, T., Seberry, J., Xia, M. \& Zhang, S. (2013). Some new constructions of orthogonal designs.
Australasian Journal of Combinatorics, 55 121-130.

Some new constructions of orthogonal designs

Tianbing Xia Jennifer Seberry
School of CS and SE, Informatics
University of Wollongong
NSW 2522
Australia
txia@uow.edu.au j.seberry@uow.edu.au

Mingyuan Xia
School of Mathematics and Statistics
Central China Normal University
Wuhan, Hubei 430079
China
xiamy@mail.ccnu.edu.cn

Shangli Zhang
School of Science
Beijing Jiaotong University
Beijing
China
shlzhang@center.njtu.edu.cn

Abstract

In this paper we construct $\mathrm{OD}\left(4 p q^{r}(q+1) ; p q^{r}, p q^{r}, p q^{r}, p q^{r}, p q^{r+1}, p q^{r+1}\right.$, $\left.p q^{r+1}, p q^{r+1}\right)$ for each core order $q \equiv 3(\bmod 4), r \geq 0$ or $q=1, p$ odd, $p \leq 21$ and $p \in\{25,49\}$, and $\operatorname{COD}\left(2 q^{r}(q+1) ; q^{r}, q^{r}, q^{r+1}, q^{r+1}\right)$ for any prime power $q \equiv 1(\bmod 4)$ (including $q=1), r \geq 0$.

1 Introduction

An orthogonal design (OD) X of order n and type $\left(s_{1}, \ldots, s_{m}\right), s_{i}$ positive integers, is an $n \times n$ matrix with entries $\left\{0, \pm x_{1}, \ldots, \pm x_{m}\right\}$ (the x_{i} are commuting indeterminates) satisfying

$$
X X^{T}=\left(\sum_{i=1}^{m} s_{i} x_{i}^{2}\right) I_{n}
$$

where I_{n} is the identity matrix of order n. This is denoted by $\operatorname{OD}\left(n ; s_{1}, \ldots, s_{m}\right)$.

Such generically orthogonal matrices have played a significant role in the construction of Hadamard matrices (see, e.g., [3], [6]) and they have been extensively used in the study of weighing matrices (e.g. [3] and [8]).

Since Baumert and Hall [9] gave the first example of Baumert-Hall arrays, or $\mathrm{OD}(4 t ; t, t, t, t)$, and Plotkin [7] defined Plotkin arrays, or $\mathrm{OD}(8 t ; t, t, t, t, t, t, t, t)$, to construct Hadamard matrices, many research results have been published for T matrices that are used in the construction of Plotkin arrays (see [3], [5], [9], [10]).

Turyn [11] introduced the notion of a complex Hadamard matrix, i.e., an $n \times n$ matrix C whose entries are chosen from $\{ \pm 1, \pm i\}$ and satisfy $C C^{*}=n I_{n}\left(^{*}\right.$ is conjugate transpose). He further showed how such matrices could be used to construct Hadamard matrices, and gave several examples. Further examples of such matrices are given in [3] and [4].

For a complex analogue of orthogonal designs there are several possible generalizations; we choose the one which gives real orthogonal designs as a special case.

A complex orthogonal design (COD) [4] of order n and type $\left(s_{1}, \ldots, s_{m}\right)\left(s_{i}\right.$ positive integers) on the real commuting variables x_{1}, \ldots, x_{m} is an $n \times n$ matrix X, with entries chosen from $\left\{\varepsilon_{1} x_{1}, \ldots, \varepsilon_{m} x_{m}: \varepsilon_{i}\right.$ a fourth root of 1$\}$ satisfying

$$
X X^{*}=\left(\sum_{i=1}^{m} s_{i} x_{i}^{2}\right) I_{n}
$$

For further discussion we need the following definitions from [6].
Definition 1 [Amicable Matrices; Amicable Set] Two square real matrices of order n, A and B, are said to be amicable if $A B^{T}-B A^{T}=0$.

A set $\left\{A_{1}, \ldots, A_{2 n}\right\}$ of square real matrices is said to be an amicable set if

$$
\sum_{i=1}^{n}\left(A_{2 i-1} A_{2 i}^{T}-A_{2 i} A_{2 i-1}^{T}\right)=0
$$

It is easy to generalize an amicable set to the case of square complex matrices. For this, we just need to replace A^{T} by A^{*}, the conjugate transpose of A.

Definition 2 [T-matrices] $(0, \pm 1)$ type 1 matrices T_{1}, T_{2}, T_{3} and T_{4} of order n are called T-matrices if the following conditions are satisfied:
(a) $T_{i} * T_{j}=0, i \neq j, 1 \leq i, j \leq 4$, where $*$ denotes Hadamard product;
(b) $\sum_{i=1}^{4} T_{i} T_{i}^{T}=n I_{n}$.
T-matrices can be used to construct orthogonal designs (see [1]).
The following definition was first used by Holzmann and Kharaghani in [5].
Definition 3 [Weak amicable] The T-matrices T_{1}, T_{2}, T_{3} and T_{4} are said to be weak amicable if

$$
T_{1}\left(T_{3}+T_{4}\right)^{T}+T_{2}\left(T_{3}-T_{4}\right)^{T}=\left(T_{3}+T_{4}\right) T_{1}^{T}+\left(T_{3}-T_{4}\right) T_{2}^{T}
$$

Definition 4 [Core] Let Q be a matrix of order n, with zero diagonal and all other elements ± 1 satisfying

$$
Q Q^{T}=n I_{n}-J_{n}, Q J_{n}=J_{n} Q=0,
$$

where J_{n} is the matrix of order n, consisting entirely of 1 's. Further if $n \equiv 1(\bmod 4)$, $Q^{T}=Q$, and if $n \equiv 3(\bmod 4)$, then $Q^{T}=-Q$. Here Q is called the core and n is the core order.

If $H=I_{n}+K$ is an Hadamard matrix of order n with $K^{T}=-K$, we call it skew type Hadamard matrix.

Here we rewrite the following theorem as
Theorem 1 ([12]) If there exists a skew type Hadamard matrix of order $q+1$, then there exists a core of order q.

It is well-known that if $q+1=2^{t} n_{1} \ldots n_{s}$, each n_{i} of the form $p^{r}+1 \equiv 0(\bmod 4)$, and p is prime, then q is a core order. Moreover, if $q \equiv 3(\bmod 4)$ is a core order, then q^{r} is a core order for any odd $r \geq 1$ (see [9], p. 497).

In Section 2 we give an infinite class of OD with 8 variables. In Section 3 we construct several families of COD with 4 variables. In Section 4 we construct weak amicable T-matrices.

2 The construction of OD

The Goethals-Seidel (or Wallis-Whiteman) array has been proven to be a very useful tool for construction of orthogonal designs. Such arrays are essential for construction of orthogonal designs with more than four variables.

For convenience we need following definition:
Definition 5 [Additive property] A set of matrices $\left\{B_{1}, \ldots, B_{m}\right\}$ of order n with entries in $\left\{0, \pm x_{1}, \ldots, \pm x_{k}\right\}$ is said to satisfy the additive property, with weight $\sum_{i=1}^{k} s_{i} x_{i}^{2}$, if

$$
\begin{equation*}
\sum_{i=1}^{m} B_{i} B_{i}^{T}=\left(\sum_{i=1}^{k} s_{i} x_{i}^{2}\right) I_{n} \tag{1}
\end{equation*}
$$

Kharaghani [6] gave an infinite number of arrays which are suitable for any amicable set of 8 type 1 matrices. Here suitable means a set of matrices satisfying the additive property. If one substitutes the matrices in an orthogonal design, or the Goethals-Seidel array, one can get an orthogonal design. We rewrite the following theorems without proof.

Theorem 2 ([6]) There is an 8×8 array which is suitable to make an $8 n \times 8 n$ orthogonal matrix for any amicable set of 8 type 1 matrices of order n satisfying an additive property.

Theorem $3([6])$ For each prime power $q \equiv 3(\bmod 4)$ there is an array suitable for any amicable set of eight matrices A_{i} satisfying

$$
\sum_{i=1}^{4}\left(A_{2 i-1} A_{2 i}^{T}+A_{2 i} A_{2 i-1}^{T}\right)=c I_{q+1}
$$

where c is a constant expression.
More general results are given in [2]. As an application we give an example of such an OD.

If A is a circulant matrix of order n with the first row $\left(a_{1}, \ldots, a_{n}\right)$, we denote it by

$$
A=\operatorname{circ}\left(a_{1}, \ldots, a_{n}\right)
$$

Example 1 Let $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} be real commuting variables and

$$
\begin{array}{ll}
A_{1}=\operatorname{circ}\left(x_{1}, x_{2}, x_{3}, x_{4},-x_{4},-x_{3}, x_{2}\right), & A_{2}=\operatorname{circ}\left(-x_{1}, x_{2}, x_{3},-x_{4}, x_{4},-x_{3}, x_{2}\right), \\
A_{3}=\operatorname{circ}\left(x_{1},-x_{2}, x_{3},-x_{4}, x_{4},-x_{3},-x_{2}\right), & A_{4}=\operatorname{circ}\left(x_{1}, x_{2},-x_{3},-x_{4}, x_{4}, x_{3}, x_{2}\right) \\
A_{5}=\operatorname{circ}\left(x_{5}, x_{2}, x_{3}, x_{4}, x_{4}, x_{3},-x_{2}\right), & A_{6}=\operatorname{circ}\left(-x_{5}, x_{2}, x_{3}, x_{4}, x_{4}, x_{3},-x_{2}\right) \\
A_{7}=\operatorname{circ}\left(x_{5},-x_{2}, x_{3},-x_{4},-x_{4}, x_{3}, x_{2}\right), & A_{8}=\operatorname{circ}\left(-x_{5},-x_{2}, x_{3},-x_{4},-x_{4}, x_{3}, x_{2}\right) .
\end{array}
$$

It is easy to verify that

$$
\sum_{i=1}^{4}\left(A_{2 i-1} A_{2 i}^{T}-A_{2 i} A_{2 i-1}^{T}\right)=0 \text { and } \sum_{i=1}^{8} A_{i} A_{i}^{T}=\left(4\left(x_{1}^{2}+x_{5}^{2}\right)+16\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\right) I_{7}
$$

From the proof of Theorem 2, using the method in [6], one can construct an $O D(56$; $4,4,16,16,16)$.

Theorem 4 Let $q \equiv 3(\bmod 4)$ be a core order. Then there is an $O D\left(4 q^{r}(q+\right.$ 1); $\left.q^{r}, q^{r}, q^{r}, q^{r}, q^{r+1}, q^{r+1}, q^{r+1}, q^{r+1}\right)$ for any integer $r \geq 0$.

Proof. Let Q be a core of order q, and let a_{1}, \ldots, a_{8} be real commuting variables. Set

$$
A_{2 i-1}(0)=a_{2 i}, \quad A_{2 i}(0)=a_{2 i-1}, \quad i=1,2,3,4
$$

It is clear that, as $A_{i}(0)$ are commuting variables,

$$
\begin{aligned}
& A_{1}(0), \ldots, A_{8}(0) \text { are type } 1 \\
& A_{2 i-1}(0) A_{2 i}^{T}(0)=A_{2 i}(0) A_{2 i-1}^{T}(0), \quad i=1,2,3,4
\end{aligned}
$$

and (with $q^{0}=1$),

$$
A_{2 i-1}(0) A_{2 i-1}^{T}(0)+q A_{2 i}(0) A_{2 i}^{T}(0)=q^{0}\left(q a_{2 i-1}^{2}+a_{2 i}^{2}\right) I_{q^{0}}, \quad i=1,2,3,4
$$

Suppose that for $r \geq 1$ we have

$$
\begin{aligned}
& A_{1}(r-1), \ldots, A_{8}(r-1) \text { are all type } 1 \\
& A_{2 i-1}(r-1) A_{2 i}^{T}(r-1)=A_{2 i}(r-1) A_{2 i-1}^{T}(r-1), \text { and } \\
& A_{2 i-1}(r-1) A_{2 i-1}^{T}(r-1)+q A_{2 i}(r-1) A_{2 i}^{T}(r-1)=q^{r-1}\left(q a_{2 i-1}^{2}+a_{2 i}^{2}\right) I_{q^{r-1}}, \\
& i=1,2,3,4
\end{aligned}
$$

Write

$$
A_{2 i-1}(r)=J_{q} \times A_{2 i}(r-1), \quad A_{2 i}(r)=I_{q} \times A_{2 i-1}(r-1)+Q \times A_{2 i}(r-1)
$$

where \times is the Kronecker product. Then $A_{1}(r), \ldots, A_{8}(r)$ are type 1 of size q^{r}.
It is easy to verify that

$$
\begin{aligned}
& A_{2 i-1}(r) A_{2 i}^{T}(r)=A_{2 i}(r) A_{2 i-1}^{T}(r), \\
& A_{2 i-1}(r) A_{2 i-1}^{T}(r)+q A_{2 i}(r) A_{2 i}^{T}(r)=q^{r}\left(q a_{2 i-1}^{2}+a_{2 i}^{2}\right) I_{q^{r}}, \quad i=1,2,3,4
\end{aligned}
$$

Now let B_{i} of size $(q+1) q^{r}$ be given by

$$
B_{i}=I_{q+1} \times A_{2 i-1}(r)+K \times A_{2 i}(r), \quad i=1,2,3,4, \quad K=\left[\begin{array}{rc}
0 & e^{T} \\
-e & Q
\end{array}\right]
$$

where $e^{T}=(1, \ldots, 1)$ is a row vector with q components.
Then B_{1}, B_{2}, B_{3} and B_{4} are of type 1 and

$$
\sum_{i=1}^{4} B_{i} B_{i}^{T}=\sum_{i=1}^{4} q^{r}\left(q a_{2 i-1}^{2}+a_{2 i}^{2}\right) I_{q^{r}(q+1)}
$$

From Theorem 3 it follows that there is an $\operatorname{OD}\left(4 q^{r}(q+1) ; q^{r}, q^{r}, q^{r}, q^{r}, q^{r+1}, q^{r+1}\right.$, $\left.q^{r+1}, q^{r+1}\right)$.

Note that Corollary 5 of [6] is a special case of Theorem 4 with $r=0$.
If there are type $1 T$-matrices of order n, then there exist an $\mathrm{OD}(4 n ; n, n, n, n)$ (see [9]). Further, from [5], weak amicable sets can be used to get the following.

Lemma 1 For p odd, $1 \leq p \leq 21, p \in\{25,49\}$, there exists an $O D(8 p ; p, p, p, p$, $p, p, p, p)$.

Proof. For each $p \in\{1,3,5,7,9,11,13,15,17,19,21,25,49\}$, there exist T-matrices T_{1}, T_{2}, T_{3} and T_{4} of order p satisfying weak amicability.

The explicit construction of such T-matrices of these orders can be found in Table 1 of [5] and the Appendix of this paper. From Theorem 5 and Corollary 6 of [5], there exist $\mathrm{OD}(8 p ; p, p, p, p, p, p, p, p)$.

Theorem 5 Let T_{1}, T_{2}, T_{3} and T_{4} be T-matrices of order p with weak amicability. Then there is an $O D\left(4 p q^{r}(q+1) ; p q^{r}, p q^{r}, p q^{r}, p q^{r}, p q^{r+1}, p q^{r+1}, p q^{r+1}, p q^{r+1}\right)$ for each core order $q \equiv 3(\bmod 4)$ and $r \geq 0$.

Proof. Write

$$
f(a, b, c, d)=T_{1} a+T_{2} b+T_{3} c+T_{4} d
$$

Here a, b, c and d are real commuting variables. Let A_{1}, \ldots, A_{8} be defined as follows:

$$
\begin{array}{ll}
A_{1}=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right), & A_{2}=f\left(-x_{8},-x_{7}, x_{6}, x_{5}\right), \\
A_{3}=f\left(x_{2},-x_{1}, x_{4},-x_{3}\right), & A_{4}=f\left(x_{7},-x_{8},-x_{5}, x_{6}\right), \\
A_{5}=f\left(x_{3},-x_{4},-x_{1}, x_{2}\right), & A_{6}=f\left(x_{5}, x_{6}, x_{7}, x_{8}\right) \\
A_{7}=f\left(x_{4}, x_{3},-x_{2},-x_{1}\right), & A_{8}=f\left(x_{6},-x_{5}, x_{8},-x_{7}\right),
\end{array}
$$

where x_{1}, \ldots, x_{8} are real commuting variables. Set

$$
A_{2 i}(0)=A_{2 i-1}, \quad A_{2 i-1}(0)=A_{2 i}, \quad i=1,2,3,4
$$

For $r \geq 1$ let

$$
\begin{aligned}
A_{2 i-1}(r) & =J_{q} \times A_{2 i}(r-1) \\
A_{2 i}(r) & =I_{q} \times A_{2 i-1}(r-1)+Q \times A_{2 i}(r-1), \quad i=1,2,3,4
\end{aligned}
$$

where Q is a square matrix of order q defined as in Theorem 4. Replacing

$$
\begin{aligned}
& A_{2 i-1}(r) A_{2 i}^{T}(r)=A_{2 i}(r) A_{2 i-1}^{T}(r) \\
& A_{2 i-1}(r) A_{2 i-1}^{T}(r)+q A_{2 i}(r) A_{2 i}^{T}(r)=q^{r}\left(q a_{2 i-1}^{2}+a_{2 i}^{2}\right) I_{q^{r}}, i=1,2,3,4, r \geq 0
\end{aligned}
$$

by

$$
\begin{aligned}
& \sum_{i=1}^{4}\left(A_{2 i-1}(r) A_{2 i}^{T}(r)-A_{2 i}(r) A_{2 i-1}^{T}(r)\right)=0 \\
& \sum_{i=1}^{4}\left(A_{2 i-1}(r) A_{2 i-1}^{T}(r)+q A_{2 i}(r) A_{2 i}^{T}(r)\right)=p q^{r} \sum_{i=1}^{4}\left(q x_{i}^{2}+x_{i+4}^{2}\right) I_{p q^{r}}
\end{aligned}
$$

respectively, and repeating the procedure of the proof of Theorem 4, one can obtain the theorem.

Corollary 1 For p odd, $1 \leq p \leq 21$ and $p \in\{25,49\}$, there exists an $O D\left(8 p q^{r}(q+\right.$ 1) ; $\left.p q^{r}, p q^{r}, p q^{r}, p q^{r}, p q^{r+1}, p q^{r+1}, p q^{r+1}, p q^{r+1}\right)$ with each core order $q \equiv 3(\bmod 4)$ and integer $r \geq 0$.

3 The construction of COD

In this section we give several infinite classes of COD.
Theorem 6 There exists a $\operatorname{COD}\left(2 q^{r}(q+1) ; q^{r}, q^{r}, q^{r+1}, q^{r+1}\right)$ for each prime power $q \equiv 1(\bmod 4)$ and $r \geq 0$.

Proof. Let Q be the symmetric core of order $q \equiv 1(\bmod 4)$.
Now let

$$
A_{2 i-1}(0)=a_{2 i-1}, \quad A_{2 i}(0)=a_{2 i}, \quad i=1,2,
$$

where a_{1}, a_{2}, a_{3} and a_{4} are real commuting variables. Note that $q^{0}=1$. It is clear that

$$
\begin{aligned}
& A_{2 i-1}(0) A_{2 i}^{*}(0)=A_{2 i}(0) A_{2 i-1}^{*}(0), \\
& A_{2 i-1}(0) A_{2 i-1}^{*}(0)+q A_{2 i}(0) A_{2 i}^{*}(0)=q^{0}\left(a_{2 i-1}^{2}+q a_{2 i}^{2}\right) I_{q^{0}}, \quad i=1,2, \\
& A_{i}(0) A_{j}(0)=A_{j}(0) A_{i}(0), 1 \leq i, j \leq 4 .
\end{aligned}
$$

Suppose that for $r \geq 1$ we have

$$
\begin{aligned}
& A_{2 i-1}(r-1) A_{2 i}^{*}(r-1)=A_{2 i}(r-1) A_{2 i-1}^{*}(r-1), \\
& A_{2 i-1}(r-1) A_{2 i-1}^{*}(r-1)+q A_{2 i}(r-1) A_{2 i}^{*}(r-1)= q^{r-1}\left(a_{2 i-1}^{2}+q a_{2 i}^{2}\right) I_{q^{r-1}} \\
& \\
& i=1,2, \\
& A_{i}(r-1) A_{j}(r-1)= A_{j}(r-1) A_{i}(r-1), \\
& 1 \leq i, j \leq 4 .
\end{aligned}
$$

Write

$$
A_{2 j-1}(r)=J_{q} \times A_{2 j}(r-1), \quad A_{2 j}(r)=I_{q} \times A_{2 j-1}(r-1)+i Q \times A_{2 j}(r-1),
$$

$i=\sqrt{-1}, j=1,2$. It follows that

$$
\begin{aligned}
A_{2 i-1}(r) A_{2 i}^{*}(r) & =A_{2 i}(r) A_{2 i-1}^{*}(r), \\
A_{2 i-1}(r) A_{2 i-1}^{*}(r)+q A_{2 i}(r) A_{2 i}^{*}(r) & =q^{r}\left(a_{2 i-1}^{2}+q a_{2 i}^{2}\right) I_{q^{r}}, \quad i=1,2, \\
A_{i}(r) A_{j}(r) & =A_{j}(r) A_{i}(r), \quad 1 \leq i, j \leq 4
\end{aligned}
$$

Let

$$
K=\left[\begin{array}{cc}
0 & e^{T} \\
e & Q
\end{array}\right]
$$

Put

$$
F_{j}=I_{q+1} \times A_{2 j-1}(r)+i K \times A_{2 j}(r), i=\sqrt{-1}, j=1,2 .
$$

We have

$$
\begin{aligned}
F_{j} F_{j}^{*} & =q^{r}\left(a_{2 j-1}^{2}+q a_{2 j}^{2}\right) I_{q^{r}(q+1)}, \quad j=1,2, \\
F_{1} F_{2} & =F_{2} F_{1} .
\end{aligned}
$$

Finally, let

$$
X=\left(\begin{array}{rc}
F_{1} & F_{2} \\
-F_{2}^{*} & F_{1}^{*}
\end{array}\right) .
$$

Then X is a $\operatorname{COD}\left(2 q^{r}(q+1) ; q^{r}, q^{r}, q^{r+1}, q^{r+1}\right)$, as required.
From the proof of Theorem 6 we can obtain the following theorem.
Theorem 7 There is a $\operatorname{COD}\left(q^{r}(q+1) ; q^{r}, q^{r+1}\right)$ for each prime power $q \equiv 1(\bmod 4)$ and $r \geq 0$.

4 The construction of weak amicable T-matrices

It is convenient to use the group ring $Z[G]$ of the group G of order p over the ring Z of rational integers with the addition and multiplication. Elements of $Z[G]$ are of the form

$$
a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{p} g_{p}, a_{i} \in Z, g_{i} \in G, 1 \leq i \leq p
$$

In $Z[G]$ the addition, + , is given by the rule

$$
\left(\sum_{g} a(g) g\right)+\left(\sum_{g} b(g) g\right)=\sum_{g}(a(g)+b(g)) g
$$

The multiplication in $Z[G]$ is given by the rule

$$
\left(\sum_{g} a(g) g\right)\left(\sum_{h} b(h) h\right)=\sum_{k}\left(\sum_{g h=k} a(g) b(h)\right) k .
$$

For any subset A of G, we define

$$
\sum_{g \in A} g \in Z[G],
$$

and by abusing the notation we will denote it by A.
Let a set $\left\{X_{1}, \ldots, X_{8}\right\}$ be a C-partition of an abelian additive group G of order p, i.e.,

$$
X_{i} \subset G, \quad X_{i} \cap X_{j}=\emptyset, i \neq j
$$

and

$$
\sum_{i=1}^{8} X_{i}=G, \quad \sum_{i=1}^{8} X_{i} X_{i}^{(-1)}=p+\sum_{i=1}^{4}\left(X_{i} X_{i+4}^{(-1)}+X_{i+1} X_{i}^{(-1)}\right)
$$

where the equations above hold in the group ring $Z[G]$; (see [13]).
For any $A \subset G$, set

$$
I(A)=\left(a_{i j}\right)_{1 \leq i, j \leq n}, \quad a_{i j}= \begin{cases}1, & \text { if } g_{j}-g_{i} \in A \\ 0, & \text { otherwise }\end{cases}
$$

where g_{1}, \ldots, g_{p} are elements of G in any order. That is, $I(A)$ is the $(0,1)$ incidence matrix of A of type 1 . Now let

$$
T_{i}=I\left(X_{i}\right)-I\left(X_{i+4}\right), \quad i=1,2,3,4
$$

then T_{1}, T_{2}, T_{3} and T_{4} are T-matrices of order p.
Let $\sum_{g} a(g) g \in Z[G]$ where $a(g) \in Z$ and $g \in G$. If, for any $g \in G$, we have $a(g)=a(-g)$, then we call $\sum_{g} a(g) g$ symmetric in the group ring $Z[G]$.

It is clear that T-matrices T_{1}, T_{2}, T_{3} and T_{4} of order p satisfy weak amicability, if and only if $T_{1}\left(T_{3}+T_{4}\right)^{T}+T_{2}\left(T_{3}-T_{4}\right)^{T}$ is symmetric, and if and only if $\left(X_{1}-\right.$ $\left.X_{5}\right)\left(X_{3}^{(-1)}-X_{7}^{(-1)}+X_{4}^{(-1)}-X_{8}^{(-1)}\right)+\left(X_{2}-X_{6}\right)\left(X_{3}^{(-1)}-X_{7}^{(-1)}-X_{4}^{(-1)}+X_{8}^{(-1)}\right)$ is symmetric in the group ring $Z[G]$.

The following theorem and corollary will simplify the verification of weak amicability in some cases.

Theorem 8 Let G be an abelian group of order n and let $\left\{X_{1}, \ldots, X_{8}\right\}$ be a C partition of G. If both $X_{1}-X_{5}+X_{2}-X_{6}$ and $X_{3}-X_{7}+X_{4}-X_{8}$ are symmetric in the group ring $Z[G]$, then there exist T-matrices of order n satisfying weak amicability if and only if $\left(X_{2}-X_{6}\right)\left(X_{4}^{(-1)}-X_{8}^{(-1)}\right)$ is also symmetric in the group ring $Z[G]$.

Using the same assumptions as in Theorem 8, we have the following corollary.
Corollary 2 If $X_{4}=X_{8}=\emptyset$, then there exist T-matrices of order n satisfying weak amicability.

Appendix

Now we give decomposition of the sum of four squares and the new sets of T-matrices which have weak amicability for $p=9,25,49$. The values $1 \leq p \leq 21$ are given in Holtzmann and Kharaghani [5].

$$
\begin{array}{ll}
p=9=3^{2}+0^{2}+0^{2}+0^{2}, & Q_{1}=\{0,1, x+1\}, Q_{2}=\{2\}-\{x+2\}, \\
& Q_{3}=\{2 x\}-\{2 x+2\}, Q_{4}=\{2 x+1\}-\{x\} . \\
p=25=5^{2}+0^{2}+0^{2}+0^{2}, & Q_{1}=\{0\}-E_{0} \cup E_{1}, Q_{2}=E_{2}-E_{6}, Q_{3}=E_{3}-E_{7}, \\
& Q_{4}=E_{4}-E_{5}, \\
& \text { where } \left.E_{i}=\left\{g^{8 j+i}: j=0,1,2\right\}, i=0, \ldots, 7\right\}, \\
& \text { and } g=x+1\left(\bmod x^{2}-3, \bmod 5\right) \text { is a generator } \\
& \text { of GF(25). } \\
p=49=7^{2}+0^{2}+0^{2}+0^{2}, & Q_{1}=\{0\} \cup E_{0} \cup E_{1} \cup E_{6} \cup E_{12}-E_{3} \cup E_{7}, \\
& Q_{2}=E_{4} \cup E_{10} \cup E_{15}-E_{8} \cup E_{11} \cup E_{13}, \\
& Q_{3}=E_{9}-E_{2}, Q_{4}=E_{5}-E_{14}, \text { where } \\
& E_{i}=\left\{g^{16 j+i}: j=0,1,2\right\}, i=0, \ldots, 15, \text { and } \\
& g=x+2\left(\bmod x^{2}+1, \bmod 7\right) \text { is a generator } \\
& \text { of } \operatorname{GF}(49) .
\end{array}
$$

Remark. Holzmann and Kharaghani [5] have given constructions of weak amicable T-matrices of order 9 in Z_{9} and for $9=2^{2}+2^{2}+1^{2}+0^{2}$, However, our construction is given in $\operatorname{GF}(9)$ and for $9=3^{2}$. These constructions are different in essence.
Conjecture ([5]) There exist infinite orders of T-matrices satisfying weak amicability for all odd integers.

Acknowledgements

We are grateful to the referees for their helpful comments.

References

[1] J. Cooper and J. Seberry Wallis, A construction for Hadamard arrays, Bull. Austral. Math. Soc. 7 (1972), 269-278.
[2] R. Craigen and H. Kharaghani, A recursive method for orthogonal designs, Metrika 62 (2005), 185-193.
[3] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Lec. Notes Pure Appl. Math., Marcel Dekker, Inc., New York and Basel, 1979.
[4] A. V. Geramita and J. M. Geramita, Complex orthogonal designs, J. Combin. Theory Ser. A 25 (1978), 211-225.
[5] W.H. Holzmann and H. Kharaghani, Weak amicable T-matrices and Plotkin arrays, J. Combin. Des. 16 (2008), 44-52.
[6] H. Kharaghani, Arrays for orthogonal designs, J. Combin. Des. 8 (2000), 166173.
[7] M. Plotkin, Decomposition of Hadamard matrices, J. Combin. Theory Ser. A 13 (1972), 127-130.
[8] J. Seberry Wallis, Hadamard designs, Bull. Austral. Math. Soc. 2, (1970), 45-54.
[9] J. Seberry and M. Yamada, Hadamard matrices, sequences, and block designs, Contemporary Design Theory: A Collection of Surveys, (J. H. Dinitz and D. R. Stinson, eds.), John Wiley \& Sons, Inc., 1992, pp. 431-560.
[10] J. Seberry and R. Craigen, Orthogonal designs, in CRC Handbook of Combinatorial Designs, (C. J. Colbourn and J. H. Dinitz,eds.), CRC Press, 1996, pp. 400-406.
[11] R. J. Turyn, Complex Hadamard matrices, Combinatorial Structures and their Applications, Gordon and Breach, London, 1970, pp. 435-437.
[12] W. D. Wallis, A. P. Street and J. Seberry Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lec. Notes in Math. 292, Springer Verlag, Berlin, 1972.
[13] M. Xia and T. Xia, A family of C-partitions and T-matrices, J. Combin. Des. 7 (1999), 269-281.

