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    Deformation in a microcomponent is often constrained by surrounding joined material and then makes the component 

under mixed loading and multiple stress state. In this study, molecular dynamics (MD) simulation are conducted to probe 

the effect of stress state on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on Cu single crystal, 

bicrystal and polycrystal respectively under two different tension boundary conditions. Simulations are firstly conducted on 

the bicrystal and polycrystal model without lattice imperfection. The results reveal that, compared with the performance of 

simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads 

to a much higher tensile stress and can severely limit the plastic deformation, which in return promote cleavage fracture in 

the model. Simulations are then performed on Cu single crystal and polycrystal with initial crack. Under constrained 

boundary condition, the crack-tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes 

blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation 

activities dominate the deformation mechanisms and the crack plays a little role in both single crystal and polycrystal. 

Keywords: molecular dynamics, nanocrystalline, stress state, deformation mechanism 

PACS: 81.07.Nb, 81.07.Bc, 81.40.Vw, 81.40.Jj 

1. Introduction 

    Many next generation micro-electromechanical systems, nano-electromechanical systems and other micro-devices are 

being researched and they are widely applied to the production practice, their performance and reliability is contingent on 

the materials from which they are composed. Therefore, it is crucial to develop a sound understanding of deformation in 

materials with sub-micrometer dimensions. Compared with conventional coarser grained materials, nanostructure materials 

have a number of superior mechanical properties of potential significance for structure applications, including the high yield 

and fracture strength [1, 2], superior wear resistance [3-5], and high fatigue resistance [6-10] etc. The appealing mechanical 

characteristics of nanostructure material has provoked the great interests of researchers to explore its mechanical properties 

and underlying deformation mechanisms. Because the atomistic mechanisms are very hard to quantify experimentally, 

computer simulations based on atomistic models has became a powerful tool for gaining the fundamental knowledge in the 

past two decades and the results have been productive. 

    The properties and deformation mechanisms of nanocrystalline materials have been primarily studied with a focus on 

the impact of grain size [11-19]. The dislocation activities in the interior of grains lessen when the average grain size is less 

than 100 nm whereas mechanisms mediated by the grain boundary become dominant. However, not only the grain size but 

also the stress state can dramatically influence the mechanical response of nanocrystalline materials [20]. For example, 

hydrostatic pressure is determined that can improve the plasticity of metal during plastic forming process. Unfortunately, 

most of the previous research work conducted by atomistic simulations are under uniaxial tension or pure shear deformation, 

which is far from the actual situation where the micro or nano-components can be usually under mixed loading and multiple 

stress state. Very few authors have attempted to investigate the behavior and deformation mechanisms of nanocrystalline 

materials under multiple stress state at atomistic scale. Kitamura et al. [21] conducted numerical simulations to study the 

effect of transverse deformation on the fracture process of singlecrystal nickel, the simulation results shown that the 

constraint placed on the boundaries transverse to the uniaxial loading direction can lead to very high tensile yield stresses 

and severely limit inelastic deformation. Warner and Molinari [22] used the molecular dynamics (MD) simulation to probe 

the influence of normal loading on grain boundary shear response. They reported that the shear strengths of some grain 

http://www.sciencedirect.com/science/article/pii/S0921509311012810#gs0005
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boundaries are correlated with normal stress acting on the interface. Spearot et al. [23, 24] have recently examined a range 

of geometries of single crystal Cu and symmetric tilt grain boundaries loaded on tension, and thus, the stress state on the 

active slip system was indirectly varied as crystallographic orientation changed. They were able to shown that the non-glide 

direction stress components acting on the slip plane can influence the partial dislocation nucleation process and the 

maximum tensile strength.  

In this study, we conduct MD simulations to study the properties of deformation and fracture of nanocrystalline 

copper from the atomic point of view, both single crystal, bicrystal and polycrystal models are employed. Simulations are 

conducted firstly on a bicrystal and a polycrystal model without initial defects to investigate their mechanical properties and 

deformation behaviors. Then, a single crystal and a polycrystal model with a initial crack are numerically simulated to study 

the propagation of crack. In order to create different stress state, tensile strain are applied on each model with two different 

boundary conditions. The detailed information of simulation models and the boundary conditions will be specified in 

section 2. The simulation results are presented and discussed in section 3. 

2. Simulation Method 

2.1 Simulation model 

Simulation models used in this study are presented in Fig.1. The bicrystal model with ∑5(3 1 0) grain boundary is 

created by constructing two separate crystals with different crystallographic orientation and joining them together along Y 

axial, as shown in Fig.1(a). The polycrystal model is generated using the Voronoi construction method with random grain 

sizes and random crystallographic orientations, as shown in Fig.1(b). It contains 27 grains with a mean grain size 9.1 nm. 

The single crystal model is arranged routinely with its three crystallographic orientation along the X, Y, Z coordinate axis 

respectively. An initially wedgy crack is inserted into the side of single crystal model, as shown in Fig.1(c). The same 

polycrystal model of Fig.1(b) with initial crack is shown in Fig.1(d). Periodic boundary conditions are applied along all 

directions (X, Y and Z) of the simulation models. It should be noted that periodic boundary condition in Y direction 

introduces a second boundary plane into the bicrystal model in Fig.1(b). The initial crack in Fig.1(c) and Fig.1 (d) can 

propagate on both sides of the models due to the periodic boundary condition in X direction. 

Simulation models are prepared using a combination of molecular statics and MD simulations to obtain the equilibrium 

structures. Molecular statics calculations, which employ a nonlinear conjugate gradient method, are used to determine the 

minimum energy configurations. After the minimum energy configuration is attained, the simulation model is equilibrated 

using MD in the isobaric-isothermal (NPT) ensemble at a pressure of 0 bar and a temperature of 10 K for 20 ps. The 

dimension of the equilibrium models are present in Table.1. All the simulations in this study are performed with the 

LAMMPS code [25]. 

The interatomic potential chosen for simulations plays a profound role in the accurate prediction of defective structures. 

In this study, Copper is modeled using the embedded-atom method (EAM) potential developed by Mishin et al. [26]. The 

intrinsic stacking fault energies and unstable stacking fault energies from their simulation result are 44.4mJ/   and 

158mJ/  , respectively, which are very close to the experimental measurement 45mJ/   [27] and 162mJ/   [26].  

    

              (a)                   (b)                       (c)                       (d) 

Fig.1 Equilibrium configuration of simulation models. (a) bicrystal (b) polycrystal (c) single crystal with initial crack (d) 

polycrystal with initial crack. 
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Table.1 Dimension of simulation models 

Simulation model Model dimensions X×Y×Z (Å) Number of atoms 

Bicrystal 144.4×218.4×108.3 285,000 

Polycrystal 216.6×216.6×216.6 832,750 

Single crystal with crack 216.6×216.6×216.6 850,744 

Polycrystal with crack 216.6×216.6×216.6 821,367 

2.2 Boundary conditions of tensile loading 

    The simulation models are subjected to a tensile deformation along Y direction at a constant strain rate of 1×      . 

An integration time step of 1.0 fs is adopted throughout the MD simulations. The temperature is set at 10 K at the initial in 

every tension step to avoid the influence of the thermal motion of atoms at high temperature. In order to create different 

stress state, two different boundary conditions are used in this work. Specifically, MD simulations are performed using 

either 'free' or 'constrained' tension boundary conditions, as schemed in Fig.2. For the free tension boundary condition, the 

boundaries in the lateral directions are allowed to expand or contract during the deformation process so that the transverse 

stress are kept free (          , as shown in Fig.2(a). For the constrained tension boundary condition, computational 

models are strained at a constant rate along the Y axis while keeping fixed the model dimensions along the X and Z 

directions. The lateral boundaries are constrained by not allowing the periodic simulation model to expand or contract 

during the deformation process (          , as shown in Fig.2(b). This boundary condition consider the transverse 

stress along the X and Z directions during the tensile deformation. The dashed lines in Fig.2 represent the initial shape of 

the model, while the solid lines represent the deformed shape. These boundary conditions are very similar to those used by 

Kitamura et al. [21] and Spearot et al. [28] to study the effect of boundary condition on tensile deformation of nickel single 

crystal and copper bicrystal respectively. 

                   

                            (a)                                   (b) 

Fig.2 Schematic of simulation model with two different tension boundary conditions. (a) free tension boundary condition (b) 

constrained tension boundary condition. (Reference Fig.2 in [21]) 

In order to further validate the Mishin et al. EAM potentials [26] and the molecular dynamics code, simulations are 

designed to calculate the elastic stiffness (    and    ) of Cu single crystal model. As introduced above, the displacement 

(or strain) in X and Z directions is equal to zero under constrained tension boundary condition. Thus, the set of elastic 

equations to describe the response of a homogeneous cubic crystal, 
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Thus, the elastic constants     and     can be determined by measuring the slope of the appropriate stress-strain relation. 

For the mechanical properties, the system stress is attained by calculating the pressure of the entire system of atoms. The 

pressure is computed by the formula 
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where the first term uses components of the kinetic energy tensor and the second term uses components of the virial tensor. 

N is the total number of atoms in the simulation model, V is the simulation model volume. r and f is the force vector and the 

distance vector respectively. System strain is derived from the positions of the periodic boundaries. The elastic constants 

calculated from the initial slope of the MD simulations are 173.2GPa and 124.8GPa, which are all within acceptable 

accuracy of the experimental values of 168.4GPa and 121.4 GPa [29]. 

In addition, only principle stress is applied in our study, as shown in Fig.2, the well established von Mises yield 

criterion can be described as following, 

                        =  
 

 
         

          
          

                       (5) 

In the case of free tension boundary condition (        , the von Mises criterion simply reduces to, 

                                        =                                           (6) 

which means the material starts to yield when    reaches the yield strength of the material   , and is in agreement with 

the definition of tensile yield strength. On the other hand, in the case of constrained tension boundary condition (    
 

 

     , the von Mises criterion can expressed as, 

                                   =     =                                       (7) 

From equation (6) and (7), we can deduce that the simulation model starts to yield at a higher tensile stress (  ) under 

constrained boundary condition than the value under free boundary condition. Actually, this deduction is confirmed in our 

MD simulation, which will be specified in section 3. 

3. Simulation Results 

3.1 Tensile response of Cu bicrystal and polycrystal 

    Fig.3 shows the tensile stress-strain response for Cu bicrystal model with ∑5(3 1 0) grain boundary subject to a tensile 

deformation under two different tension boundary conditions. The maximum tensile stress corresponds to the nucleation of 

partial dislocations, in agreement with results for uniaxial tensile of Cu bicrystal by Spearot et al. [30, 31]. The tensile stress 

required for dislocation emission of bicrystal model under constrained boundary condition is 13.47 GPa, which is 

significantly higher than that required under free boundary condition (4.72 GPa). Apparently, the difference of the 

maximum tensile strength is result from the stresses that developed transverse to the loading direction during the 

deformation process. The result is conform to our deduction from the Mises yield criterion. 
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Fig.3 Relationship between stress and strain of Cu bicrystal model under two different tension boundary conditions. 

    To gain fundamental understanding of the strength differences between two different tension boundary conditions, the 

deformation mechanisms at atomistic scale are examined, as shown in Fig.4 and Fig.5. The atomic mechanisms are 

determined by examining continuous snapshots stored during the MD simulation. All images are colored according to the 

common neighbor analysis (CNA) parameter [32]. Atoms with perfect fcc structures are removed to facilitate viewing of the 

defect structures. Atoms colored with bright green organize the grain boundary plane and the dislocation core, while the 

blue atoms correspond to the hcp structures represent stacking fault. 

    Fig.4(a) and Fig.5(a) show the snapshot of atoms in the bicrystal model at the beginning of the stress drop under free 

boundary condition (ε=0.08) and constrained boundary condition (ε=0.112) respectively. Images indicate that partial 

dislocations with both edge and screw character are nucleated from the bicrystal interface once the maximum tensile stress 

has been reached, regardless of whether free or constrained tension boundary condition are prescribed. In addition, the 

constrained boundary condition promote the nucleation of crack along the grain boundary plane due to the local cleavage 

fracture at the stress drop, as shown in Fig.5(b) at ε=0.118. The crack propagates rapidly along the boundary plane and 

eventually result in the cleavage of the two grains of the bicrystal model. During the deformation process under constrained 

boundary condition, a limited number of dislocations nucleated from the boundary plane which restrict the plastic 

deformation and caused the brittle behavior of the bicrystal model, as seen of the sudden drop of the stress curve in Fig.3. 

This is different from the case under free boundary condition, where dislocation nucleation and propagation dominant the 

deformation mechanisms during the whole process of the simulation without any crack nucleation, as shown in Fig.4(b) at 

ε=0.082 or even at a higher strain rate, although it is not shown here. 

               
                                (a) ε=0.08                          (b) ε=0.082 

Fig.4 (Color online) Snapshots of copper bicrystal model at different tensile strain rate under free tension boundary 

condition at 10 K. 
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                                (a) ε=0.112                         (b) ε=0.118 

Fig.5 (Color online) Snapshots of copper bicrystal model at different tensile strain rate under constrained tension boundary 

condition at 10 K. 

    The relationship between stress and strain of polycrystal Cu under two different tension boundary conditions are 

plotted in Fig.6. Under constrained boundary condition, the maximum tensile stress reaches 9.26 GPa, being much higher 

than the value under free boundary condition (2.13 GPa) without the transverse stress, which is conform to our deduction 

based on the Mises yield criterion. Fig.7 shows the atomic configuration of Cu polycrystal model at different tensile strain 

rate. Dark blue, bright green and light blue atoms correspond to the local fcc, defect and hcp structures classified by CNA, 

respectively. Under constrained boundary condition, some grain boundaries become coarsening when deformation is 

performed. Meanwhile, voids are nucleated along the grain boundaries after several dislocations have been emitted from the 

boundary plane, as shown in the snapshot of Fig.7(b) at ε=0.055. The nucleated voids grow and coalesce during the 

deformation process and eventually leading to complete fracture of the model. Recall that, the mechanical response and 

deformation mechanisms of Cu polycrystal under constrained condition are quite similar to that described in Cu bicrystal 

model previously under the same condition. 

    The brittle behavior without obvious plastic strain under constrained boundary condition is completely different from 

the ductile one under free boundary condition where the slip deformation mechanism dominant the process. Massive 

dislocations nucleate from the grain boundary plane on one side and propagate across the grains and eventually be absorbed 

by the grain boundaries on the other side, leaving many stacking faults in the grains. Dislocation interaction is also prevail 

in the Cu polycrystal, as shown in Fig.6(a). The result is comparable with the previous simulation work on Cu polycrystal 

model under uniaxial tension [33-35] and in agreement with other fcc metals with low stacking fault energy in the 

experiments [36, 37]. Note that, no voids are nucleated during the tensile deformation under free condition even at a high 

strain rate of ε=0.1, see in Fig.6(a). The dislocation mediate deformation mechanism under free boundary condition 

contribute the ductile behavior of polycrystal Cu model and result in the stress flow in Fig.6. 
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Fig.6 Relationship between stress and strain of Cu polycrystal model under two different tension boundary conditions. 

        

                           (a) ε=0.1                                 (b) ε=0.055 

Fig.7 (Color online) Snapshots of copper polycrystal model at different tensile strain using (a) free tension boundary 

condition (b) constrained tension boundary condition at 10 K. 

3.2 Crack evolution in Cu single crystal and polycrystal 

    Fig.8 and Fig.9 give the details of the atomistic process of the crack evolution in Cu single crystal under two different 

tension boundary conditions. In the case of free boundary condition, the initial crack-tip blunting occurred with the increase 

of tensile deformation. However, the crack propagation is not obvious even when the tensile strain reaches ε=0.07, as seen 

in Fig.8(a). There is a plastic region in front of the crack-tip, and the atoms in this region are disordered rather than keeping 

the initial fcc structure. The stress increases and then concentrates itself at the crack-tip and result in the nucleation of 

dislocation at this region, as indicated in Fig.8(a). Note that, periodic boundary condition is applied on the X axis, as the 

applied strain increasing, the crack blunting increase on both side of the initial crack and consecutive dislocations are 

emitted from the crack frontier, as seen in Fig.8(b) and Fig.8(c). 

    Under constrained boundary condition, the crack propagate forward rapidly along the [1 0 0] direction, driven by 

something like a brittle manner. Atoms are still well ordered and no dislocation is emitted in the front of crack-tip, as seen 

in Fig.9(a) at ε=0.05. Crack propagation mechanisms involved only fatigue cleavage of atomic bonds in the crack plane 

leading to crack extension. At ε=0.06 in Fig.9(b), the plastic region appeared at the crack frontier and dislocations nucleated 

on both side of the crack, which is similar to the mechanism in Fig.8(b). But different from the case under free boundary 

condition, where dislocation nucleation and slipping accommodate the plastic deformation, with the increased tensile strain, 

the crack keeps propagating forward in a cleavage manner and eventually result in the fracture of the model. Only a limited 

number of dislocations are nucleated during the tensile deformation. 

    It is worth noting that, the fracture of Cu single crystal in a brittle manner under constrained boundary condition is just 
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one case since the single crystal model in this study is routinely arranged and the initial crack-tip is inserted on the (0 0 1) 

plane. Actually, many deformation parameters should be taken into consideration when examining the brittle or ductile 

fracture mechanism in the simulation work: temperature, strain rate, shape of the created crack, oriented misorientation of 

grain atoms, the mode of force applied and its value, etc. For example, Potirniche and coworkers [38] investigate the 

influence of crystallographic orientation on the crack growth path in single crystal Cu. In their MD simulation, the crack-tip 

plasticity is determined by the number of active slip system resulting from the different orientations, both crack-tip blunting 

and fatigue cleavage was observed. In any case, the stress state is determined in our simulation to be a another significant 

factor that can affect the crack evolution in the bulk materials. 

          

                      (a) ε=0.07                   (b) ε=0.086                 (c) ε=0.09 

Fig.8 (Color online) Atomic configurations of cross sections of copper single crystal model with initial crack at different 

tensile strain rate under free tension boundary condition at 10 K. 

         

                      (a) ε=0.05                     (b) ε=0.06                (c) ε=0.09 

Fig.9 (Color online) Atomic configurations of cross sections of copper single crystal model with initial crack at different 

tensile strain rate under constrained tension boundary condition at 10 K. 

    Fig.10 and Fig.11 present the atomistic process of the crack evolution of polycrystal Cu under two tension boundary 

conditions. At ε=0.01, crack keeps its original configuration under free boundary condition, some embryo partial dislocation 

nucleated from grain boundary near the crack-tip region in grain 1, as seen in Fig.10(a). With the increase of applied tensile 

deformation, massive dislocations are emitted from the grain boundaries in each grain and travel through the grains to the 

opposite grain boundaries, as shown in Fig.10(b). The initial inserted crack seems play a little role during the deformation 

process since the crack-tip didn't propagate forward and no conspicuous crack blunting is observed in this case. Similar to 

the case of single crystal, dislocation mediated plastic deformation is the dominant mechanism of the Cu polycrystal under 

free boundary condition.  

    Under constrained boundary condition, as shown in Fig.11(a), the crack becomes blunt compared with its initial 

configuration and has been propagating forward a small distance when the applied tensile strain reaches ε=0.01. No embryo 

dislocation near the grain boundaries was observed at this stage. What's interesting is that, with the increasing of the tensile 

strain, the crack-tip didn't propagate forward in a brittle fracture manner as expected as its evolution in the single crystal 

model. Instead, the crack-tip became significant blunt and the crack extended along the grain boundaries nearby. The 
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intergranular fracture in this case is different from the intragranular fracture in our previous result [39], which can be 

ascribed to the location of the initial crack. The crack-tip in our previous simulation is arranged inside the grain and far from 

the nearest grain boundary, while in this work, the crack-tip is inserted at the grain boundary place, as shown in Fig.1(a). 

From the comparison of the crack performance between polycrystal model with single crystal model under constrained 

boundary condition and with our former simulation result, two conclusions can be implied here. For one thing, the 

crystallographic orientation of grain on the crack growth path have a strong impact on the crack propogation. For the other, 

grain boundary is the preferential path of the crack extension since the atoms on the boundary plane have higher energy and 

are more easier to diffuse.  

    In addition, massive dislocation are observed in polycrystal Cu under constrained boundary condition at ε=0.08. Note 

that, under the free boundary condition, dislocations are first nucleated from one side of each grain and then propagate 

along the same slip plane to the opposite side, seen in Fig.10(b). However, under constrained boundary condition, the 

transverse stress activates more slip systems so that dislocations can be nucleated from different grain boundaries in each 

grain and slip on different slip planes, as shown in Fig.11(b). The propagation of dislocations on different slip system can 

induce relative sliding between two neighboring grains [35], and grain rotation occurs as a result of cooperative sliding 

along the opposite boundaries of the grain. For example, grain 1 and grain 2 in Fig.11(a) have different crystallographic 

orientation at ε=0.01, but the relative rotation of the two grains changes their initial orientation gradually and eventually 

result in the combination of the two grains at ε=0.08, as shown in Fig.11(b). Moreover, the rotation of grains can also lead 

to the separation of the grain, as seen in Fig.11, grain 3 split into two grains at ε=0.08. The grain rotation induced grain 

separation or combination are not observed in other grains of the polycrystal at ε=0.08, this is mainly because that small 

grains rotate much faster than larger ones [35]. Furthermore, grain boundary migration which are reported previously [40, 

41] is not obviously seen at ε=0.08 under both of the two tension boundary conditions, this is mainly because of the low 

temperature used in our simulation and the accumulated local stress may not high enough to drive the motion of the grain 

boundaries [42, 43]. 

         

                              (a) ε=0.01                             (b) ε=0.08 

Fig.10 (Color online) Atomic configurations of cross sections of copper polycrystal model with initial crack at different 

tensile strain rate under free tension boundary condition at 10 K. 
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    (a) ε=0.01                              (b) ε=0.08 

Fig.11 (Color online) Atomic configurations of cross sections of copper polycrystal model with initial crack at different 

tensile strain rate under free tension boundary condition at 10 K. 

4. Conclusions 

    The mechanism of deformation and fracture of Cu single crystal, bicrystal and polycrystal has been studied at the 

nanoscale under two different tension boundary conditions using MD simulations. As a whole, this work demonstrates that 

stress state is particularly important in determining mechanical properties and fatigue resistance in materials. The results are 

summarized as follows. 

    (1) For the Cu bicrystal and polycrystal models, the tensile stress required for dislocation emission for the bicrystal and 

polycrystal under constrained boundary condition are significant higher than that required under free boundary condition. 

The failure of models is dominated solely by partial dislocation slip activity under the free boundary condition, while under 

constrained boundary condition, the multistate of tensile stress due to the transverse stress perpendicular to the tensile axial 

leads to a more brittle mode of failure. 

    (2) The evolution of crack in the Cu single crystal model under two tension boundary conditions are completely 

different. Under free boundary condition, the emission of dislocations from the crack-tip and their propagation is the 

dominant mechanism during the tensile deformation. The deformation mechanism is quite another thing under the 

constrained boundary condition, where the crack extends along the [1 0 0] direction in a cleavage manner and eventually 

result in the fracture of the model. 

    (3) Under free boundary condition, crack plays a little role during the tensile deformation of Cu polycrystal in this 

study, dislocation nucleation from grain boundary and its propagation in the grain is the dominant mechanism. Under 

constrained boundary condition, grain boundaries hinder the propagation of the crack-tip but provide the path for the 

extension of the crack. In addition, the principle tensile stress along with the transverse stress can activate multiple slip 

systems in each grain of Cu polycrystal. 
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