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Abstract
The results of this study reveal a strong linear correlation (R2 = 0.95) between the rejections of boron and N-
nitrosodimethylamine (NDMA) by six different reverse osmosis (RO) membranes, suggesting that boron can
be used as a surrogate for NDMA rejection. This proposal is based on the premise that the rejection of both
boric acid and NDMA is governed by steric hindrance and that they have similar molecular dimensions. The
concept proposed here is shown to be valid at pH 8 or below where boron exists as the neutral boric acid
species and NDMA is also a neutral solute. Observed changes in the rejections of these two species, as a
function of permeate fluxes and feed solution temperatures, were also almost identical. Boron rejection
increased from 21 to 79%, and the correlation coefficient of the linear regression between boron and NDMA
rejections was 0.99 as the permeate flux increased from 5 to 60 L m−2 h−1. Similarly, a linear correlation
between boron and NDMA rejections was observed as the feed solution temperature increased from 10 to 40
°C. This linear correlation was also validated in a tertiary treated effluent matrix.
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ABSTRACT: The results of this study reveal a strong linear correlation (R2 = 0.95) between the 

rejections of boron and N-nitrosodimethylamine (NDMA) by six different reverse osmosis (RO) 

membranes, suggesting that boron can be used as a surrogate for NDMA rejection. This proposal 

is based on the premise that the rejection of both boric acid and NDMA is governed by steric 

hindrance and that they have similar molecular dimensions. The concept proposed here is shown 

to be valid at pH 8 or below where boron exists as the neutral boric acid species and NDMA is 

also a neutral solute. Observed changes in the rejections of these two species, as a function of 

permeate fluxes and feed solution temperatures, were also almost identical. Boron rejection 

increased from 21 to 79% and the correlation coefficient of the linear regression between boron 

and NDMA rejections was 0.99 as the permeate flux increased from 5 to 60 Lm-2h-1. Similarly, a 

linear correlation between boron and NDMA rejections was observed as the feed solution 

temperature increased from 10 to 40 ºC. This linear correlation was also validated in a tertiary 

treated effluent matrix. 

1 Introduction 

The presence of N-nitrosodimethylamine (NDMA) in recycled water and drinking water has 

recently emerged as a significant concern for human health.1 NDMA can be formed when 

precursor-containing wastewater effluents are disinfected with chloramines or chlorine. NDMA 

is known to induce tumors at multiple sites in rodents exposed by various routes and has been 

classified as a probable human carcinogen.2, 3 As a result, water authorities in Australia, the 

United States, and several other countries have set a limit on NDMA concentration in drinking 

water and recycled water intended for potable water reuse of 10 ngL-1 or below. NDMA 
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concentrations in secondary treated effluents are commonly above this guideline value.1 Thus, in 

many potable water reuse schemes, NDMA concentration is reduced by a sequence of reverse 

osmosis (RO) filtration and UV/advanced oxidation processes. NDMA rejection by RO 

membranes can be profoundly influenced by the types of membrane used 1, 4 and operating 

conditions such as permeate flux and temperature.5 This can present a major water quality 

compliance challenge for potable water reuse schemes and can have a significant impact on 

overall plant design and operation such as inclusion of UV/advanced oxidation processes in the 

treatment train.4 Reliable chemical analysis at low part per trillion levels (ngL-1) is a further 

significant technical challenge for the control of NDMA. In fact, despite their significance in 

drinking water, reliable analytical methods for N-nitrosamines are only available at a few 

commercial and research laboratories around the world. 

Boron is ubiquitous in municipal wastewater. It is an important ingredient of soaps, detergents, 

and glassware products.6 In municipal wastewater, boron commonly occurs at concentrations in 

the range of 0.3 – 4 mgL-1.7 In some water reuse applications, boron removal may also be 

required, particularly if the reclaimed water is used for irrigation because boron can be toxic to a 

range of plant species at concentrations as low as 0.5 mgL-1.8 In the aqueous phase, at pH values 

below the pKa of 9.2 (which is typical for secondary treated effluent), boron exists predominantly 

as neutral boric acid. Being a low-molecular-weight and neutral species, boric acid rejection by 

RO membranes is also strongly dependent on operating conditions.8, 9 Similar to NDMA, boron 

rejection by RO membranes has been a subject of significant interest in separation science and 

technology.8-11 However, unlike NDMA, boron concentration in an aqueous solution can be 

readily measured using a range of conventional analytical techniques including ion 

chromatography 12, 13 or online probes.14 In addition, boron rejection can also be modelled and 

simulated using currently available commercial software packages (e.g. ROSA, TorayDS/DS2, 
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and IMSDesign provided by Dow FilmTec, Toray, and Hydranautics, respectively). By contrast, 

no commercial software packages are currently available for modelling NDMA rejection by RO 

membranes. 

Given the co-occurrence of both NDMA and boron in wastewater effluents, the aim of this 

study was to demonstrate the prospect of using boron as a viable surrogate for NDMA rejection 

by RO membranes. Boron rejections by six different RO membranes were correlated to those of 

NDMA under similar operating conditions. The impact of permeate flux and temperature on the 

rejection of both boron and NDMA was also evaluated. 

2 Materials and Methods 

2.1 Chemicals and reagents 

Stock solution of 10 mgL-1 of NDMA (Sigma–Aldrich, St Louis, MO, USA) was prepared in 

pure methanol, in the dark at -18 ºC, and was used within one month. B(OH)3, NaCl, CaCl2, 

NaHCO3, NaOH, and HCl (Ajax Finechem, Taren Point, NSW, Australia) were used for 

preparing the feed solution. Suprapur HNO3 (Merck Co., Darmstad, Germany) was used for 

sample dilution prior to inductively-coupled plasma mass spectrometry (ICP-MS) analysis. 

Milli-Q water (Millipore, Billerica, MA, USA) was used for the preparation of stock and feed 

solutions. All chemicals used are analytical grade. Tertiary treated effluent was collected from a 

water reclamation plant in New South Wales, Australia which was comprised of primary 

screening followed by an activated sludge treatment process and microfiltration. The tertiary 

treated effluent sample was collected after microfiltration. The effluent had a boron 

concentration of 0.1 mgL-1, conductivity of 720 µS/cm and a pH of 7.1. The detailed 

characteristics of this tertiary treated effluent have been reported elsewhere. 15 



 5

2.2 Membranes 

Six RO membranes were used in this study, including BW30 (Dow FilmTec, Minneapolis, 

MN, USA), ESPA1, ESPA2, ESPAB, SWC5 (Hydranautics, Oceanside, CA, USA), and TFC-

HR (Koch Membrane Systems, San Diego, CA, USA) membranes. The SWC5 is a high-pressure 

seawater RO membrane and the others are low-pressure RO membranes commonly used for 

water reuse applications. These are thin-film composite membranes consisting of an ultra-thin 

polyamide (or polyamide derivative) skin layer on top of a micro-porous support layer. Key 

properties of these membranes are summarised in Table 1. 

Table 1. Water permeability and salt rejection of the selected RO membranes. (The SWC5 is a 

high-pressure seawater RO membrane and the others are low-pressure RO membranes 

commonly used for brackish water or wastewater reclamation applications.) 

Membrane Water permeability a 
[Lm-2h-1bar-1] 

TDS rejection b 
[%] 

Na rejection b 
[%] 

SWC5 2.63 99.2 99.3 

TFC-HR 3.12 98.8 99.2 

BW30 3.88 92.8 93.3 

ESPAB 4.55 98.4 98.5 

ESPA2 6.15 95.8 96.1 

ESPA1 7.80 95.5 95.8 

a Measured with milli-Q water at 1,000 kPa and 20 ºC. 

b Measured at 20 Lm-2h-1 permeate flux, 20 mmolL-1 NaCl and pH 8. 

2.3 NF/RO filtration system and experimental protocol 

Prior to each experiment, the membrane sample was rinsed with Milli-Q water to remove any 

preservative chemicals. Membrane compaction was then conducted using Milli-Q water at 1,800 
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kPa for at least 1 h until a stable permeate flux had been achieved. Following the membrane 

compaction, the pressure was reduced to 1,000 kPa for the pure water permeability measurement. 

The Milli-Q water was then replaced by a 10 L standard feed solution containing 250 ngL-1 

NDMA, 5.75 mgL-1 B(OH)3 (1 mgL-1 B), 20 mmolL-1 NaCl, 1 mmolL-1 CaCl2, and 1 mmolL-1 

NaHCO3. The NDMA and boron concentrations were chosen to represent concentrations 

previously observed in secondary treated effluent. The pH of the feed solution was adjusted and 

kept constant at pH 8 by adding a small volume of either 1 molL-1 NaOH or 1 molL-1 HCl 

solution. When tertiary treated effluent was used as the feed, an appropriate volume of NDMA 

stock solution was used to obtain of concentration of 250 ngL-1 NDMA in the feed; no further 

chemical addition or pH adjustment were required. The operational parameters were set at 20 

Lm-2h-1 permeate flux, 20 ºC temperature, and 42 cms-1 cross-flow velocity unless otherwise 

stated. These parameters are similar to those commonly used in full-scale RO installations for 

wastewater reclamation.4 Permeate and retentate were circulated back to the feed reservoir to 

maintain the same feed solution composition throughout the experiment. Experiments with 

variable permeate flux were conducted by first adjusting the permeate flux to 60 Lm-2h-1 followed 

by a stepwise reduction in 5 Lm-2h-1 increments. For experiments with variable temperature, the 

feed temperature was incrementally increased from 10 to 40 ºC. The permeate flux and feed 

solution temperature were selected for further examination since these two parameters are known 

to have strong effects on the rejection of boric acid and NDMA.4, 8 In all experiments, once the 

target operational parameters were achieved, the filtration system was operated at steady state for 

1 h prior to the collection of feed and permeate samples for analysis. At each sampling event, 

200 mL of feed and permeate samples were collected simultaneously. Isotope standard (50 ng) of 

NDMA was added to the samples and solid phase extraction (SPE) was conducted immediately. 
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2.4 Analytical method 

The concentration of NDMA was determined using an Agilent 7890A gas chromatograph 

(GC) coupled with an Agilent 7000B triple quadrupole mass spectrometer (MS/MS) (Agilent 

Technologies, Wilmington, DE, USA). The obtained limit of quantification of NDMA by this 

analytical method is 0.45 ngL-1 in ultrapure water.16 Details of the SPE procedure and validation 

of the methods in different matrix solutions are available elsewhere.16 The concentrations of 

boron and sodium were analysed using an Agilent 7500cs ICP-MS. A Merck ICP multi-element 

standard solution was used for calibration. Detection limits for 11B and 23Na (expressed as total B 

and Na) were approximately 50 ngL−1 and 140 ngL−1, respectively. The details of this analytical 

method have been described in a previous publication.17 Conductivity and pH were measured 

using an Orion 4-Star Plus pH/conductivity meter (Thermo Scientific, Beverly, MA). 

3 Results and discussion 

3.1 Correlation between boron and NDMA rejection by RO membranes 

The RO membranes used in this study were systematically selected to span a wide range of 

permeability (Table 1). As a result, the rejection values of boron also covered a large range from 

approximately 10% (by the ESPA1 membrane which has the highest water permeability) to as 

high as 80% (by SWC5 which is a seawater RO membrane). The range of NDMA rejection by 

these membranes was similar to that of boron, ranging from 22 – 74%. The linear correlation (R2 

= 0.95) between the rejection values of boron and NDMA shown in Figure 1 has an F-value of 

104 corresponding to a p-value of 0.000517. In addition, the slope of the linear regression is 0.82 

indicating that the absolute values of boric acid rejection and NDMA rejection by a specific 

membrane are comparable to each other, especially by the higher-rejection membranes such as 

ESPAB and SWC5. 
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The strong correlation between boron and NDMA rejections by RO membranes observed here 

can be attributed to the similarity in their molecular dimensions, charge, and rejection 

mechanism. Possessing a pKa value of 9.2 (Table 2), boric acid can speciate and transform from 

its neutral boric acid form to the negatively charged borate species as a function of pH (Figure 

2). As a result, in aqueous solution, boron exists predominantly (> 90%) in the neutral boric acid 

form at or below pH 8 (Figure 2). On the other hand, NDMA only exists as an uncharged species 

in the normal wastewater pH range due to its negative pKb value (Table 2). As a result, at or 

below pH 8, both boron and NDMA exist in their uncharged forms and steric hindrance is the 

only mechanism governing their rejection by RO membranes.5, 18, 19 With the steric hindrance 

rejection mechanism, rejection is governed by the size of the solute. Boric acid and NDMA have 

comparable molecular dimensions (Table 2) and thus their rejection values as well as behaviour 

are comparable. In addition, boric acid and NDMA are both hydrophilic (Table 2) and thus are 

not expected to adsorb to the membrane polymeric matrix. It is noteworthy that NDMA has a 

significantly higher dipole moment than that of boric acid (Table 2). The dipole moment can 

influence the orientation of cylindrical molecules as they approach the membrane surface. 20 

NDMA and boric acid have comparable molecular length and height (Table 2) and since the 

relative rejection for both solutes was similar the influence of dipole moment on their rejection 

appears to be insignificant. 
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Figure 1. The correlation between the rejections of boron and NDMA by different membranes at 

pH 8. Feed water contains 250 ngL-1 NDMA, 5.75 mgL-1 B(OH)3, 20 mmolL-1 NaCl, 1 mmolL-1 

NaHCO3, and 1 mmolL-1 CaCl2; temperature 20 ºC, permeate flux 20 Lm-2h-1, cross-flow velocity 

42 cms-1. 

Table 2. Properties of boric acid and NDMA. 

 Boric acid NDMA 

Molecular weight [gmol-1] 61.83 74.05 

Molecular dimensions [Å] a    

Length 4.52 4.10 

Height 3.08 3.46 

Width 0.85 1.73 
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Figure 2. The speciation of boric acid and NDMA in de-ionised water matrix, temperature 25 

ºC, pressure 1 atm. 

3.2 Effects of operating conditions on boron and NDMA rejection 

In a full-scale RO installation, in addition to the solution pH, temporal variation in other 

operating parameters including solute concentration, ionic strength, permeate flux and 

temperature can be expected. Some of these parameters do not affect solute rejection while 

others can exert a significant impact on the separation efficiency of RO membranes. It has been 

consistently reported that the rejections of boron and NDMA by RO membranes are independent 

of their concentrations in the feed water.4, 8 Thus, the concentration is not expected to affect the 

correlation between NDMA and boron rejection. Similarly, it has also been revealed that the 

impact of ionic strength variation on the rejection of neutral solutes is not significant.21, 22 NDMA 
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rejection by RO membranes was reported to decrease by only 17% as the feed ionic strength 

increased from 26 to 260 mmolL-1.5 Steinle-Darling et al.23 reported a 15% decrease in NDMA 

rejection by the ESPA3 membrane when the NaCl concentration increased from 0 to 100 mmolL-

1. Similarly, the impact of ionic strength (within the range encountered during water reuse) on 

boron rejection was not significant. Tu et al.17 reported a slight increase in boron rejection when 

the feed water ionic strength was raised from 16 to 43 mmolL-1, and there exists a coupling effect 

between the water ionic strength and pH on boron rejection. Given the small impact of feed 

concentration and ionic strength on the rejection of boron and NDMA reported in the literature, 

the influence of these two parameters on the correlation between boron and NDMA rejections 

was not examined here. Instead, we have sought to demonstrate the correlation between boron 

and NDMA rejections under a range of permeate fluxes and feed solution temperatures since 

these parameters are known to exert a significant impact on the rejection of boron and NDMA. 

An increase in the permeate flux led to a substantial increase in the rejection of both boron and 

NDMA (Figure 3a). This result is consistent with the literature 5, 24 and can be systematically 

described by the irreversible thermodynamic model 5 wherein solute rejection approaches the 

intrinsic membrane reflection coefficient (σ) as the permeate flux increases. As a result, an 

increase in permeate flux will result in an increase in solute rejection. At pH 8, a linear 

correlation (R2 = 0.99) between the rejections of boron and NDMA at various permeate flux was 

observed (Figure 3b). However, it is noteworthy that the boron rejection can significantly 

increase when boron exists as the negatively charged borate ion at pH values above 8. At pH 6 

and 8, NDMA and boron rejections were comparable, whereas at pH 10.5, boron rejection was 

substantially higher (Figure 3a). This result implies that boron can only be used as a surrogate for 



 13

NDMA rejection at pH values equal or below 8.
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Figure 3. (a) The rejection of boron and NDMA as functions of permeate flux at different pH 

values; and (b) the correlation between boron and NDMA rejections at various permeate fluxes 

at pH 8. The TFC-HR membrane was used; feed water contains 250 ngL-1 NDMA, 5.75 mgL-1 

B(OH)3, 20 mmolL-1 NaCl, 1 mmolL-1 NaHCO3, and 1 mmolL-1 CaCl2; temperature 20 ºC, cross-

flow velocity 42 cms-1. 

The rejections of boron and NDMA decreased linearly as a function of feed solution 

temperature (Figure 4a). Similar results have also been reported elsewhere5, 25 and were attributed 

to the swelling of the membrane structure 26, 27 as well as the increase in the solute diffusivities.28 

Boron rejection at pH 6 and 8 and NDMA rejection at pH 8 appeared to be comparable at various 

feed water temperatures (Figure 4a). Indeed, a linear correlation (R2 = 0.98) between boron 

rejection and NDMA rejection at various feed water temperatures can be observed at pH 8 

(Figure 4b). However, once again, at pH 10.5, boron rejection as a function of feed water 

temperature exhibited a very different behaviour (Figure 4a). These results reaffirmed that boron 

can only be used as a surrogate for NDMA rejection at pH 8 or below when both boron and 

NDMA exist as neutral species. 
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Figure 4. (a) The rejection of boron and NDMA as functions of temperature at different pH 

values; and (b) the correlation between boron and NDMA rejections at various temperatures at 

pH 8. The TFC-HR membrane was used; feed water contains 250 ngL-1 NDMA, 5.75 mgL-1 

B(OH)3, 20 mmolL-1 NaCl, 1 mmolL-1 NaHCO3, and 1 mmolL-1 CaCl2; permeate flux 20 Lm-2h-1, 

cross-flow velocity 42 cms-1. 

The correlation between boron and NDMA rejections at different temperatures was also 

validated using a tertiary treated effluent matrix. The tertiary treated effluent had a pH value of 

7.1 and thus both boron and NDMA exist in their neutral forms. As expected, a linear correlation 

between boron and NDMA rejections was observed with a correlation coefficient (R2) of 0.94 as 

the feed solution temperature increased from 10 to 40 ºC (Figure 5a). However, it is noteworthy 

that the rejections of both boron and NDMA differ slightly from values reported in Figure 4. 

This variation can be attributed to the compositional difference between the tertiary treated 

effluent and the synthetic feed water solution used in this study.29 
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Figure 5. (a) The rejection of boron and NDMA as functions of temperature; and (b) the 

correlation between boron and NDMA rejections at various temperatures. The TFC-HR 

membrane was used. Tertiary treated effluent dosed with 250 ngL-1 NDMA was used as feed 

solution. Permeate flux 20 Lm-2h-1, cross-flow velocity 42 cms-1. 

The strong correlation between boron and NDMA rejections reported in this study is valid at 

pH 8 or lower where boron exists in the form of boric acid (Figure 2). It is noteworthy that in 

full-scale RO plants for water reclamation applications, the feed water pH is usually in the range 

of pH 6 – 7.5 to minimize the precipitation of partially-soluble salts.4 Thus, our proposal to use 

boron as a surrogate for NDMA rejection can be applied in the typical context of water 

reclamation. Given the recent availability of online boron monitoring techniques (e.g. online ion 

chromatography and boron-specific probe), boron can be a viable surrogate for NDMA rejection. 

Thus, the rejection of NDMA by RO membranes can be predicted without the burden of NDMA 

analysis. Nevertheless, this approach does not eliminate the need for compliance monitoring of 

NDMA in the RO permeate. Furthermore, caution is necessary when using boron as a surrogate 

for NDMA rejection. For example, the established correlation may be influenced by the 

interactions between boric acid with other constituents present in the water matrix. A notable 

example is the complexation between boric acid and poly-alcohols which can substantially 
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increase boric acid rejection by RO membranes.30-32 Further studies are necessary to assess the 

validity of this concept in pilot- and full-scale operations and under the influence of parameters 

that have not been investigated in this study, such as the interaction of boric acid with traces of 

poly-alcohols in the feed solution. 
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