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Towards a cryptographic treatment of publish/subscribe systems

Abstract
Publish/subscribe mechanism is a typical many-to-many messaging paradigm when multiple applications
want to receive the same message or when a group of applications would like to notify each other.
Nonetheless, there exist only a few works that address the security issues for content-based publish/subscribe
systems formally. Although the security requirements have been partially addressed by Wang et al., there is no
formal definition for all of these security requirements in the literature. As a result, most of the existing
schemes do not have any security proof and it is difficult to justify whether those schemes are really secure in
practice. Furthermore, there is no comprehensive scheme that satisfies the most essential security
requirements at the same time. In this paper, we introduce the first security model for important security
requirements of content-based publish/subscribe systems. We also give a new security requirement for
publisher authenticity, which means that the publisher is authenticated to publish certain types of notification
only, and cannot publish other types of notification. We then exhibit a new scheme which fulfills most of the
security requirements. Furthermore, we also provide a comprehensive proof for our concrete construction
according to the new model. 2014 IOS Press.
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Publish/subscribe mechanism is a typical many-to-many messaging paradigm when multiple appli-
cations want to receive the same message or when a group of applications would like to notify each
other. Nonetheless, there exist only a few works that address the security issues for content-based pub-
lish/subscribe systems formally. Although the security requirements have been partially addressed by
Wang et al., there is no formal definition for all of these security requirements in the literature. As a result,
most of the existing schemes do not have any security proof and it is difficult to justify whether those
schemes are really secure in practice. Furthermore, there is no comprehensive scheme that satisfies the
most essential security requirements at the same time. In this paper, we introduce the first security model
for important security requirements of content-based publish/subscribe systems. We also give a new se-
curity requirement for publisher authenticity, which means that the publisher is authenticated to publish
certain types of notification only, and cannot publish other types of notification. We then exhibit a new
scheme which fulfills most of the security requirements. Furthermore, we also provide a comprehensive
proof for our concrete construction according to the new model.

Keywords: Publish/subscribe, cryptographic security model, security proofs

1. Introduction

Publish/subscribe (pub/sub) is an efficient communication infrastructure that sup-
ports dynamic, many-to-many data dissemination in a distributed environment. It
allows decoupled messaging between: (1) subscribers, having subscriptions to the
interested information, and (2) publishers, providing notifications for the information
they provide. This kind of many-to-many communication has become very popular
in social networking websites.

All pub/sub technologies use subject or topic names as the loosely coupled link
between publishers and subscriber systems. Publishers produce messages on a par-
ticular subject or topic name and subscribers receive those messages by registering
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Fig. 1. Publish/subscribe system. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-130486.)

interest in the subject name either explicitly or through some broader subscription
scheme using wildcards. Subscribers and publishers are loosely coupled by a net-
work of brokers that route the notifications to the interested subscribers. Pub/sub
allows subscribing applications to select messages by topic (as specified by the pub-
lishing application) or by content (by specifying filters). The latter is usually referred
to as the content-based pub/sub systems (CBPS). Any messages addressed to a topic
are delivered to all the topic’s subscribers. Every subscriber receives a copy of each
message. Information is automatically pushed to subscribing applications without
having them to pull or request it. In short, pub/sub topologies publish messages di-
rectly to the bus or network, and these topologies are known as shared bus-based
solutions. It is illustrated in Fig. 1.

The existing pub/sub systems tend to focus on the performance, scalability and
expressiveness issues of the mechanism. Security issues and requirements are firstly
addressed by Wang et al. [27]. The main issues include authentication, integrity and
anonymity, which can usually be achieved by minor modification to the existing
approaches. On the other hand, confidentiality is more difficult to achieve. Therefore,
we consider Wang et al.’s work as addressing the security of pub/sub network only
partially.

Our contributions. Publish/subscribe systems are important to the future social
networking services. However, there is no formal security model for the pub/sub
systems. Wang et al. [27] proposed some security issues and requirements, without
defining a formal model. Nikander and Giannis [18] pointed out the difficulty of
modeling pub/sub systems using traditional send/receive paradigm. They only gave
a general model to reflect the multicast nature of the pub/sub systems, without con-
cerning the security requirements. As a result, most of the existing schemes do not
have any security theorem or proof. To the best of the authors’ knowledge, only
Raiciu and Rosenblum [22] proposed the security model for confidentiality and they
proved the confidentiality of their scheme. A complete security theorem and proof
are essential to analyze the security level of a CBPS protocol. Moreover, a complete



T.H. Yuen et al. / Towards a cryptographic treatment of publish/subscribe systems

security model is needed to identify the security requirements and the attacker’s ca-
pability. Therefore, in this paper, we propose a formal security model for all security
requirements for the CBPS.

Secondly, Wang et al. [27] suggested some possible solutions for each security
requirements that they proposed. However, it is not clear that if these methods can
work together under the same threat model. Moreover, some methods are out-of-band
solutions and are handled independently of the pub/sub infrastructure. Additionally,
most of the existing CBPS schemes enabling confidentiality do not consider authen-
ticity and integrity simultaneously. In this paper, we propose a comprehensive CBPS
scheme which fulfills most security requirements concurrently. We prove the security
of our scheme under the new security model.

New improvements and comparison to our previous work [30]. Compared to our
preliminary version in [30], we have made a few improvements:

• The security model of [30] did not consider the attack from a dishonest pub-
lisher, who publish notifications beyond the limitation. For example, the pub-
lisher Alice is only allowed to publish about “business news”. Then she should
not be able to publish about “sports news”. The construction in [30] did not
have any restriction about what can be published by the publisher.
In this paper, we propose a new publisher authenticity security model, such
that the publisher can only publish notifications within the limit imposed by
the manager. Our concrete construction uses identity-based signatures to ensure
that the publisher is authenticated to make such a notification.
With the introduction of the identity-based signatures in the scheme, most secu-
rity proofs has to be modified from [30]. In particular, the proofs of Theorems 3
and 5 have to consider the extra case of the forgery of the identity-based signa-
tures.

• We provide an extension to provide subscriber confidentiality. In the basic con-
struction in [30], the subscriber sends his request in plaintext. It may not be
desirable if someone wants to keep his/her subscription in secret. In this paper,
we propose an extension which provides subscriber confidentiality, by making
a non-trivial integration of public key encryption with keyword search into our
basic construction.

• We describe how to achieve publisher and subscriber anonymity from the con-
struction in [30], by using either ring signatures or designated verifier signa-
tures.

Related works. The Ciphertext-Policy Attribute-based Encryption (CP-ABE) is a
closely related field to the pub/sub system. During encryption, the data provider can
express how he wants to share data in the encryption algorithm. In traditional public
key encryption, the data provider uses the recipient’s public key to encrypt, such that
the data is shared with the intended recipient only. In CP-ABE, the recipient is as-
cribed a secret key associated with a set of attributes. The data provider will provide
a formula over these attributes, describing how he wants to share the data. The recipi-
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ent can correctly decrypt a ciphertext encrypted with a formula only if his secret key
associates with attributes which satisfy the formula. The concept of CP-ABE was
firstly proposed in [23]. Several constructions of selectively secure CP-ABE systems
followed, such as [2,8,9,28]. Fully secure constructions were recently provided by
[13,14,19,20].

Recent works. Since the preliminary version of our work was published in [30],
there have been a few related works. Some security designs for pub/sub network
architecture was proposed in [12,26], but they did not have formal security proofs.

2. Definition of publish/subscribe systems

In this section we first give the definition of publish/subscribe system.

2.1. Publish/subscribe systems

A publish/subscribe system is a system with interactions between four classes of
parties, as shown in Fig. 2.

• Publishers notify the brokers for the information they provide in the pub/sub
system. They do not know who will obtain the information.

• Subscribers subscribe to the interested information. They only receive the in-
formation which matches their subscription.

• Brokers match the subscription and the notification by the subscribers and the
publishers. The broker network will route and forward the packets to the match-
ing subscribers. Sometimes they are further categorized into:

– Intermediate brokers. They only route packets within the broker network.
– Border brokers. They act as a link between the broker network and the other

parties in the pub/sub network.

Fig. 2. Brokers in publish/subscribe system. PHB stands for Publisher Hosting Brokers, SHB stands for
Subscriber Hosting Brokers and IB stands for Intermediate Brokers. PHB and SHB are both border bro-
kers. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JCS-130486.)
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– Publisher hosting brokers. They are a kind of border brokers that connect
between the broker network and the publishers.

– Subscriber hosting brokers. They are a kind of border brokers that connect
between the broker network and the subscribers.

Brokers are defined into these categories because they are given different level
of trust in the security model. Refer to Section 2.4 for details.

• Managers maintain and coordinate the keys used within the pub/sub system.
According to the basic concept of pub/sub system, the publisher does not know
the public keys of subscribers. Therefore, the publisher cannot encrypt us-
ing subscribers’ public keys. In order to provide confidentiality, managers are
needed to act as the target of the encryption scheme. If confidentiality is not
considered in the pub/sub system, then this party can be ignored. Some papers
[16,22] assume that the publishers and the subscribers have a pre-shared session
key. They do not concern about how the managers help to share the session key
within the pub/sub system. The managers are called key distribution center in
[24], accounting server in [10] and secure administrator in [32].

A content-based publish/subscribe system consists of ten algorithms defined as fol-
lows:

• Setup(1λ): On input a security parameter 1λ, it outputs the system parameter
param and the manager’s secret key msk.

• KeyGen(param): On input the system parameter param, it outputs a secret key
and a public key. It can be further divided into:

– KeyGenp: every publisher generates his publisher secret key psk and public
key ppk;

– KeyGens: every subscriber generates his subscriber secret key ssk and public
key spk;

– KeyGenb: every broker generates his broker secret key bsk and public key
bpk.

• RegP(param, filter, psk), IssueP(param, msk, ppk): The interactive algorithms
RegP and IssueP are run by the publisher and the manager respectively. The
publisher wants to register to the manager and the manager issues a publisher
key for him. The input param is the system parameter, filter is the filter set2 by
the publisher, (psk, ppk) is the publisher’s secret key, public key pairs and msk
is the manager’s secret key. RegP first sends the filter set to IssueP and IssueP
returns a publisher key Kp to RegP.

• RegS(param, sub, ssk), IssueS(param, msk, spk): The interactive algorithms
RegS and IssueS are run by the subscriber and the manager respectively. The

2The terms filter set, subscription and notification will be explained in details later in this section.
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subscriber wants to register to the manager and the manager issues a subscriber
key for him. The input param is the system parameter, sub is the subscription
by the subscriber, (ssk, spk) is the subscriber’s secret key, public key pairs and
msk is the manager’s secret key. RegS first sends the subscription to IssueS and
IssueS returns a subscriber key Ks to RegS.

• Pub(param,m,A, psk,Kp): On input (param,m,A, psk,Kp) where param is
the system parameter, m is the message, A is the access structure, psk is the
publisher’s secret key and Kp is the publisher key for some filter, the publisher
outputs a notification n to the broker network. The notification n includes its
encrypted content nc and some access policy np to facilitate routing.

• Sub(param, sub, ssk, bpk): On input (param, sub, ssk, bpk) where param is the
system parameter, sub is the subscription, ssk is the subscriber’s secret key
and bpk is the (subscriber hosting) broker public key, the subscriber outputs a
ciphertext for subscription Csub to the broker network.

• Match(param,n,Csub, bsk): On input (param,n,Csub) where param is the sys-
tem parameter, n is the notification, Csub is the subscription ciphertext and bsk
is the (subscriber hosting) broker secret key, the broker outputs spk3 for match-
ing the subscription, 0 for not matching, ⊥p for invalid notification or ⊥s for
invalid subscription.

• Retrieve(param,n,Ks): On input (param,n,Ks) where param is the system
parameter, n is the notification and Ks is the subscriber key, the subscriber
outputs a pair (m, ppk) or ⊥ for invalid, where m is the message and ppk is the
publisher’s public key.

2.2. Filter set, subscription and notification

We first review the definition of monotone access structure in [1].

Monotone access structure [1]. Let {P1,P2, . . . ,Pn} be a set of parties. A collec-
tion A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A.
A monotone access structure is a monotone collection A of non-empty subsets of
{P1,P2, . . . ,Pn}. The sets in A are called the authorized sets, and the sets not in A

are called the unauthorized sets.

In our context, the subscription condition sub is treated as a set of attributes. Thus
the access structure A will contain the authorized set of attributes (subscription con-
dition). If the subscription condition sub satisfies the access structure A, we write
sub ∈ A. The filter set filter is also expressed as monotone access structure. From
now on, unless stated otherwise, by an access structure we mean a monotone access
structure.

3In practice, the broker should obtain the routing information to the subscriber spk.
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2.3. Correctness

The content-based publish/subscribe system has two types of correctness: match-
ing correctness and retrieval correctness. Matching correctness means that an honest
broker can always correctly match a valid notification to a subscriber with a valid
satisfying subscription. Retrieval correctness means that an honest subscriber can
obtain the message if the notification which matches his subscription criteria.

Formally, they are defined as follows. For all param ← Setup(1λ), (ssk, spk) ←
KeyGens(param), for all messages m and filters filter, we have:

• Matching correctness. We require that

Match
(
param,n, Sub(param, sub, ssk, bpk), bsk

)
= spk,

where (bsk, bpk) ← KeyGen(param),n ← Pub(param,m,A, psk, RegP(param,
filter, psk)),A ⊆ filter and sub ∈ A.

• Retrieval correctness. We require that

Retrieve
(
param,n, RegS(param, sub, ssk)

)
= (m, ppk),

where (psk, ppk) ← KeyGenp(param), n ← Pub(param,m,A, psk,
RegP(param, filter, psk)), sub ∈ A and A ⊆ filter.

2.4. Trust model

There are three types of trust regarding the underlying broker network:

(1) A complete trust to the broker network. The adversary is not given any infor-
mation within the broker network.

(2) A trust to the border brokers only. The adversary can access any information in
the intermediate brokers, but not the border brokers.

(3) Untrusted broker network. The adversary can access any information in the
broker network.

Notice that the trust we discuss here is whether the brokers’ keys (if any) and data
accessed by the brokers are available to the adversary. We always assume that the
brokers honestly route the packets. If not, the subscribers may never receive any
packets.

According to different trust level of the broker network, the broker public keys
and secret keys can be used as the input in the Pub, Sub or Match algorithms.

3. Security model of pub/sub systems

In this section, we define the security models for confidentiality, unforgeability
and anonymity, which are the security requirements mentioned by Wang et al. [27].
We also introduce a new security requirement and model of publisher authenticity.
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3.1. Confidentiality

The publish/subscribe system has three types of confidentiality: information con-
fidentiality, subscription confidentiality and publisher confidentiality as discussed by
Wang et al. [27].

Wang et al. [27] considers the case where all the contents of the notifications
and subscriptions are confidential. In some cases, part of the information np can be
known by the brokers to facilitate routing (e.g., stock code, update date in a pub-sub
stock quote application) while part of the information nc must be kept secret from
untrusted brokers (e.g., stock price, percentage change). Therefore we consider the
confidentiality for the secret information nc instead of the whole document to be
sent. It is easy to convert our security model into Wang et al.’s model [27]. It can be
done by setting the challenge message to be a complete notification or subscription
instead of a partial one.

Information confidentiality means that the secret information in the notification
should not be known by the untrusted brokers and all outsiders. Subscription confi-
dentiality means that the secret information in the subscription should not be known
by the untrusted brokers, publishers, other subscribers and all outsiders. Publisher
confidentiality means that the secret information in the notification should not be
known by the non-subscribers of that notification. It includes the untrusted brokers
and all outsiders. Therefore publisher confidentiality implies information confiden-
tiality.

We note that our model for confidentiality only involves one trusted manager only.
In real system, there may be many managers. Our model can be modified for multiple
managers. We give the current confidentiality model of one manager for simplicity.

Publisher confidentiality. We describe the publisher confidentiality for the secret
information in the pub/sub network. The indistinguishability game is formally de-
fined as follows:

(1) The challenger runs (param, msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The man-
ager’s secret key msk is unknown to A.

(2) A is allowed to query the following oracles:

• IssueS Oracle: On input the subscription sub and the subscriber’s public
key spk, it runs the IssueS(param, msk, spk) protocol and interacts with the
RegS(param, sub, ·) run by A. The oracle outputs the subscriber key Ks

from IssueS.
• IssueP Oracle: On input the publisher’s filter filter and the publisher’s public

key ppk, it runs the IssueP(param, msk, ppk) protocol and interacts with the
RegP(param, filter, ·) run by A. The oracle outputs the publisher key Kp from
IssueP.
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• Retrieval Oracle: On input (n, sub) where n is the notification and sub
is the subscription, the oracle first runs (ssk, spk) ← KeyGens(param).
Then the oracle runs both IssueS(param, msk, spk) and RegS(param, sub,
ssk) by itself and obtains Ks. Finally, it outputs the secret information
(m, ppk)/⊥ ← Retrieve(param,n,Ks).

(3) A sends two messages m∗
0 and m∗

1 from the message space, a publisher secret
key psk∗, a filter filter∗ and an access structure A

∗ ⊆ filter∗ to the challenger.
The challenger encrypts m∗

b as n∗ ← Pub(param,m∗
b ,A∗, psk∗, RegP(param,

filter∗, psk∗)). There should be no subscription sub queried to the IssueS Ora-
cle, such that sub ∈ A

∗. The challenger picks a bit b ∈ {0, 1} and sends the
notification n∗b to A.

(4) A is allowed to query the oracles, with the exception that no subscription sub
queried to the IssueS Oracle, such that sub ∈ A

∗; and n∗ should not be queried
to the Retrieval Oracle.

(5) Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b] − 1
2 |.

Definition. A CBPS scheme is (ε, t, qs, qp, qr)-publisher confidential against chosen
ciphertext attack if there is no t-time adversary with qs queries to the IssueS oracle,
qp queries to the IssueP oracle and qr queries to the Retrieval oracle has an advantage
over ε in the game.

Information confidentiality. Due to the similarity of the definition between infor-
mation confidentiality and publisher confidentiality, we can define the indistinguisha-
bility game of publisher confidentiality same as the one of information confidential-
ity without query to the IssueS Oracle.

Definition. A CBPS scheme is (ε, t, qp, qr)-information confidential against chosen
ciphertext attack if there is no t-time adversary with qp queries to the IssueP oracle
and qr queries to the retrieval oracle has an advantage over ε in the game.

Notice that for both publisher and information confidentiality, we say that a system
is selectively secure if we require the adversary commits to the challenge filter filter∗

at the beginning of the game.

Subscription confidentiality. The subscribers may want their subscriptions to be
confidential against the broker network.4 Then the brokers need to match the “en-
crypted subscriptions” with the notifications.5 The indistinguishability game is de-
fined as follows:

4For example, an investor may not want other people to know which stock price he has subscribed,
since it may leak information of which stock he may buy.

5Public key Encryption with Keyword Search [3] can be used to solve this dilemma. We will explain
in details in Section 6.
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(1) The challenger runs (param, msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The man-
ager’s secret key msk is unknown to A.

(2) A is allowed to query the IssueS Oracle, IssueP Oracle and Retrieval Oracle
defined in the publisher confidentiality game.

(3) A sends two subscription sub∗0 and sub∗1 and the subscriber secret key ssk∗,
where sub∗0 and sub∗1 have never been queried to the IssueS Oracle. The
challenger picks a bit b ∈ {0, 1} and computes C∗

sub ← Sub(param, sub∗b ,
ssk∗, bpk). He sends the resulting ciphertext C∗

sub to A.
(4) A is allowed to query the oracles, with the exception that no subscription sub∗0

and sub∗1 are queried to the IssueS Oracle.
(5) Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b] − 1
2 |.

Definition. A CBPS scheme is (ε, t, qs, qp, qr)-subscription confidential against cho-
sen ciphertext attack if there is no t-time adversary with qs queries to the IssueS
oracle, qp queries to the IssueP oracle and qr queries to the Retrieval oracle has an
advantage over ε in the game.

Notice that all of the above definitions for confidentiality is against chosen cipher-
text attack (CCA). If we do not allow any query to the retrieval oracle, then the above
confidentiality definition is reduced to against chosen plaintext attack (CPA).

3.2. Unforgeability

Unforgeability provides authentication and integrity for the pub/sub system. Wang
et al. [27] mentioned that authentication (end-to-end and point-to-point), information
integrity, subscription integrity and service integrity are important security require-
ments for the pub/sub system. We use the standard notion of unforgeability for digital
signature to cover the authentication and integrity requirements.

Information unforgeability. Information unforgeability means that the subscriber
believes that the notification is produced by the publisher and is not altered in the
broker network. The game for information unforgeability is formally defined as fol-
lows:

(1) The challenger runs (param, msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (psk, ppk) ← KeyGenp(param). The challenger gives the
public parameters param, the manager’s secret key msk, the secret/public key
pairs of the untrusted brokers and the publisher public key ppk to the adversary
A. The publisher’s secret key psk is unknown to A.
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(2) A is allowed to query the Pub Oracle: On input a message m, the pub-
lisher filter filter and an access structure A ⊆ filter, the oracle first runs both
IssueP(param, msk, ppk) and RegP(param, filter, psk) by itself and obtains Kp.
Then, it outputs the notification n ← Pub(param,m,A, psk,Kp).

(3) A returns a message m∗, a notification n∗ for a subscription sub∗.

A wins if (m∗, ppk) ← Retrieve(param,n∗,Ks), where Ks is the output of
RegS(param, sub∗, ssk)) interacting with IssueS(param, msk, spk), n∗ was not the
output of Pub Oracle query with input m∗ and (ssk, spk) ← KeyGens(param).

Definition. A CBPS scheme is (ε, t, qp)-information unforgeable against chosen
message attack if there is no t-time adversary winning the above game with proba-
bility at least ε with qp queries to the Pub oracle.

Subscription unforgeability. Subscription unforgeability means that the broker be-
lieves that the subscription is produced by the subscriber and is not altered in the
broker network. The game for subscription unforgeability is formally defined as fol-
lows:

(1) The challenger runs (param, msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (ssk, spk) ← KeyGens(param). The challenger gives the
public parameters param, the manager’s secret key msk, the secret/public key
pairs of the untrusted brokers and the subscriber’s public key spk to the adver-
sary A. The subscriber’s secret key ssk is unknown to A.

(2) A is allowed to query the Sub Oracle: On input the subscription sub, the
oracle first runs both IssueS(param, msk, spk) and RegS(param, sub, ssk) by
itself and obtains Ks. Then, it outputs the subscription ciphertext Csub ←
Sub(param, sub, ssk, bpk).

(3) A returns a subscription ciphertext C∗
sub and a notification n∗.

A wins if spk ← Match(param,n∗,C∗
sub, bsk) and C∗

sub was not the output of Sub
Oracle query.

Definition. A CBPS scheme is (ε, t, qs)-subscription unforgeable against chosen
message attack if there is no t-time adversary winning the above game with proba-
bility at least ε with qs queries to the Sub oracle.

Service unforgeability. Service unforgeability means that the broker believes that
the notification is produced by the publisher and is not altered in the previous bro-
ker network. It ensures that once malicious faults arises at the infrastructure level, it
could be detected by the next broker. Information unforgeability provides end-to-end
authentication of the publisher, while service unforgeability provides authentication
of the publisher to every point in the network. It minimizes the damage by a mali-
cious broker who insert bogus notifications into the pub/sub network. The game for
information unforgeability is formally defined as follows:
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(1) It is the same as the first step of the game for information unforgeability.
(2) A is allowed to query the Pub Oracle defined in the information unforgeability

game.
(3) A returns a notification n∗, a subscription ciphertext C∗

sub, a subscriber’s public
key spk∗ and the corresponding subscriber key K∗

s .

A wins the game if (m∗, ppk) ← Retrieve(param,n∗,K∗
s ), spk∗ ← Match(param,

n∗,C∗
sub, bsk) and n∗ was not the output of any Pub Oracle query.

Definition. A CBPS scheme is (ε, t, qp)-service unforgeable against chosen message
attack if there is no t-time adversary winning the above game with probability at least
ε with qp queries to the Pub oracle.

3.3. Anonymity

The anonymity in the pub/sub system is different for the publishers and sub-
scribers. We will consider two cases separately. The trust model for anonymity is
slightly different from confidentiality and unforgeability, since the border brokers
directly connecting to the publisher and subscriber must know who is communicat-
ing with them. The border brokers know the IP address or the MAC address of the
publisher and subscriber for routing purpose (although their public keys or identities
may still be hidden). Therefore the border brokers should be trusted for anonymity
related to connectivity (e.g., an IP address). To be more specific, publisher hosting
broker is trusted for publisher anonymity; and subscriber hosting broker is trusted for
subscriber anonymity. On the other hand, the public keys of the publisher and sub-
scriber may still be anonymous to all brokers, if the IP/MAC address is not related
to the public keys.

Publisher anonymity. The anonymity for the publisher means the publisher re-
mains anonymous when he sends a notification. Only the legitimate subscribers
can know the identity of the publisher (for authentication purpose). The publisher
anonymity game is formally defined as follows:

(1) The challenger runs (param, msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The man-
ager’s secret key msk is unknown to A.

(2) A is allowed to query the IssueS Oracle, IssueP Oracle and Retrieval Oracle
defined in the publisher confidentiality game.

(3) A sends two publisher key pairs (ppk∗0 , psk∗0) and (ppk∗1, psk∗1), a message m∗

and a filter filter∗ to the challenger. The challenger picks a bit b ∈ {0, 1} and
computes n∗ = (n∗c ,n∗p) ← Pub(param,m∗, psk∗b , RegP(param, filter∗, psk∗b )).
There should be no subscription sub queried to the IssueS Oracle, such that
sub ∈ n∗p, no matter b = 0 or 1. It sends the notification n∗ to A.
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(4) A is allowed to query the oracles, with the exception that no subscription sub
queried to the IssueS Oracle, such that sub ∈ n∗p; and n∗ should not be queried
to the Retrieval Oracle.

(5) Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b] − 1
2 |.

Definition. A CBPS scheme is (ε, t, qs, qp, qr)-publisher anonymous against chosen
ciphertext attack if there is no t-time adversary with qs queries to the IssueS oracle,
qp queries to the IssueP oracle and qr queries to the retrieval oracle has an advantage
over ε in the game.

Subscriber anonymity. The anonymity for the subscriber means that the subscriber
remains anonymous when he sends a subscription. The subscriber anonymity game
is formally defined as follows:

(1) The challenger runs (param, msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param, the man-
ager’s secret key msk and the subscriber hosting broker’s public key bpk to the
adversary A. The subscriber hosting broker’s secret key bsk is unknown to A.

(2) A is allowed to query the following oracles: Match Oracle: On input (n,Csub)
where n is the notification and Csub is the subscription ciphertext to bpk, it
outputs the matching result: spk, 0, ⊥s and/or ⊥p which is the output from
Match(param,n,Csub, bsk).

(3) A sends two subscriber key pairs (spk∗0 , ssk∗0) and (spk∗1 , ssk∗1), a subscrip-
tion sub∗ to the challenger. The challenger picks a bit b ∈ {0, 1} and com-
putes C∗

sub ← Sub(param, sub∗, ssk∗b , bpk). He sends the subscription cipher-
text C∗

sub to A.
(4) A is allowed to query the oracles, with the exception that no subscription ci-

phertext C∗
sub queried to the Match Oracle.

(5) Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b] − 1
2 |.

Definition. A CBPS scheme is (ε, t, qm)-subscriber anonymous against chosen ci-
phertext attack if there is no t-time adversary with qm queries to the Match oracle
has an advantage over ε in the game.

There are a few different anonymity requirements in different applications, which
may require different security models. We give a few examples here.

(1) Accountability: Subscription anonymity may contradict the accountability re-
quirement in [27]. In commercial pub/sub applications, publishers may want to
charge subscribers for the information they provide. If the charge is time basis,
subscribers pay when they get the subscription key for a period of time from
the manager. Each independent subscription can still be anonymous and our
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current subscription anonymity model can still be used. However if the charge
is per notification basis, subscribers’ identities must be revealed for account-
ability and auditability purposes. The security model need to be changed, such
that a publisher needs to know whose subscription matches his notification.

(2) Full anonymity: Our security model above implies that the legitimate sub-
scribers know the publisher’s public key ppk, and the subscriber hosting broker
knows the subscriber’s public key spk. For applications where full anonymity
is required, anonymous credential [5] or private credential [4] schemes can
be used on top of our pub/sub system. Then the ppk and spk becomes the
pseudonyms for the publisher and the subscriber respectively. Even if these
pseudonyms are known to the brokers and other outsiders, it will not affect the
anonymity of the system. The anonymity model needs to be changed to the one
similar to the anonymous credential or private credential system. The manager
in CBPS also has to play the role of the trusted credential issuing party. On
the other hand, we can also use attribute-based signatures [15] on top of our
pub/sub system. Then the ppk and spk becomes the attributes for the publisher
and the subscriber respectively. These attributes cannot reveal the real identi-
ties of the publisher and the subscriber. Therefore full anonymity may also be
preserved in this case.

3.4. Publisher authenticity

Compare with [27], our pub/sub system has an extra layer of publisher authenti-
cation. The publisher can only publish notification satisfying the filter, which was
defined when the publisher requested a key from the manager. Therefore, we require
that a publisher cannot publish any notification that does not satisfy his filter. The
publisher authenticity game is formally defined as follows:

(1) The challenger runs (param, msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (psk, ppk) ← KeyGenp(param). The challenger gives the
public parameters param, the secret/public key pairs of the untrusted brokers
and the publisher public key ppk and secret key psk to the adversary A. The
manager’s secret key msk is unknown to A.

(2) A is allowed to query the IssueP Oracle and the Pub Oracle as defined in
publisher confidentiality and information unforgeability respectively.

(3) A returns a message m∗, a notification n∗ for a subscription sub∗.

A wins if (m∗, ppk) ← Retrieve(param,n∗,Ks), where Ks is the output of
RegS(param, sub∗, ssk) interacting with IssueS(param, msk, spk), (ssk, spk) ←
KeyGens(param) and there is no IssueP oracle query with input (filter, ppk) such that
sub∗ ∈ filter.

Definition. A CBPS scheme is (ε, t, qI , qp)-publisher authenticity against chosen
message attack if there is no t-time adversary winning the above game with proba-
bility over ε with qI queries to the IssueP oracle and qp queries to the Pub oracle.
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4. Our construction

In this section, we will present our new construction of CBPS. We first describe
the main idea of the scheme. We review the relevant cryptographic background and
then we show the basic construction.

4.1. Main idea of our basic scheme

A secure CBPS protocol should have security proofs for both confidentiality and
unforgeability. To provide information confidentiality and information unforgeability
at the same time, we use an approach commonly used in signcryption schemes. It
means that the randomness used in the signature and the encryption are the same. It
ensures that the signature and the encryption protocol are run by the same party. An
adversary cannot use the ciphertext from a legitimate user and append the adversary’s
signature to it; nor use the signature from a legitimate user and append a ciphertext
computed by the adversary.

To facilitate routing while providing confidentiality in the pub/sub system, we em-
ploy the approach that only the part of the document containing the secret informa-
tion is encrypted. For example, in a pub-sub stock quote application, a publisher (the
bank) provides stock quote to subscribers (the bank’s customers). The stock price
is encrypted while the stock name is not. Therefore the document can be routed to
subscribers who are interested in a particular stock.

Unforgeability. The challenge of encrypting the partial document is how the bro-
kers authenticate the document without knowing the plaintext. Referring to the pre-
vious example, an obvious solution is to sign on the stock name and the encrypted
stock price. However, a signature on the encrypted stock price does not guarantee
the authenticity of the stock price. A more complicated solution in [10] is to encrypt
the stock price and the signature of the stock price. After that the stock name and the
whole ciphertext is signed again.

In this section, we use a simpler approach by sanitizable signatures [17]. A san-
itizable signature scheme allows one to verify a signature even when part to the
original message is not known. Therefore, we can compute a sanitizable signature to
the whole document and encrypt the stock price. The brokers only need to verify the
signature for the part of the stock name. For the subscribers, the same signature is
verified against the whole document after decryption. By the property of sanitizable
signatures, it is difficult to obtain the sanitized messages (i.e. the stock price) from
the sanitizable signature. Therefore authenticity is preserved while having confiden-
tiality in the (untrusted) broker network. Our scheme uses the sanitizable signatures
by Suzuki et al. [25].

Confidentiality. The challenge of confidentiality is that how the publisher can re-
strict the access of the secret information. By the loose coupling property of the
pub/sub network, the publisher does not know who subscribe the notifications. Hence



T.H. Yuen et al. / Towards a cryptographic treatment of publish/subscribe systems

the publisher has no public key to encrypt the secret information. Some schemes [16,
22] assume that the publisher and the subscriber share a symmetric key. However,
it contradicts the very first assumption of decoupling of publishers and subscribers.
These schemes are only suitable for private pub/sub systems over public networks.
An internet-scale, dynamic pub/sub network with a universe of publishers and sub-
scribers are unlikely to share a symmetric key. Another solution [21] for confiden-
tiality is through access control to the broker network. Encryption and decryption is
performed by the border brokers and therefore trust must be placed upon them. If the
broker network is not trusted, it is difficult for the publisher to find a suitable public
key for encryption.

Our scheme uses the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) by
Waters [28] to solve this problem. In CP-ABE, attributes are used to describe the
user’s (subscriber’s) credentials and the encrypting party (publisher) can encrypt the
message according to some formulas over these credentials. Therefore, the publisher
can encrypt the secret information by some suitable attributes. Subscribers can re-
quest keys from the manager about the attributes that they are interested in.

Publisher authenticity. By using CP-APE, the encryption policy A is known in
the ciphertext. However, the subscriber and the brokers may want to check if the
publisher has obtained permission from the manager for publishing in such policy.
We use identity-based signatures in [7] to provide such authentication. During the
registration phase, the publisher ppk request the permit to publish to some policy
belongs to filter. The manager generates an identity-based secret key to the publisher,
by treating (ppk, filter) as the identity. Then, in the Pub algorithm, the notification
will also include an identity-based signature on the notification content, using the
identity-based secret key. Therefore, the subscriber and the brokers can check if the
identity-based signature is valid with respect to the identity (ppk, filter), and A ⊆
filter.

4.2. Cryptographic backgrounds

We present a brief revision on groups with efficiently computable bilinear maps
and then review some number theoretic assumptions. After that, we review the
definition of access structures and relevant backgrounds on Linear Secret Sharing
Schemes, sanitizable signatures and identity-based signatures. They are extensively
used in our concrete construction of pub/sub system.

Pairings and intractability assumptions. Let G and GT be two multiplicative cyclic
groups of prime order p. Let g be a generator of G. A map ê :G×G → GT is called
a bilinear map if, for all u, v ∈ G and a, b ∈ Zp, we have ê(va, vb) = ê(u, v)ab and
ê(g, g) �= 1.

CDH. The Computational Diffie–Hellman problem is that, given g, gx, gy ∈ G for
unknown x, y ∈ Zp, to compute gxy . We say that the (ε, t)-CDH assumption holds if
no t-time algorithm has the non-negligible probability ε in solving the CDH problem.
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DBDH. The Decisional Bilinear Diffie–Hellman problem is that, given (g, ga, gb,
gc) ∈ G and T ∈ GT for unknown a, b, c ∈ Zp, to distinguish if T = ê(g, g)abc

or T is a random element in GT . We say that the (ε, t)-DBDH assumption holds if
no t-time algorithm has the non-negligible probability ε minus half in solving the
DBDH problem.

Decisional q-BDHE. The decisional q-Bilinear Diffie–Hellman Exponent problem
is that, given (g, ga, ga

2
, . . . , ga

q
, ga

q+2
, . . . , ga

2q
, gs) ∈ G and T ∈ GT for un-

known a, s ∈ Zp, to distinguish if T = ê(g, g)a
q+1s or T is a random element in GT .

We say that the (ε, t)-decisional q-BDHE assumption holds if no t-time algorithm
has the non-negligible probability ε minus half in solving the decisional q-BDHE
problem.

Linear Secret Sharing Schemes. We adapt the definition of Linear Secret Sharing
Schemes (LSSS) in [1]. A secret s is shared to at most � parties, out of the total n
parties.

LSSS [1]. A secret sharing scheme Π over a set of parties P is called linear over Zp

if:

(1) The shares for each party form a vector over Zp.
(2) There exists a matrix M called the share-generating matrix for Π. The matrix

M has � rows and n columns. For i = 1, . . . , �, the ith row of M we let
the function ρ defined the party labeling row i as ρ(i). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and
r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of � shares of the
secret s according to Π. The share (Mv)i belongs to party ρ(i).

Beimel [1] showed that every LSSS enjoys the linear reconstruction property,
defined as follows: Suppose that Π is an LSSS for the access structure A. Let S ∈ A

be any authorized set, and let I ⊂ {1, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then
there exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret
s according to Π, then

∑
i∈I ωiλi = s. Furthermore, Beimel [1] showed that these

constants {ωi} can be found in time polynomial in the size of the share-generating
matrix M .

Sanitizable signatures. A digital signature prohibits any alteration of the original
message once it is signed. It protects the signer against the message forgery. Never-
theless, it also prevents the message from being process further legitimately as well,
which sometimes is actually desirable.

For example, the government wants to release some partial information in an of-
ficially signed document. A government officer wants to delete some sensitive infor-
mation such as personal information or national secrets. In order to avoid signing the
message again (since the original signer may not be available at that time), a saniti-
zable signature can be used to sign the document at the first place; and the sensitive
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information can be sanitized prior to the release of the signature. The goal of sanitiz-
able signatures is to protect the confidentiality of part of the document while ensuring
the integrity of it.

There are a few different definitions of sanitizable signatures in the literature.
A comprehensive review can be found in [29]. In this paper, we consider the fol-
lowing definitions for the sanitizable signatures used in this paper: Each sanitized
message is represented by some special character, such that everyone can notice
where the document is sanitized. The signer cannot choose who are the designated
sanitizers when he signs the document.

One-time symmetric-key encryption. We use the paradigm of hybrid encryp-
tion scheme [11] to encrypt the message in our scheme. We review their defi-
nition on one-time symmetric-key encryption scheme SKE . SKE = (SKE.Enc,
SKE.Dec) consists of two polynomial-time algorithms. The encryption algorithm
SKE.Enc(1λ,K,m) → C, takes as input the security parameter 1λ, a key
K and a message m and outputs a ciphertext C; in the decryption algorithm
SKE.Dec(1λ,K,C) → m, a possessor of the key K decrypts the ciphertext C to
get back a message m or the special rejection symbol ⊥. The key K is a bit string of
length SKE.Len(λ), where SKE.Len(λ) is a parameter of the encryption scheme.

Identity-based signatures. In identity-based signatures (IBS), there is a trusted au-
thority to generate secret keys for users with different identities. The user can use
the identity-based secret key to sign a message, and the verifier can verify the signa-
ture using the identity and the master public key of the trusted authority. We use the
identity-based signature scheme IBS in [7] for the publisher to show that he has the
suitable filter.

• IBS.Setup: The manager, treated as the trusted authority in IBS, randomly picks
his secret key msk = β ∈ Zp and sets his public key mpk = (g, gβ ,h, Ĥ1, Ĥ2),
where g,h are generators of a group G and Ĥ1, Ĥ2 are collision resistant hash
functions.

• IBS.Extract: The publisher requests an identity-based secret key K, where the
identity id is the requested filter. The manager calculates K = Ĥ1(id)β .

• IBS.Sign: To generate a signature on a message M , the publisher picks a
random number r ∈ Zp and outputs σ = (S1,S2), where S1 = gr and

S2 = KĤ2(id,M )hr.
• IBS.Verify: It accepts the signature if ê(g,S2) = ê(gβ , Ĥ1(id))Ĥ2(id,M ) · ê(S1,h).

4.3. The basic scheme

We use the sanitizable signature scheme by Suzuki et al. [25] and CP-ABE scheme
by Waters [28]. Some input parameters described in Section 2.1 are omitted here
when they are not used in the basic scheme. Let (S.KeyGen, S.Sig, S.Vfy) be a EUF-
CMA (existentially unforgeable against chosen message attack) secure signature
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scheme. Let (IBS.Setup, IBS.Ext, IBS.Sig, IBS.Vfy) be the identity based signature
scheme in [7]. Let (SKE.Enc, SKE.Dec) be a secure one-time symmetric-key en-
cryption scheme.

• Setup. On input 1λ, it picks the pairing ê :G×G → GT , generators g, g1 ∈ G

and collision resistant hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ →
G. Let H3 :G → {0, 1}k be a hash function, where k = SKE.Len(λ), and
H3(v) is uniformly distributed over {0, 1}k if v is uniformly distributed over
G. It chooses a random exponent α ∈ Zp and runs (IBS.mpk, IBS.msk) ←
IBS.Setup(1λ). The manager secret key is (gα, IBS.msk). It outputs the system
parameter param = {g, g1, ê(g, g)α, ê,H1,H2,H3, IBS.mpk}.

• KeyGen. On input the system parameter param, the publisher randomly picks
his secret key xp ← Zp. He outputs his public key yp = gxp . The subscriber
runs S.KeyGen(1λ) and obtains his secret key xs and public key ys.

• RegP, IssueP. The publisher chooses the filter as an LSSS access structure
(M , ρ). We limit ρ to be an injective function,6 that is an attribute is as-
sociated with at most one row of an � × n matrix M .7 The manager uses
his secret key to run skm = IBS.Ext(IBS.msk, (yp,M , ρ)). The publisher key
Kp = (skm, (M , ρ)).

• RegS, IssueS. On input the subscription as a set of attributes S, the subscriber
sends it to the manager. The manager (with master secret key gα) chooses a
random t ∈ Zp and sends the subscriber key Ks to the subscriber, where

Ks =
(
K = gαgt1,L = gt,∀x ∈ S,Kx = H1(x)t

)
.

• Pub. On input (param,m,A,xp,Kp) where param is the system parameter, m
is the message, A = (M , ρ) is the access structure, xp is the publisher’s secret
key and Kp = (skm, (M ′, ρ′)) is the publisher key. Suppose the access structure
(M , ρ) ⊂ (M ′, ρ′). It first chooses a random vector 
v = (s, y2, . . . , yn) ∈ Z

n
p .8

For i = 1, . . . , �, he calculates λi = 
v ·Mi, where Mi is the vector correspond-
ing to the ith row of M . The publisher then chooses random r1, r2 ∈ G and
s ∈ Zp and computes

w1 = H2(m ‖ r1), w2 = H2(M ‖ ρ ‖ r2),

C ′ = gs, C = SKE.Enc
(
1λ,H3

(
ê(g, g)αs

)
, (m,σ1, r1)

)
,

6This restriction is crucial to the security proof. As in [13], such system is called as a One-Use system.
We can use the encoding technique in [13] to extend it to a Multi-Use system.

7n is the number of possible attributes in the system. The subscriber is required to have a certain number
of matching attributes in order to retrieve the notification, which is defined by ρ. � is the maximum number
of matching attributes.

8The secret value s is used to hide the message m in the ciphertext C. The values y2, . . . , yn are used
as the random binding values as in the LSSS scheme.
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C1 = gλ1
1 H1

(
ρ(1)

)−s, . . . , C� = gλ�
1 H1

(
ρ(�)

)−s,

σ1 = w
xp

1 , w3 = H2
(
w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�

)
,

σ2 = (w2w3)xp .

The notification content is nc = (C ′, r2,w1,σ2,C,C1, . . . ,C�).
9 It com-

putes σn = (S1,S2) ← IBS.Sign(skm, (nc,M , ρ)) using the same ran-
domness s. Therefore S1 = C ′. It sets the notification policy as np =
((M , ρ), yp,σn, (M ′, ρ′)). It publishes n = (nc,np).

• Sub. On input (param,xs) where param is the system parameter and xs is the
subscriber’s secret key, the subscriber signs the subscription attributes S by
σs = S.Sig(xs,S). He sends Csub = (S,σs, ys) to the broker network.

• Match. On input (param, (nc,np),Csub) where param is the system parameter,
nc = (C ′, r2,w1,σ2, C,C1, . . . ,C�), np = ((M , ρ), yp,σn, (M ′, ρ′)) is the no-
tification and Csub = (S,σs, ys) is the subscription, the broker first checks the
correctness of np: (1) the publisher is authenticated with the filter (identity)
(M ′, ρ′) by checking if � ← IBS.Verify(IBS.mpk, (yp,M ′, ρ′), σn, (nc,M , ρ)),
(2) the notification satisfies the filter by checking if (M , ρ) ⊂ (M ′, ρ′), and (3)
S1 = C ′. The broker outputs ⊥p if either checking fails. Otherwise, it computes

w2 = H2(M ‖ ρ ‖ r2),

w3 = H2
(
w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�

)
.

If ê(σ2, g) �= ê(w2w3, yp), the broker outputs ⊥p. If S.Vfy(ys,S,σs) = 0, the
broker also outputs ⊥s.
Otherwise, when S satisfies the access structure (M , ρ), the broker forwards the
notification to the next broker or the subscriber and outputs ys. If S does not
satisfy, the broker outputs 0.

• Retrieve. On input (param, (nc,np),Ks) where param is the system parameter,
nc = (C ′, r2,w1,σ2,C,C1, . . . ,C�), np = ((M , ρ), yp,σn, (M ′, ρ′)) is the no-
tification and Ks = (K,L, {Kx: ∀x ∈ S}) is the subscriber key, suppose that
S satisfies the access structure (M , ρ). The subscriber first checks the correct-
ness of np as in Match and outputs ⊥ if the checking fails. Then it finds the set
I = {i : ρ(i) ∈ S}. Let {ω ∈ Zp}i∈I be a set of constants such that if {λi}
are valid shares of any secret s according to M , then

∑
i∈I ωiλi = s. Then he

computes

W =
ê(C ′,K)

(
∏

i∈I (ê(Ci,L)ê(C ′,Kρ(i)))ωi)
.

9(σ1,σ2) can be viewed as the sanitizable signature part of the notification. Even without the knowledge
of m, the broker can check the validity of σ2 in the Match algorithm to ensure that the notification is
authenticated.
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The subscriber calculates (m,σ1, r1) = SKE.Dec(1λ,W ,C). Then he computes

w1 = H2(m ‖ r1), w2 = H2(M ‖ ρ ‖ r2),

w3 = H2
(
w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�

)
.

If ê(σ1σ2, g) �= ê(w1w2w3, yp), the subscriber outputs ⊥. Otherwise, he outputs
a pair (m, yp).

Correctness. The matching correctness is straightforward. The retrieval correctness
is shown as follows:

ê(C ′,K)
(
∏

i∈I (ê(Ci,L)ê(C ′,Kρ(i)))ωi)

=
ê(gs, gαgt1)

(
∏

i∈I (ê(gλi
1 H1(ρ(i))−s, gt)ê(gs,H1(ρ(i))t)ωi)

=
ê(g, g)αsê(g, g1)st

(
∏

i∈I ê(g, g1)tλiωi)
= ê(g, g)αs.

5. Security analysis of our basic scheme

Our basic scheme has publisher confidentiality, information confidentiality, infor-
mation unforgeability, subscription unforgeability and service unforgeability.

Theorem 1. Suppose the (ε, t′)-decisional q-BDHE assumption holds. Then our ba-
sic scheme is (ε, t, qs, qp)-selectively publisher confidential against chosen plaintext
attack in the random oracle model, with a challenge filter (M∗, ρ∗) and

t′ = t+ (qs + qh)O
(
n∗(τm + τe)

)
,

where M∗ is of size �∗×n∗ and n∗ � q, qh is the number of query to the H1 oracle,
τm and τe are the time for a multiplication and an exponentiation in G, respectively.

Proof. Assume there is a (ε, t, qs)-adversary A. We are going to construct another
probabilistic polynomial time (PPT) B that makes use of A to solve the decisional
q-BDHE problem with probability at least ε and in time at most t′. We implicitly
set the manager’s secret key as ga

q+1
(and multiplied by a known value in G). The

value gs is used as the randomness term in the challenge ciphertext. Therefore in the
challenge ciphertext, the computation of the term C should use ê(g, g)sa

q+1
, which

is the solution to the BDHE problem.
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B is given the BDHE challenge (g, gs, ga, . . . , ga
q
, ga

q+2
, . . . , ga

2q
,T ). In order to

use A to solve for the problem, B needs to simulate a challenger and the oracles for
A. B does it in the following way.

Setup. The adversary A gives the challenge filter (M∗, ρ∗), where M∗ has n∗ � q
columns. B chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1 by letting
ê(g, g)α = ê(ga, ga

q
)ê(g, g)α

′
. B also sets g1 = ga and runs (IBS.mpk, IBS.msk) ←

IBS.Setup(1λ).
Oracle simulation. By the construction of our scheme, the IssueP oracle can be

simulated by using IBS.msk only. The H2,H3, Ĥ1 and Ĥ2 oracle is simulated as
normal hash function. The other oracles are simulated as follows.

• H1 Oracle. On input x, if H1(x) was already defined in the table, then return
the same answer as before; otherwise, choose a random value zx ∈ Zp. If there
exists an i such that ρ∗(i) = x, then let

H1(x) = gzx · gaM
∗
i,1 · ga

2M∗
i,2 · · · ga

n∗
M∗

i,n∗ .

Otherwise, let H1(x) = gzx .
Notice that the oracle outputs are randomly distributed due to the gzx factor.
Since we restrict that ρ∗ is an injective function, for any x there is at most one
i such that ρ∗(i) = x.

• IssueS Oracle. On input the subscription S where S does not satisfy M∗, B first
chooses a random r ∈ Zp. Then it finds a vector 
w = (w1, . . . ,wn∗ ) ∈ Z

n∗
p

such that w1 = −1 and for all i where ρ∗(i) ∈ S we have 
w ·M∗
i = 0.

B begins by implicitly defining t = r + w1a
q + w2a

q−1 + · · ·+ wn∗aq−n∗+1

by setting

L = gr
n∗∏
i=1

(
ga

q+1−i)wi , K = gα
′
gar

n∗∏
i=2

(
ga

q+2−i)wi .

Next B have to calculate Kx for all x ∈ S. First, if there is no i such that
ρ∗(i) = x, B can simply let Kx = Lzx . Otherwise, B calculates

Kx = Lzx
n∗∏
j=1

(
gr

n∗∏
k=1
k �=j

(
ga

q+1+j−k)wk

)Mi,j

.

Notice that the term ga
q+1

term cancels when combined since Mi · 
w = 0.

Challenge. The adversary gives two messages m∗
0 ,m∗

1 and a publisher secret key
x∗p to B. B flips a coin β. It chooses random r1, r2, y′2, . . . , y′n ∈ Zp and creates

C ′ = gs, w1 = H2
(
m∗

β ‖ r1
)
, w2 = H2

(
M∗ ‖ ρ∗ ‖ r2

)
,
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σ1 = w
xp

1 , C = SKE.Enc
(
1λ,H3(T ),

(
m∗

β ,σ1, r1
))
.

B implicitly defines 
v = (s, sa+ y′2, sa2 + y′3, . . . , san
∗−1 + y′n∗ ) by setting

Ci =

(
n∗∏
j=2

(
ga

)M∗
i,jy

′
j

)(
gs
)−zρ∗(i) .

B computes w3 = H2(w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�) and σ2 = (w2w3)xp . It
sets n∗c = (C ′, r2,w1,σ2,C, C1, . . . ,C�,M

∗, ρ∗). The notification policy n∗p can be
computed using IBS.msk without involving m∗

β . The challenge notification is pub-
lished as (n∗c ,n∗p).

Output calculation. A will eventually output a guess β′. If β = β′, B then outputs
his guess that T = ê(g, g)a

q+1s; otherwise, B outputs his guess that T is a random
group element in G.

Probability analysis. Notice that only C and w1 contain the information about
m∗

β . Since H2 is a collision resistant hash function and r1 is also encrypted in C,
m∗

β is completely hidden from A when T is a random group element. Therefore B’s
probability of solving the problem is the same as A’s advantage in this game.

Time analysis. In the proof, A has to compute at most O(n∗) multiplication and
exponentiation for every IssueS oracle query and H1 oracle query. �

As discussed in Section 2.1, publisher confidentiality implies information confi-
dentiality. Therefore our basic scheme is also selectively secure for information con-
fidentiality against the chosen plaintext attack. However, we can give a direct proof
without selective model and use a weaker assumption.

Theorem 2. Suppose the (ε, t′)-DBDH assumption holds. Then our basic scheme
is (ε, t, qp)-information confidential against chosen plaintext attack in the random
oracle model, with t′ = t + qhO(τe), where qh is the number of query to the H1
oracle and τe is the time for an exponentiation in G.

Proof. Assume there is a (ε, t, qp)-adversary A. We are going to construct another
PPT B that makes use of A to solve the DBDH problem with probability at least
ε and in time at most t′. We implicitly set the manager’s secret key as gab. The
value gs is used as the randomness term in the challenge ciphertext. Therefore in the
challenge ciphertext, the computation of the term C should use ê(g, g)sab, which is
the solution to the DBDH problem.

B is given the DBDH challenge (g, gs, ga, gb,T ). In order to use A to solve for
the problem, B needs to simulate a challenger and the oracles for A. B does it in the
following way.

Setup. B implicitly sets α = ab by letting ê(g, g)α = ê(ga, gb). B picks a random
μ ∈ Zp and sets g1 = gμ. The rest of the system parameters are honestly generated.
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Oracle simulation. By the construction of our scheme, the IssueP oracle is not
needed. The H2,H3, Ĥ1 and Ĥ2 oracles are simulated as normal hash function. The
H1 Oracle is simulated as follows: On input x, if H1(x) was already defined in the
table, then simply return the same answer as before; otherwise, choose a random
value zx ∈ Zp and return H1(x) = gzx .

Challenge. The adversary gives two messages m∗
0 ,m∗

1 , a challenge filter (M∗, ρ∗)
and a publisher secret key x∗p to B. B flips a coin β. B chooses random r1, r2, y2, . . . ,
yn ∈ Zp and creates

C ′ = gs, w1 = H2
(
m∗

β ‖ r1
)
, w2 = H2

(
M∗ ‖ ρ∗ ‖ r2

)
,

σ1 = w
xp

1 , C = SKE.Enc
(
1λ,H3(T ),

(
m∗

β ,σ1, r1
))
.

B implicitly defines 
v = (s, y2, y3, . . . , yn∗ ) by setting

Ci =

(
n∗∏
j=2

g
M∗

i,jyj
1

)(
gs
)μ(M∗

i,1−zρ∗(i)).

B computes w3 = H2(w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�) and σ2 = (w2w3)xp . It
sets n∗c = (C ′, r2,w1,σ2,C, C1, . . . ,C�,M

∗, ρ∗). The notification policy n∗p can be
computed using IBS.msk without involving m∗

β . The challenge notification is pub-
lished as (n∗c ,n∗p).

Output calculation. A will eventually output a guess β′. If β = β′, B then outputs
his guess that T = ê(g, g)abs; otherwise, B outputs his guess that T is a random
group element in G.

Probability analysis. Notice that only C and w1 contain the information about
m∗

β . Since H2 is a collision resistant hash function and r1 is also encrypted in C,
m∗

β is completely hidden from A when T is a random group element. Therefore B’s
probability of solving the problem is the same as A’s advantage in this game.

Time analysis. A has to compute at most O(1) exponentiation for every H1 oracle
query. �

Theorem 3. Suppose the (ε′, t′)-CDH assumption holds. Then our basic scheme is
(ε, t, qp)-information unforgeable against chosen message attack in the random ora-
cle model, where

ε′ � ε

(
3
qh

− 3

q2
h

+
1

q3
h

)
, t′ = t+ (qp + qh)O(τm + τe),

where τm and τe are the time for a multiplication and an exponentiation in G, re-
spectively; and qh is the number of query to the H2 oracle.
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Proof. Assume there is a (ε, t, qp)-adversary A. We are going to construct another
PPT B that makes use of A to solve the CDH problem with probability at least ε′

and in time at most t′. We set the publisher public key as ga. We put gb into one of
the H2 oracle’s output. Therefore with non-negligible probability, B can extract the
answer of the CDH problem gab from A’s output signature.

B is given the CDH challenge (g, ga, gb). In order to use A to solve for the prob-
lem, B needs to simulate the oracles for A in the following way.

Setup. B chooses random α ∈ Zp and runs (IBS.mpk, IBS.msk) ← IBS.Setup(1λ).
It gives the master secret key (gα, IBS.msk := β) to the adversary A. B also gives
the publisher public key ga to A. The rest of the system parameters are honestly
generated.

Oracle simulation. The H1,H3, Ĥ1 and Ĥ2 oracles are simulated as normal hash
function. The other oracles are simulated as follows.

• H2 Oracle. On input x, if H2(x) was already defined in the table, then return
the same answer as before; otherwise, choose a random value bx ∈ Zp. With
probability 1/qh, the oracle outputs

H2(x) = gb · gbx ,

and stores (x, bx, 1) in the table. Otherwise, the oracle outputs H2(x) = gbx

and stores (x, bx, 0) in the table. Notice that the oracle outputs are randomly
distributed due to the gbx factor.

• Pub Oracle. On input the message m and filter (M , ρ), B first chooses random
r1, r2 ∈ Zp. B queries the H2 oracle and if (m ‖ r1, ·, 1) or (M ‖ ρ ‖ r2, ·, 1)
appears in the table, B picks another random number and starts again. Other-
wise, let w1 = gb1 and w2 = gb2 . For i = 1, . . . , �, he calculates λi = 
v ·Mi,
where Mi is the vector corresponding to the ith row of M . B chooses a random
s ∈ Zp and calculates

σ1 =
(
ga

)b1 , C ′ = gs,

C = SKE.Enc
(
1λ, ê(g, g)αs, (m,σ1, r1)

)
,

C1 = gλ1
1 H1

(
ρ(1)

)−s, . . . , C� = gλ�
1 H1

(
ρ(�)

)−s
.

B queries the H2 oracle and if (w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�, ·, 1) appears
in the table, B picks another random number s and starts again. Otherwise, let
w3 = gb3 . Then B calculates

σ2 =
(
ga

)b2+b3 .

The oracle outputs the notification (n∗c = (C ′, r2,w1,σ2,C,C1, . . . ,C�,M , ρ),
n∗p), where n∗p can be computed using IBS.msk.
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Output calculation. A will eventually output a notification n∗ = (n∗c ,n∗p), where
n∗c = (C ′∗, r∗2 ,w∗

1 ,σ∗2 ,C∗, C∗
1 , . . . ,C∗

� ,M∗, ρ∗). We require that n∗ is not the output
from the Pub oracle. B computes

(
m∗,σ∗1 , r∗1

)
= SKE.Dec

(
1λ, ê

(
gα,C ′∗),C∗),

w∗
2 = H2

(
M∗ ‖ ρ∗ ‖ r∗2

)
,

w∗
3 = H2

(
w∗

1 ‖ w∗
2 ‖ C ′∗ ‖ C∗ ‖ C∗

1 ‖ · · · ‖ C∗
�

)
.

If the tuple (σ∗1 ,σ∗2 ,w∗
1 ,w∗

2 ,w∗
3 ,m∗,C ′∗, r∗1 , r∗2 ) is not computed in the Pub oracle,

then B searches the H2 table for w∗
1 ,w∗

2 and w∗
3 . If there is no entry that (w∗

i , bi, 1)
appears in the table for i = 1, 2, 3, B declares failure and exits. Without loss of
generality, assume w∗

1 = gb · gb1 , w∗
2 = gb2 and w∗

3 = gb3 . If A outputs a valid
publication, then it satisfies:

ê
(
σ∗1σ

∗
2 , g

)
= ê

(
w∗

1w
∗
2w

∗
3 , ga

)
= ê

(
gb · gb1+b2+b3 , ga

)
.

Then B can output σ∗1σ
∗
2/(ga)b1+b2+b3 as the solution to the CDH problem.

If the tuple (σ∗1 ,σ∗2 ,w∗
1 ,w∗

2 ,w∗
3 ,m∗,C ′∗, r∗1 , r∗2 ) is computed in the Pub oracle,

but (C ′∗,C∗,C∗
1 , . . . ,C∗

� ,M∗, ρ∗) are different from the oracle output, it happens
with negligible probability, since H2 is collision resistant and

w∗
2 = H2

(
M∗ ‖ ρ∗ ‖ r∗2

)
,

w∗
3 = H2

(
w∗

1 ‖ w∗
2 ‖ C ′∗ ‖ C∗ ‖ C∗

1 ‖ · · · ‖ C∗
�

)
.

Finally if n∗c is the same as the corresponding value in the Pub oracle output,
but the n∗p value is different. Then it means that the new identity-based signature
σ∗n = (S∗

1 ,S∗
2 ) has the value S∗

1 = C ′ as in the oracle. The value C ′
1 = gs was

chosen by B during the Pub oracle query phase, and the value of s is unknown to A.
However, by the verification of the IBS, we have

S∗
2 = Ĥ1(id)βĤ2(id,M̂ )hs.

If the CDH problem is hard, A cannot compute hs and hence cannot compute a valid
σ∗n. We may also construct a similar security reduction to the CDH problem in this
case.

Probability analysis. B aborts only when there is no entry that (w∗
i , bi, 1) appears

in the table for i = 1, 2, 3. For each time, it happens with probability 1 − 1/qh.
Therefore the probability that B does not abort is greater than 3

qh
− 3

q2
h

+ 1
q3
h

.

Time analysis. In the proof, A has to compute at most O(1) multiplication and
exponentiation for every Pub oracle query and H1 oracle query. �
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Theorem 4. Suppose that (Sig, Vfy) is EUF-CMA secure. Then no poly-time adver-
sary can break the subscription unforgeability.

Theorem 4 is straightforward by the construction of our basic scheme.

Theorem 5. Suppose the (ε′, t′)-CDH assumption holds. Then our basic scheme is
(ε, t, qp)-service unforgeable against chosen message attack in the random oracle
model, where

ε′ � ε

(
2
qh

− 1

q2
h

)
, t′ = t+ (qp + qh)O(τm + τe),

where τm and τe are the time for a multiplication and an exponentiation in G, re-
spectively; and qh is the number of query to the H2 oracle.

Proof. The setup and the oracle simulations are the same as information unforge-
ability. Therefore they are omitted for simplicity.

Output calculation. A will eventually output a notification n∗ = (n∗c ,n∗p), where
n∗c = (C ′∗, r∗2 ,w∗

1 ,σ∗2 ,C∗, C∗
1 , . . . ,C∗

� ,M∗, ρ∗). We require that n∗ is not the output
from the Pub oracle. B computes

(
m∗,σ∗1 , r∗1

)
= SKE.Dec

(
1λ, ê

(
gα,C ′∗),C∗),

w∗
2 = H2

(
M∗ ‖ ρ∗ ‖ r∗2

)
,

w∗
3 = H2

(
w∗

1 ‖ w∗
2 ‖ C ′∗ ‖ C∗ ‖ C∗

1 ‖ · · · ‖ C∗
�

)
.

If the tuple (σ∗1 ,σ∗2 ,w∗
1 ,w∗

2 ,w∗
3 ,m∗,C ′∗, r∗1 , r∗2 ) is not computed in the Pub oracle,

then B searches the H2 table for w∗
1 .w

∗
2 and w∗

3 . If there is no entry that (w∗
i , bi, 1)

appears in the table for i = 2, 3, B declares failure and exits. Without loss of gener-
ality, assume w∗

2 = gb · gb2 and w∗
3 = gb3 . If A outputs a valid publication, then it

satisfies:

ê
(
σ∗2 , g

)
= ê

(
w∗

2w
∗
3 , ga

)
= ê

(
gb · gb2+b3 , ga

)
.

Then B can output σ∗2/(ga)b2+b3 as the solution to the CDH problem.
If the tuple (σ∗1 ,σ∗2 ,w∗

1 ,w∗
2 ,w∗

3 ,m∗,C ′∗, r∗1 , r∗2 ) is computed in the Pub oracle,
but (C ′∗,C∗,C∗

1 , . . . ,C∗
� ,M∗, ρ∗) are different from the oracle output, it happens

with negligible probability, since H2 is collision resistant and

w∗
2 = H2

(
M∗ ‖ ρ∗ ‖ r∗2

)
,

w∗
3 = H2

(
w∗

1 ‖ w∗
2 ‖ C ′∗ ‖ C∗ ‖ C∗

1 ‖ · · · ‖ C∗
�

)
.
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Finally if n∗c is the same as the corresponding value in the Pub oracle output,
but the n∗p value is different. Then it means that the new identity-based signature
σ∗n = (S∗

1 ,S∗
2 ) has the value S∗

1 = C ′ as in the oracle. The value C ′
1 = gs was

chosen by B during the Pub oracle query phase, and the value of s is unknown to A.
However, by the verification of the IBS, we have

S∗
2 = Ĥ1(id)βĤ2(id,M̂ )hs.

If the CDH problem is hard, A cannot compute hs and hence cannot compute a valid
σ∗n. We may also construct a similar security reduction to the CDH problem in this
case.

Probability analysis. B aborts only when there is no entry that (w∗
i , bi, 1) appears

in the table for i = 1, 2, 3. For each time, it happens with probability 1 − 1/qh.
Therefore the probability that B does not abort is greater than 2

qh
− 1

q2
h

.

Time analysis. In the proof, A has to compute at most O(1) multiplication and
exponentiation for every Pub oracle query and H1 oracle query. �

Theorem 6. Suppose the (ε′, t′)-CDH assumption holds. Then our basic scheme is
(ε, t, qI , qp)-publisher authenticity against chosen message attack in the random or-
acle model, where

ε′ � ε/qh′
1
, t′ = t+ qpO(τm) + (qI + qp + qh1

+ qh′
1
)O(τe),

where τm and τe are the time for a multiplication and an exponentiation in G, re-
spectively; and qh1

, qh′
1

are the number of query to the H1, Ĥ1 oracle respectively.

Proof. Assume there is a (ε, t, qI , qp)-adversary A. We are going to construct an-
other PPT B that makes use of A to solve the CDH problem with probability at least
ε′ and in time at most t′. We set the IBS.mpk in the system parameter as ga. We
put gb into one of the Ĥ1 oracle’s output. Therefore with non-negligible probability,
B can extract the answer of the CDH problem gab from A’s output notification.

B is given the CDH challenge (g, ga, gb). In order to use A to solve for the prob-
lem, B needs to simulate the oracles for A in the following way.

Setup. B chooses random α ∈ Zp as part of the master secret key. B sets IBS.mpk

in the system parameter as gβ = gb and h = ga, which means IBS.msk = β
is unknown. The rest of the system parameters are honestly generated. B runs
(x∗p, y∗p) ← KeyGenp(param) and also sends them to A.

Oracle simulation. The H2,H3 and Ĥ2 oracles are simulated as normal hash func-
tion. The other oracles are simulated as follows.

• Ĥ1 Oracle. On input x = (yp,M , ρ), if Ĥ1(x) was already defined in the ta-
ble, then return the same answer as before; otherwise, choose a random value
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bx ∈ Zp. If yp = y∗p and with probability 1/qh, the oracle outputs

Ĥ1(x) = gabx ,

and stores (x, bx, 1) in the table. Otherwise, the oracle outputs Ĥ1(x) = gbx

and stores (x, bx, 0) in the table. Notice that the oracle outputs are randomly
distributed due to the gbx factor.

• H1 Oracle. On input x, if H1(x) was already defined in the table, then return
the same answer as before; otherwise, choose a random value ax ∈ Zp. The
oracle outputs H1(x) = gax and stores (x, ax) in the table.

• IssueP Oracle. On input the filter = (M , ρ) and the publisher public key yp,
it asks the Ĥ1 oracle to obtain Ĥ1((yp,M , ρ)). If it is equal to gabx , then B
declares failure and exits. Otherwise, it calculates the identity-based secret key
skm = (gb)bx and returns Kp = (skm, (M , ρ)).

• Pub Oracle. On input the message m, the access structure A = (M , ρ) and
filter = (M ′, ρ′), if H1(y∗p ,M ′, ρ′) = gbx , then B calculates the identity-based
secret key skm as the IssueP Oracle and computes the notification using skm
and x∗p.

Otherwise, Ĥ1(y∗p ,M ′, ρ′) = gabx . B first chooses random r,h2 ∈ Zp and
denote s = r − bh2bx. Then it calculates

S1 = gs = gr
(
gb
)−bxh2 , S2 =

(
gabx

)bh2hs =
(
ga

)r
.

In order to compute the correct nc without knowing the value s, B sets C ′ = S1.
For C1, . . . ,C�, we use the H1 oracle to help to compute H1(x)s = gaxs =
grax (gb)−bxh2ax . For the value C, B can compute ê(g, g)αs = ê(g,S1)α us-
ing the knowledge of α. Therefore B can calculate a valid nc using S1. After
that, B sets h2 = Ĥ2(id, M̂ ) where id = (yp,M ′, ρ′) and M̂ = (nc,M , ρ)
for the Ĥ2 oracle. If such Ĥ2 oracle value has been set before, then B picks
another value r and repeats the above computation. Otherwise, B sets np =
((M , ρ), y∗p ,σn, (M ′, ρ′)) and returns n = (nc,np).

Output calculation. A will eventually output a notification n∗ = (n∗c ,n∗p), with
n∗p = ((M∗, ρ∗), y∗p ,σ∗n, (M ′, ρ′)) for a message m∗ and subscription sub∗. We re-
quire that n∗ is not the output from the Pub oracle and there is no IssueP oracle
query with input (filter, y∗p) such that sub∗ ∈ filter. If A wins the game, it means that

σ∗n is a valid signature on M̂∗ = (n∗c ,M∗, ρ∗) for the identity id∗ = (y∗p ,M ′, ρ′).
If Ĥ1(y∗p ,M ′, ρ′) �= gabx , B declares failure and exits. Otherwise, denote σ∗n =

(S∗
1 ,S∗

2 ) and h∗2 = Ĥ2(id∗, M̂∗). Observe that σ∗n, id∗, M̂∗ cannot be completely the
same as the Pub oracle output. If it passes verification of the IBS, it means that:

ê
(
g,S∗

2

)
= ê

(
gβ , gabx

)h∗
2 · ê

(
S∗

1 ,h
)
= ê

(
gb, gabx

)h∗
2 · ê

(
S∗

1 , ga
)
.
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Then it outputs gab = (S∗
2S

∗
1
−a)1/bxh∗

2 as the solution to the CDH problem.
Probability analysis. B wins only when it guess the filter (M ′, ρ′) in n∗ correctly,

which happens with probability 1/qh.
Time analysis. In the proof, A has to compute at most O(1) multiplication and

exponentiation for every Pub oracle query and O(1) exponentiation for every H1, Ĥ1
and IssueP oracle query. �

6. Extensions to our basic scheme

Subscriber confidentiality. Our basic scheme does not provide subscriber confiden-
tiality. The subscriber needs to send his subscription (set of attributes) in plaintext to
the brokers. We propose an extension for subscriber confidentiality, if the subscriber
knows the public key of the publisher in advance.

Public key Encryption with Keyword Search (PEKS) [3] is a public key encryption
scheme that encrypt the message as well as the keyword. The decryptor calculates a
trapdoor function using his secret key and the keyword that he is interested in. He
forwards the trapdoor information to a third party. The third party can compare the
trapdoor and the encrypted keyword to see if they match or not. In PEKS, the mes-
sage and the keyword are encrypted by the sender. However in the pub/sub system,
the message (notification) is encrypted by the publisher and the keyword sent by
the subscriber should be encrypted (for subscriber confidentiality). Therefore some
modifications are needed to apply the PEKS into our scheme.

Suppose we have a PEKS scheme with the following algorithms:

• KeyGen(1λ): On input a security parameter 1λ, it outputs a public and private
key pair pk and sk.

• PEKS(pk,w): On input the public key pk and a keyword w, it outputs a search-
able encryption S.

• Trapdoor(sk,w): On input the private key sk and a keyword w, it outputs a
trapdoor Tw.

• Test(Tw ,S): On input a trapdoor Tw and a searchable encryption S, it tests
whether S encrypts w. It outputs 1 for “accept” or 0 for “reject”.

A PEKS scheme must satisfy that

Pr
[
Test

(
Trapdoor(sk,w), PEKS(pk,w)

)
= 1

]
= 1,

where the probability is taken over the choice of (pk, sk) ← KeyGen(1λ) and the
coins of all the above algorithms. The security requirements of PEKS include con-
sistency (perfect, computational or statistical) and privacy.

Assume the subscriber knows the public key of the publisher in advance. We have
the following modified CBPS protocol:

• Pub. On input (param,m,xp,Kp) where param is the system parameter, m is
the message, xp is the publisher’s secret key and Kp = (M , ρ) is the pub-
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lisher key. The publisher computes (C ′, r2,w1,σ2,C,C1, . . . ,C�, M , ρ) as in
the basic scheme. He also calculates Tρ(i) = Trapdoor(xp, ρ(i)) for all i. The
notification is published as n = (C ′, r2,w1,σ2,C,C1, . . . ,C�,M , ρ, {Tρ(i)}).

• Sub. On input the set of attributes S and the publisher public key yp, it outputs
Sx = PEKS(yp,x) for all x ∈ S.

• Match. On input (param,n, {Si}) where param is the system parameter, n =

(C ′, r2,w1,σ2,C,C1, . . . ,C�,M , ρ, {Tρ(i)}) is the notification from publisher
yp and Sx is the set of subscription ciphertext, the broker first computes

w2 = H2(M ‖ ρ ‖ r2),

w3 = H2(w1 ‖ w2 ‖ C ′ ‖ C ‖ C1 ‖ · · · ‖ C�).

If ê(σ2, g2) �= ê(w2w3, yp), the broker outputs ⊥. Otherwise, the broker for-
wards the notification to the subscriber when there exist some i such that
Test(Tρ(i),Sx) = 1 for all x.

It is straightforward that the subscriber confidentiality is provided by the privacy
of the PEKS scheme. If the PEKS scheme has perfect consistency, then the brokers
in our modified pub/sub scheme can always forward the notification correctly. How-
ever, the existing PEKS schemes are all secure against CPA only.

CCA security for publisher confidentiality. The ciphertext-policy attribute-based
encryption (CP-ABE) from [28] allows delegation of secret keys by deleting at-
tributes from a key. For example, if a user has a key for the attribute set {“Pro-
fessor”, “CS Department”}, he can delegate a key for the attribute “Professor” only.
As suggested in [28], CCA-security for publication confidentiality can be realized
in the standard model by using the techniques of Canetti, Halevi and Katz [6] to the
delegation system.

Anonymity. Full anonymity for both publishers and subscribers can be achieved us-
ing anonymous credentials or attribute-based signatures, as discussed in Section 3.3.

Subscriber anonymity can also be achieved in a few ways. The subscriber can
compute a ring signature instead of a standard signature in the Sub protocol. The
security model for subscriber anonymity has to be changed to the one similar to the
anonymity of ring signatures.

The subscriber may also compute a designated verifier signature instead of a stan-
dard signature in the Sub protocol, with the subscriber hosting broker as the desig-
nated verifier. The security model for subscriber anonymity has to be changed to the
one similar to the non-transferability of designated verifier signatures.

Since both methods involve non-trivial changes to the existing security model, we
omit the detailed construction for simplicity.
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Denial-of-service attack. Denial-of-service attack is a significant risk for pub/sub
system like other communication systems. The damage may be even more severe
when the attacker publishes some fake notifications and they are spread by (honest)
brokers to multiple subscribers. By the broadcasting property of the pub/sub system,
the damage may be amplified.d by (honest) brokers to multiple subscribers. By the
broadcasting property of the pub/sub system, the damage may be amplified.

Although it is very difficult to prevent the denial-of-service attack in general, we
can try to minimize the damage of such attack. Besides the out-of-band solution sug-
gested in [27], we provide a possible solution in our security model. The service
unforgeability model requires the honest brokers to check the validity of the notifi-
cation before forwarding it to the next brokers. Malicious publications are dropped
by the broker who firstly encounters them. Since our basic scheme has service un-
forgeability, it has better protection against the denial-of-service attack by malicious
publications.

Furthermore, malicious subscriptions are dropped by the subscriber hosting bro-
ker who firstly encounters them. This is captured by the subscription unforgeability
model. Since our basic scheme has subscription unforgeability, it has better protec-
tion against the denial-of-service attack by malicious subscriptions.

Weaker assumption. Methods to remove the restriction of the injectiveness in ρ
function and to use the weaker DBDH assumption can be found in [28].

7. Related works

In this section we compare our basic CBPS scheme and the extension with the
existing CBPS schemes providing confidentiality. The result of the comparison can
be found in Table 1.

The scheme of Li, Lu and Shi [16] and Srivatsa and Liu [24] use prefix-preserving
tree structure for information and subscription confidentiality as well as efficient
matching. However, if the adversary have a large number of matching notification
and subscription pairs, then the adversary may obtain some information about the
prefix in the notification and subscription. Therefore they are only secure if the ad-
versary knows a few notification and subscription pairs. They are not secure in our
security model.

Khurana [10] proposed a CBPS scheme with a threshold key sharing scheme such
that t out of n managers are responsible to generates keys for subscribers and pub-
lishers. It reduces the trust to a single manager. However, the group of n managers
must help to calculate the notification when the notification travels from a broker to
another. It greatly increases the workload of the managers.

Zhao and Sturman [32] placed a complete trust to the border brokers in their CBPS
scheme. Encryption is performed between border brokers. Publishers and subscribers
access pub/sub system through the access control list. Information confidentiality
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Table 1

Comparison of pub/sub schemes providing confidentiality

Scheme Conf Unf Anon Auth Pre-Shared Key Proof Trust

Li et al. [16] i, s – – – Yes No No

Khurana [10] I I, V – – No No *

Zhao and Sturman [32] I i, s – – No No BB.

Raiciu and Rosenblum [22] I, S i, s – – Yes Yes No

Srivatsa and Liu [24] i, p, s – – – No No No

Pesonen et al. [21] I, S * – – No No BB.

Zhang et al. [31] i, s – – – No No No

Our Basic Scheme I, P I, S, V – P No Yes No

Our Extension (in Section 6) I, P, S I, S, V p, s P No Yes No

Notes: For confidentiality (Conf), I stands for information confidentiality, S stands for subscription con-
fidentiality and P stands for publisher confidentiality. For unforgeability (Unf), I stands for informa-
tion unforgeability, S stands for subscription unforgeability and V stands for service unforgeability. For
anonymity (Anon), S stands for subscriber anonymity and P stands for publisher anonymity. For authen-
ticity (Auth), P stands for publisher authenticity. A small letter means that it is secure in a weaker security
model in the original cited paper only. BB. stands for border brokers. For * in the table, it will be explained
in Section 7.

and authenticity is protected by this access control. The scheme is not secure in our
unforgeability model.

Pesonen, Eyers and Bacon [21] also placed a trust to the border brokers in their
CBPS scheme. Publishers and subscribers access pub/sub system through the access
control list. Information and subscription confidentiality are protected by this access
control. Since authenticated encryption is used, integrity is also protected. However,
the scheme is not secure in our unforgeability model.

Raiciu and Rosenblum [22] proposed the first CBPS scheme with proof of infor-
mation and subscription confidentiality. It comes with the cost of publishers and sub-
scribers having a pre-shared key. The unforgeability of the scheme is also protected
by this pre-shared key, since encryption cannot be performed without the symmetric
key. The scheme is not secure in our unforgeability model.

Zhang et al. [31] proposed a CBPS scheme using a new mechanism called infor-
mation foiling. The publishers and subscribers generate a set of fake messages to
hide the authentic message. Their new algorithm does not fit into our model since
their confidentiality is in a probabilistic sense.

8. Conclusion

In this paper, we introduced the first security model for different security require-
ments of CBPS. We proposed a new CBPS scheme that fulfills most of the security
requirements concurrently. We proved its security according to our new model.
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