
Identifying and Responding to Outlier Demand in Revenue

Management

Nicola RENNIEa,*, Catherine CLEOPHASb, Adam M. SYKULSKIc, and Florian DOSTd,e

aSTOR-i Centre for Doctoral Training, Lancaster University, LA1 4YW, UK. (n.rennie@lancaster.ac.uk)
bInstitute for Business, Christian-Albrechts-University Kiel, Kiel, Germany. (cleophas@bwl.uni-kiel.de)
cDept. of Mathematics and Statistics, Lancaster University, LA1 4YF, UK. (a.sykulski@lancaster.ac.uk)

dManagement Science and Marketing Division, Alliance Manchester Business School, M15 6PB, UK.
eInstitute of Business and Economics, Brandenburg University of Technology, 03046 Cottbus, Germany.

(florian.dost@b-tu.de)
*Corresponding Author: Nicola Rennie (n.rennie@lancaster.ac.uk)

Abstract

Revenue management strongly relies on accurate forecasts. Thus, when extraordi-

nary events cause outlier demand, revenue management systems need to recognise this

and adapt both forecast and controls. Many passenger transport service providers,

such as railways and airlines, control the sale of tickets through revenue management.

State-of-the-art systems in these industries rely on analyst expertise to identify outlier

demand both online (within the booking horizon) and offline (in hindsight). So far,

little research focuses on automating and evaluating the detection of outlier demand in

this context. To remedy this, we propose a novel approach, which detects outliers using

functional data analysis in combination with time series extrapolation. We evaluate

the approach in a simulation framework, which generates outliers by varying the de-

mand model. The results show that functional outlier detection yields better detection

rates than alternative approaches for both online and offline analyses. Depending on

the category of outliers, extrapolation further increases online detection performance.

We also apply the procedure to a set of empirical data to demonstrate its practical im-

plications. By evaluating the full feedback-driven system of forecast and optimisation,

we generate insight on the asymmetric effects of positive and negative demand out-

liers. We show that identifying instances of outlier demand and adjusting the forecast

in a timely fashion substantially increases revenue compared to what is earned when

ignoring outliers.

Keywords: Revenue management; Simulation; Forecasting; Outlier detection;

Functional data analysis.
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1 Introduction

In the last 40 years, revenue management (RM) has become an indispensable business prac-

tice, particularly for transport service providers such as airlines and railways (Weatherford,

2016). RM solves an optimisation problem, where firms decide on offers for perishable prod-

ucts, usually with the objective of maximising revenue. This optimisation assumes a fixed

capacity, low marginal cost, and a given demand forecast. In that regard, Weatherford

and Belobaba (2002) highlight that inaccurate demand forecasts can significantly diminish

the achieved revenue. Banerjee et al. (2019) point out that detailed demand forecasts also

support in further planning steps, such as network resource and fuel planning.

Cleophas et al. (2017) list several causes for forecast inaccuracies: on the one hand,

the unavoidable variance of day-to-day demand prohibits perfectly accurate forecasts. On

the other hand, any flaw in the forecast model, including both the predictive time series

component and the customer choice model naturally causes model-based forecast errors.

Finally, sudden shifts in the market may cause short-term, temporal outliers. For example,

when the system does not account for special events such as a sports championship or a

trade fair, these will cause observed demand to systematically deviate from predictions.

We focus on such demand outliers in the domain of revenue management for passenger

transport, specifically railways and airlines. In this domain, RM via capacity controls

optimises booking limits, which specify the number of units that can be sold per fare class

and time in a fixed booking horizon. Accordingly, sold units are also termed bookings.

The distribution of bookings over intervals of the booking horizon constitutes a booking

pattern. Booking patterns may be aggregated across fare classes and are reported either

for single resources, such as flight legs, or for complementary combinations of resources,

such as network itineraries. Here, we focus on aggregated booking patterns as reported for

single resources, such as a single flight or a railway connection.

Common RM demand forecasting techniques estimate demand from historical booking

patterns and booking limits (Weatherford, 2016). Accordingly, we let outlier detection rely

on the same data. We follow the definition by Hawkins (1980) and define an outlier as ‘an

observation which deviates so much from the other observations as to arouse suspicions

that it was generated by a different mechanism.’ Detection can either apply online, within

the booking horizon and considering partial booking patterns, or offline, after a booking

horizon, when the complete pattern can be analysed. Demand outliers affect revenue
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management systems in two ways: (i) in foresight, the flawed forecast results in non-

optimal capacity allocations; and (ii) in hindsight, the outlier can contaminate the data that

underlies future forecasts. Accordingly, online detection can improve foresight, whereas

offline detection can improve hindsight. To detect outliers, functional data analysis, where

each booking pattern is treated as an observation of a function over time, is a natural place

to turn to. Functional approaches can detect outliers in both magnitude and shape of an

observed booking pattern. In other words, they can detect outliers that deviate across

the entire booking horizon and those that deviate in only part of the booking horizon.

Effective detection in online and offline settings has to be capable of identifying both types

of outliers.

By investigating practical RM implementations in the airline and railway industry, we

find that the current process relies on analysts, who manually examine booking patterns.

When analysts perceive demand outliers, they attempt to compensate by adjusting the

reported data, the forecast, or the booking limits. The decision of whether an adjustment

is necessary and in what form depends on the analysts’ intuition. As noted by Cleophas

et al. (2017) and Banerjee et al. (2019), little existing work systematically measures the

effect of such interventions. There is even less consideration of providing systematic an-

alytics support for the related decisions. However, research on human decision making

in general, and judgemental forecasting in particular, clearly demonstrates fallibility and

bias (O’Connor et al., 1993; Lawrence et al., 2000, 2006). This motivates the need for

automated alerts to highlight outliers and thereby support analysts.

To our knowledge, we are the first to propose an automated methodology for outlier

detection in the RM domain. Specifically, this paper makes the following contributions:

(i) proposing a novel outlier detection approach, combining functional data analysis and

time series extrapolation, which improves overall detection performance; (ii) providing

a simulation-based framework for generating regular and outlier booking patterns, and

evaluating their effect throughout the RM process; (iii) demonstrating the asymmetric

effects of outliers on RM performance; (iv) quantifying the benefits from successful online

or offline outlier detection for RM; and (v) demonstrating the use of such outlier detection

in an application to empirical railway booking data.
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2 RM Forecasts and Forecast Evaluation

The importance of accurate forecasts as input to revenue optimisation is well-documented

in the literature. Authors are largely concerned with forecasting customer demand (Pereira

(2016), Weatherford and Pölt (2002), Talluri and Van Ryzin (2004)), although forecasting

cancellations and no-shows has also been explored (Morales and Wang, 2010). Weather-

ford and Belobaba (2002) confirm previous findings that inaccurate demand estimates can

significantly impact revenue. Under the use of optimisation heuristics such as Expected

Marginal Seat Revenue (EMSRb) (Belobaba, 1989), under- or over-forecasting can even be

beneficial. As described by Mukhopadhyay et al. (2007), most RM systems require fore-

casts of the actual demand, rather than the observed demand. The actual demand consists

of both observed demand and customer requests that were denied due to restrictive book-

ing limits. Actual demand is difficult to observe in practice, and so must be estimated. To

this end, Weatherford and Pölt (2002) survey various techniques.

When allowing for inaccurate demand forecasts, much RM research focuses on ren-

dering the optimisation component more robust or forecast-independent, as detailed in

the contributions reviewed in Gönsch (2017). In another review, Cleophas et al. (2017)

point out that there is little research into the effects of manually adjusted forecasts in RM.

Mukhopadhyay et al. (2007) propose a method for measuring the performance of adjusted

and unadjusted forecasts. They find that if analysts can reliably improve demand fore-

casts on critical flights, significantly more revenue can be generated. Zeni (2003) describe

a study at US Airways, which aimed to isolate and estimate the value of analyst interac-

tions. According to that study, around 3% of the additional revenue generated within the

duration of the study could be attributed to analyst input.

Given that experiments in a live RM system carry significant risks, the use of simulation

for evaluation is common. Additionally, simulation studies enable a priori knowledge about

the true demand generation process, which can never be known in a real-world setting.

Frank et al. (2008) discuss the use of simulation for RM and provide guidelines; in a related

effort, Kimms and Müller-Bungart (2007) consider demand modelling for RM simulations.

The paper at hand follows these contributions in establishing a simulation-based framework

to generate outlier observations. Doreswamy et al. (2015) employ simulation as a tool to

analyse the effects of different RM techniques for different airlines, when switching from

leg-based controls to network controls. Cleophas et al. (2009) focus on an approach to
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evaluating the quality of RM forecasts both in terms of revenue and common forecast

error measurements. Another example of using simulation to evaluate the performance of

forecast components is given in Bartke et al. (2018). Temath et al. (2010) used a simulation-

based approach to evaluate the robustness of a network-based revenue opportunity model

when input data is flawed. In the broader context of demand forecasting, Petropoulos et al.

(2014) evaluate fitting time series forecasts for particular patterns of demand evaluation

by manipulating these patterns in a simulation framework.

3 Existing Work on Outlier Detection

To assess the existing methodological contributions to outlier detection, we distinguish

between identifying outlying observations within a time series (Figure 1a), and identifying

an entire outlying time series (in our case, booking pattern) (Figure 1b). In this paper, we

aim for the latter.
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(a) Outlier within a given time series
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(b) Outlying time series within a collection of series

Figure 1: Different types of outliers in time series data

Literature on handling outliers in the RM process is scarce, though there is some

discussion in Weatherford and Kimes (2003): the authors consider removing outliers caused

by atypical events, such as holidays and special conventions, to improve future forecasting.
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However, they propose only to remove observations outside of the mean ± 3 standard

deviations and do not seek to identify outliers online within the booking horizon.

Beyond RM, a wealth of literature studies outliers (also referred to as anomalies) in

time series, as reviewed by Chandola et al. (2009) and Pimentel et al. (2014). For exam-

ple, Hubert et al. (2015) survey various functional outlier detection techniques for time

series data, and apply their methods to multiple real data sets. Barrow and Kourentzes

(2018) consider the effect of functional outliers for call centre workload management and

recommend an artificial neural network to model them as part of the forecast rather than

identifying them. Talagala et al. (2019) propose a sliding window approach for detecting

outlying time series within a set of (nonstationary) time series, based on the use of extreme

value theory for outlier detection. The authors also distinguish identifying outliers within

a time series, and identifying an outlying series from a set. The remainder of this paper

distinguishes three classes of approaches to outlier detection: (i) univariate, (ii) multivari-

ate, or (iii) functional. Further technical details of all outlier detection methods described

here are available in Appendix A.1.

Univariate Approaches

Univariate outlier detection techniques identify anomalous observations of a single variable,

and so can be applied independently at different time points in a time series, e.g., to the

cumulative number of bookings per interval in a booking horizon.

• Nonparametric Percentiles: This class of approaches uses lower and upper percentiles

of the observed empirical distribution at each time point as limits for what constitutes

a regular observation as opposed to an outlier. This type of percentile-based approach

is discussed by Pincus et al. (1995). It can be used as a basic way to estimate statistics

in a more robust manner, by trimming or winsorising the data (see Dixon and Yuen

(1974)). The downside of this approach is that a fixed percentage of the data will always

be classified as outliers, even when there are fewer or more actual outliers in the data.

• Tolerance Intervals: Statistical tolerance intervals contain at least a specified propor-

tion of observations with a specific confidence level (Hahn and Chandra, 1981). They

require two parameters: the coverage proportion, β, and confidence level, 1 − α. For

booking patterns, at each interval of the booking horizon, these approaches define a

tolerance interval for the cumulative number of bookings by that time. If the number of
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observed bookings lies outside of this tolerance interval, the pattern is deemed an outlier.

Nonparametric tolerance intervals do not assume an underlying distribution, and instead

are based on the order statistics of the data (Wilks, 1941). Parametric tolerance intervals

assume an underlying distribution (Hahn and Chandra, 1981). The choice of distribution

is not arbitrary, and a bad choice of distribution will perform poorly. Liang and Cao

(2018) choose to fit a Normal distribution to hotel booking data to detect anomalous

observations.

• Robust Z-Score: The Z-score measures where an observation lies in relation to the

mean and standard deviation of the overall data (Iglewicz and Hoaglin, 1993). The ro-

bust Z-score uses the median and the median absolute deviation to provide a similar

measurement. As such, an observation with a robust Z-score above some threshold is

classified as an outlier. This score-based method assumes that the observations in a given

booking interval are approximately normally distributed based on two justifications: (i)

a large proportion of univariate outlier detection methods rely on distributional assump-

tions (often normality); and (ii) although the discrete, non-negative integer nature of

booking data suggests the use of a Poisson distribution, in the presence of trend or

seasonal adjustments, the data may no longer have these properties.

Multivariate Approaches

Univariate outlier detection approaches ignore the dependence both within and between

time series. We next turn to multivariate approaches as potential methods for capturing

within (but not between) time series dependence. In this setting, a time series of length

τ , that is, a booking pattern observed over τ intervals, is considered as a point in a

τ -dimensional space. This allows the multivariate approaches to compute the distance

between any two booking patterns, but ignores the time ordering of observations.

• Distance: Each booking pattern (observed over τ intervals) can be characterised by

its τ -dimensional distance to every other booking pattern. Aggregating these distances

transforms the problem into a univariate outlier detection problem, based on the mean

distances. Depending on the length of the booking pattern, issues relating to sparsity due

to high dimensionality may arise. As discussed by Aggarwal et al. (2001), some distance

metrics perform better than others in a high dimensional space. However, in relation

to distance metrics, high dimensionality often refers to at least hundreds of dimensions.
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The number of booking intervals in RM applications is often fewer than this, ranging

from 20 to 50 in examples known to the authors. Therefore, we consider the classical

Euclidean and Manhattan distance metrics in our comparative evaluation.

• K-Means Clustering: K-means clustering splits the observed booking patterns into

K groups by iteratively minimising the (τ -dimensional) distance between each booking

pattern and the centre of its assigned cluster (see e.g. MacQueen (1967)). This approach

uses a distance threshold to identify booking patterns as outliers based on their distance

to the centre of their cluster (Deb and Dey, 2017). As in the distance-based approaches,

the choice of distance metric is highly relevant for clustering. Once more, this paper

compares Euclidean and Manhattan distance metrics. The approach requires as its input

parameter a given K to indicate the number of clusters. Information on the methodology

used to determine K is available in Appendix A.1, including a comparison of performance

under different choices of K, and the distribution of genuine outliers across such clusters.

Functional approaches

There are two main issues with the use of multivariate outlier detection approaches in this

application: (i) the effects of high-dimensionality on distance metrics when considering a

large number of booking intervals; and (ii) the lack of accounting for the consecutive, time-

ordered, nature of the observations. For such issues, functional data analysis is an intuitive

place to turn. Functional data analysis addresses both issues by (i) treating booking

patterns as functions observed τ times rather than points in a τ -dimensional space, and

(ii) explicitly taking into account the time-ordering of the observations. We provide further

analysis of the importance of time-ordering in Appendix C.4.

The functional analysis setting, as discussed by Febrero et al. (2008), lacks a rigorous

definition of an outlier. We use the same definition as Febrero et al. (2008): ‘a curve is an

outlier if it has been generated by a stochastic process with a different distribution than

the rest of the curves, which are assumed to be identically distributed’. We view this as a

more specific version of the definition by Hawkins (1980) provided in our introduction.

A depth function attributes a sensible ordering to observations, such that observations

near the centre should have higher depth and those far from the centre should have lower

depth. In the functional data setting, this idea provides an ordering to a set of smooth func-

tions observed over discrete time-intervals, with the most central curve trajectory having
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highest depth. Functional depth not only accounts for the magnitude of the observations,

but also for the variability in amplitude i.e. the shape of the curve (Febrero et al., 2008).

Given this definition of functional depth, the degree of abnormality of a curve can be

characterised by its functional depth, if its depth is particularly low (Hubert et al., 2015).

Depth-based approaches for detecting outlying curves are discussed in detail by Hubert

et al. (2012). In this paper, we focus on the multivariate halfspace depth described by

Claeskens et al. (2014). We state and explain the mathematical definition of the multivari-

ate halfspace depth in Appendix A.1.

4 Proposed Methodology: Functional Outlier DetectionWith

Extrapolation

To improve foresight, RM systems need to identify demand outliers online and as early as

possible in the booking horizon. This enables the RM system to update controls for the

remainder of the horizon. We term this problem online outlier detection. When tasked

with online detection at time tτ in the booking horizon, all approaches discussed in the

previous section would exclusively consider the first τ observation intervals only.

Therefore, in the online setting, only a partial booking pattern is available for analysis.

We propose to supplement the outlier detection by extrapolating the expected bookings

from the current time tτ up to the end of the booking horizon, tT . In the computational

study, we compare simple exponential smoothing (SES, Chatfield (1975)), autoregressive

integrated moving average models (ARIMA, Box and Jenkins (1970)), and integrated gen-

eralised autoregressive conditional heteroskedasticity models (IGARCH, Tsay (2002)). Ap-

pendix A.2 provides a detailed list of univariate forecasting methods that can be used for

extrapolation.

Algorithm 1 outlines the procedure on a set of N booking patterns observed until

time tτ , where given an entire booking horizon of length tT with t1, . . . , tτ , . . . , tT , then

yn(tτ ) is a time series describing the bookings for pattern n up to time tτ : yn(tτ ) =

{yn(t1), yn(t2), . . . , yn(tτ )}.
Figure 2 demonstrates the algorithmic approach; in the extensive simulation analysis,

we apply it to a variety of booking patterns and outliers. Figure 2a shows 25 booking

patterns that have been observed during the first five of thirty intervals of the booking
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Algorithm 1: Using extrapolation to improve functional outlier detection

1 At time tτ forecast the accumulation of bookings at each time tτ+1, . . . , tT , denoted

ŷn(tτ+1), . . . , ŷn(tT ), for each booking pattern n;

2 Calculate Dn(ŷn(tτ )), the functional depth of the observed and extrapolated

booking pattern ŷn(tτ ) = {yn(t1), yn(t2), . . . , yn(tτ ), ŷn(tτ+1), . . . , ŷn(tT )}, for each

booking pattern n at time tτ ;

3 Calculate a threshold, C, for the functional depth;

4 Bootstrap the original booking patterns, with probability proportional to

their functional depths;

5 Smooth the bootstrap samples;

6 Let Cb be the 1st percentile of the depths of the bth bootstrapped sample;

7 Set C as the median value of the Cb;

8 if Dn(ŷn(tτ )) ≤ C then

9 Define booking pattern n as an outlier. Delete booking pattern n from the

sample of N patterns.

10 end

11 while ∃ n s.t. Dn(ŷn(tτ )) ≤ C do

12 Recalculate functional depths on the new sample, and remove further outliers.

13 end

horizon. The extrapolation step is shown in Figure 2b, where the purple lines depict the

ARIMA extrapolation of accumulated bookings until the end of the horizon. The empirical

distribution of the functional depths of the extrapolated sample are shown in Figure 2c,

with the threshold shown in red (computed via the bootstrapping routine described in

Algorithm 1, lines 3-7). The booking patterns classified by the algorithm as outliers are

highlighted in red in Figure 2d.

The input parameters relating to the calculation of the threshold includes the number

of bootstrap samples (line 4), the smoothing method (line 5), and the choice of percentile

(line 6). In this paper, we select parameters as per Febrero et al. (2008) as these perform

well in a wide range of settings. Further details of the threshold calculation are available in

Appendix A.1. The proposed approach could alternatively feature any of the multivariate
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Figure 2: Example: functional halfspace depth with ARIMA extrapolation outlier detection

or functional approaches reviewed in Section 3.1 However, a functional approach provides

more scope for extensions, such as considering seasonality and increasing the frequency of

outlier detection. In addition, the approach can utilise a variety of methods for extrapo-

lating. Note that the methodology employed for this extrapolation step is independent of

the forecasting methodology to predict demand for RM.

1This approach is not applicable for univariate outlier detection methods as, in this setting, the number

of bookings at each point in time is considered independently of past or future bookings.
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5 Simulation-based Framework

To quantify effects from demand outliers and evaluate outlier detection approaches, we sim-

ulate a basic RM system with capacity controls. Such systems are common in the transport

industry, but not limited to that domain (see Talluri and van Ryzin, 2004, Chapter 2.1).

The system implemented here is minimal and general and does not fully mirror a real-

world application system. However, the booking patterns our simulation generates are

comparable with those observed in real-world RM systems – see Appendix C.10. Since the

simulation renders the process of demand generation to be explicit, computational exper-

iments can yield truthful detection rates. This is impossible in empirical data analysis,

where the true demand and the distinction of regular versus outlier demand is never fully

certain. Therefore simulation modelling provides an alternative to the problem of creating

reproducible forecasting research, highlighted for instance by Boylan et al. (2015).

The simulation implements the following steps:

1. Parameterise a demand model to specify both regular and outlier demand.

2. Generate multiple instances of regular and outlier demand from Step 1 in terms of

customer requests (e.g. customers that intend to book a seat on a particular railway

connection) arriving across the booking horizon.

3. From the demand model of regular demand (Step 2), compute the forecast in terms

of the number of expected requests per fare class and time in the booking horizon.

4. Compute booking limits that maximise expected revenue from bookings based on the

demand forecast from Step 3.

5. Use the booking limits (Step 4) to transform arriving requests (from Step 2) into

booking patterns over the course of multiple consecutive simulated booking horizons.

6. Analyse booking patterns (from Step 5) to identify booking horizons with outlier

demand.

7. Compare knowledge of the underlying demand model (Step 2) to identified outliers

(Step 6) to compute detection rates.
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Symbol Definition Regular Demand Value

I The set of customer types {1 = Business, 2 = Tourist}
J The set of fare classes {A, O, J, P, R, S, M}

α, β
Parameters of Gamma distribution
for number arrivals α = 240, β = 1

ai, bi Parameters of Beta distribution, λ́i(t) a1 = 5, b1 = 2, a2 = 2, b2 = 5

Fixed φi

Proportion of total customer arrivals
stemming from type i φ1 = 0.5, φ2 = 0.5

Input pij

Probability of type i being willing-to-pay
at most fare class j

p1j = {0.35, 0.1, 0.25, 0.15, 0.05, 0, 0}
p2j = {0.05, 0.1, 0, 0.05, 0.1, 0.15, 0.5}

rj Average fare for fare class j {400, 300, 280, 240, 200, 185, 175}
C Capacity 200

NS

Number of runs of simulation used

to compute forecasts µ̂j and σ̂2j 100

Random D Total customer arrivals ∼ Gamma(α, β)

Input λi(t)
Time-dependent rate of the Poisson
process of type i customer arrivals

xn,i,j(t)

nth realisation of Poisson process of
type i customers purchasing
fare class j at time t

Output µ̂j Forecast of mean of fare class j demand

σ̂2j Forecast of variance of fare class j demand

yn,j(t)
nth realisation of cumulative bookings in
fare class j at time t

Table 1: Table of notation and parameter values used for simulation

Table 1 sets out the notation used in the remainder of this section to detail the demand

model, demand forecasting, revenue maximisation heuristics, and booking limits. In this

section, we detail both the models and algorithms, and the parameter settings implemented

in the computational study.

5.1 Generating Demand in Terms of Customer Requests

Heterogeneous demand is a frequently stated RM precondition, assuming that customer

segments differ in value and can be identified through their idiosyncratic booking behaviour.

To model this parsimoniously, the simulation features two customer types but can be

easily extended to feature more. We index any parameter that characterises high-value

customers with index 1 and any parameter that characterises low-value customers with

index 2. Classical RM assumes that requests from high-value customers typically arrive
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later in the booking horizon than those from low-value customers. High-value customers

are more likely to book expensive fare classes when cheap fare classes are not offered.

We follow Weatherford et al. (1993) in modelling requests from either customer type as

arriving according to a non-homogeneous Poisson-Gamma process. Requests from customer

type 1 arrive according to a Poisson(λ1(t)) distribution; those from customer type 2 arrive

according to a Poisson(λ2(t)) distribution. The total number of customer arrivals D is split

between the two segments, such that

λ1(t)|(D = d) = d× φ1
ta1−1(1− t)b1−1

B(a1, b1)
, (1)

λ2(t)|(D = d) = d× φ2
ta2−1(1− t)b2−1

B(a2, b2)
, (2)

where D ∼ Gamma(α, β) with probability density function:

f(d|α, β) =
βα

Γ(α)dα−1eβd
. (3)

The constraint φ1 + φ2 = 1 ensures that all requests belong to exactly one customer

type. Additionally, we set parameters a1, b1, a2 and b2 such that they follow the assumption

that valuable customers are more likely to request at later stages of the booking horizon:

a1 − 1

a1 + b1 − 2
>

a2 − 1

a2 + b2 − 2
. (4)

Figure 3a illustrates arrival rates λ1(t) and λ2(t) across the booking horizon, with Figure

3b showing one realisation of request arrivals in a specific horizon.

A set of fare classes, 1, . . . , |J |, differentiates discount levels, r1 ≥ r2 . . . ≥ r|J |. The

simulation implements a random choice model to let customers choose from the set of

currently offered classes. The model assumes all customers book the cheapest available

fare class. At the same time, not all customers can afford to book any fare class. For every

fare class k, the probability that a customer of type i is willing to pay at most fare class k

is pik, as shown in Figure 3d. Each customer has a single fare class threshold, which is the

most they are willing to pay, such that:

|J |∑
k=1

pik + pi0 = 1, (5)
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where pi0 is the the probability of a type i customer arriving and choosing not to book

based on the classes on offer. Hence, the probability of booking fare class j is:

P (Book fare class j|No availability in classes j + 1, . . . , |J |) =

j∑
k=1

pk, (6)

P (Book fare class j|Availability in classes j + 1, . . . , |J |) = 0, (7)

where pk is the weighted average of probabilities of each customer type i being willing to

pay up to fare class k:

pk =
∑
i∈I

φipik, (8)

and φi is the proportion of total customer arrivals stemming from type i.

While demand arrival rates vary across the booking horizon, the simulation models

arrival rates and choice probabilities as stationary between booking horizons. While, in

real-world markets, demand shifts in seasonal patterns and trends, we rely on random draws

from distributions with stationary parameters as when introducing and detecting outliers,

the simplest case lets all regular demand behaviour derive from the same distribution.

When an approach cannot correctly detect abnormal demand when all regular demand

comes from this same distribution, it is highly unlikely that it will perform better when

regular demand is non-stationary.

5.2 Outlier Generation

We generate outlier demand by parameterising demand generation in a way that deviates

from the regular setting. Combining outlier demand with booking limits (optimised based

on forecasts of regular demand) creates an outlier booking pattern. Outliers can result

from three approaches to adjusting the parameters in Equations (1) and (2), and the

probabilities pij :

1. Demand-volume outliers: Increasing or decreasing the volume of demand across the

whole (or partial) booking horizon, by adjusting the parameters α and β in the

Gamma distribution for D, the total demand.

2. Willingness-to-pay outliers: Shifting the proportions of demand across fare classes, by

either adjusting the choice probabilities per customer type or to the ratio of customer

types, φ1, φ2.
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3. Arrival-time outliers: Shifting the arrival pattern of customer requests (from a subset

of customer types) over time by adjusting parameters a1, b1, a2, b2, which control the

time at which requests from each customer type arrive.

5.3 Forecasting Demand

Most RM approaches to capacity control rely on knowing the number of expected customer

requests per offered product, potentially per set of offered products. The simulation im-

plements heuristics that rely on the mean and the variance of expected requests per fare

class (see Section 5.4).

To avoid interference from arbitrary forecasting errors, we exploit knowledge of the

demand model given in the simulation setting when creating the forecast. We first draw

NS sets of customer arrivals from Equations (1) and (2). Let xn,i,j(t) define the nth

realisation of type i customers who booked in fare class j at time t as drawn from the

Poisson arrival process with rate λi(t) and probability pij . Then, we set the forecast to be

the mean demand across all customer types upon departure from NS simulations for fare

class j, µ̂j :

µ̂j =
1

NS

NS∑
n=1

(∑
t∈T

∑
i∈I

xn,i,j(t)

)
. (9)

Similarly, the simulation forecasts the variance of the demand for fare class j as:

σ̂j
2 =

1

NS − 1

NS∑
n=1


[(∑

t∈T

∑
i∈I

xn,i,j(t)

)
− µ̂j

]2 . (10)

Here we aggregate across the booking horizon in order to obtain forecasts for the final

demand for each fare class. The resulting sum of customer requests per fare class across

customer types gives the total expected demand per fare class. The mean and variance of

these NS realisations are taken to be the forecasted parameters of a Normal distribution

for each fare class demand.

Note that this aggregated forecast deliberately prepares the heuristic applied for revenue

optimisation in this case. Applying, for instance, a dynamic program to optimally control

arriving customer requests, would require a forecast of customer arrival rates and choice

probabilities. The consequence of outliers, however, would be the same, as the arrival rates

and choice probabilities deviate for demand outliers.
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Last but not least, the simulation forecast assumes stationarity of demand, which is

correct with regard to the demand setting simulated here. Therefore, a single forecast

value is predicted for all future booking periods. Naturally, in a real-world setting, this

stationarity is not given, but instead trends and seasonality complicate forecasting. Future

research featuring such forecast aspects would open the path to further differentiation with

regard to the effects of different types of outliers given different parameterisations of the

non-stationary components.

5.4 Heuristic Revenue Optimisation

The simulation implements two well-known heuristic methods for obtaining booking con-

trols for a single resource: EMSRb and EMSRb-MR. We pick these heuristics for their wide

acceptance and pervasive use in practice. Furthermore, as opposed to e.g. exact dynamic

programming formulations, these heuristics yield the booking limits widely implemented

in current practice. We expect the nature of these booking limits and their updates to be

a relevant factor for the recognition and compensation of demand outliers.

• EMSRb, Expected Marginal Seat Revenue-b, was introduced by Belobaba (1992). EM-

SRb calculates joint protection levels for all more expensive classes relative to the next

cheaper fare class, based on the mean expected demand and its variance.

• EMSRb-MR: To make the EMSRb heuristic applicable when demand depends on the set

of offered fare classes, e.g. when customers choose the cheapest available class, Fiig et al.

(2010) introduce this variant. It applies a marginal revenue transformation to demand

and fares before calculating the EMSRb protection levels based on transformed fares and

predicted demand.

Booking limits can be implemented in either a partitioned or nested way (Brumelle and

McGill (1993), and Talluri and Van Ryzin (2004), Chapter 2). Partitioned controls assign

capacity such that each unit can only be sold in one specific fare class. Conversely, nested

controls let assignments overlap in a hierarchical manner; i.e. units of capacity assigned

to one fare class can also be sold in any more expensive fare class. Thus, nested booking

limits ensure that for any offered class, all more expensive classes are also offered—as this

seems an intuitive goal these booking limits are much more commonly used. Therefore,

our simulations implement nested controls.
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5.5 Evaluation of Outlier Detection

We regard outlier detection as a binary classification problem, where the two classes are reg-

ular booking patterns and outlier booking patterns. By definition, for any pattern generated

in the simulation, we know the true class, as we know the underlying demand model.

Several indicators evaluate the performance of binary classification outcomes, as sur-

veyed by Tharwat (2018). Each outcome falls into one of four categories: (i) if a genuine

outlier is correctly classified, it is a true positive (TP); (ii) if a regular observation is cor-

rectly classified, it is a true negative (TN); (iii) if a regular observation is wrongly classified

as an outlier, it is a false positive (FP); and (iv) if a genuine outlier is wrongly classified

as regular, it is a false negative (FN).

To analyse results in this paper, we implement the Balanced Classification Rate

(BCR) as suggested by Tharwat (2018). This indicator accounts for both the average of

the true positive rate and true negative rate:

BCR =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (11)

The notions of high detection rates (fraction of genuine outliers which are correctly de-

tected) and low false positive rates (fraction of regular observations which are incorrectly

labelled as outliers) create conflicting objectives. For example, a high true positive rate

does not necessarily indicate a high performing algorithm, if it is accompanied by a high

false positive rate. Therefore, combining both into a single figure is useful. Nonetheless,

additional results on true positive rates, false positive rates, and positive likelihood ratios

(Habibzadeh and Habibzadeh, 2019) are included in Appendices C.4 and C.5. Typically,

the number of outliers is outweighed by the number of normal observations. This leads to

one class being significantly larger than the other. BCR is robust to this imbalance.

Additionally, we generate a receiver operating characteristic (ROC) curve by

plotting the true positive rate against the false positive rate (McNeil and Hanley, 1984).

This provides an additional diagnostic for binary classifiers. The ROC curve compares the

true positive to false positive ratio as the threshold (at which an outlier is classified) varies.

The optimal ROC curve is that with the combination of highest true positive rate and the

the lowest false positive rate, i.e. with an area under the ROC curve closest to 1.
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5.6 Experimental Setup

We vary two main elements of the experimental setup for experimental analysis. The first

is the parameter settings used to generate regular and outlier demand. The second are the

settings of outlier detection.

We generate regular demand according to the parameters in Table 1, which results in

regular total demand with a mean of 240, and a standard deviation of 15.492. We bench-

mark detection performance on outlier demand generated in various ways. Our main focus

is on analysing different magnitudes of demand-volume outliers. Our choice of parameter

changes for outlier generation follows Weatherford and Pölt (2002), who investigate the

effects of inaccurate demand forecasts on revenue. In particular, they consider cases where

forecasts are 12.5% and 25% higher or lower than the actual demand. We perform a sim-

ilar analysis on the benefits of detecting outliers where the overall number of customers

deviates from regular demand by ± 12.5% and ± 25%. These four types of demand-volume

outliers we consider are generated by varying the parameters α and β as described in Table

2. This results in a change in mean of the desired magnitude and direction, but no change

in variance. In addition, we consider other types of outliers, as outlined in Section 6.3.

Mean Std. Dev α β

Regular Demand 240 15.492 240 1

25% Increase 300 15.492 375 1.25

12.5% Increase 270 15.492 303.75 1.125

12.5% Decrease 210 15.492 183.75 0.875

25% Decrease 180 15.492 135 0.75

Table 2: Parameter choices used to generate demand-volume outliers

In a wide-ranging computational study, we compared the performance of all outlier

detection methods described in Section 3. Appendix B, Table 3 lists the aggregated results

from all experiments carried out. For conciseness, the results discussed in the next section

focus on the best univariate method, parametric (Poisson) tolerance intervals; the best mul-

tivariate method, K-means clustering with Euclidean distance; the best functional method,

functional depth; and the best extrapolation method, ARIMA extrapolation combined with

functional depth.
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The settings used for these four methods are as follows:

• Parametric tolerance intervals: The distribution chosen is Poisson, see Appendix A.1

for details. The coverage proportion is chosen to be β = 0.95, and the confidence

level is α = 0.05 by default.

• K-means clustering : The number of clusters, K, is chosen to be 2, see Appendix A.1

for reasoning. The default threshold for classifying a booking pattern as an outlier

is half the sum of the maximum and minimum distances of the patterns from their

cluster centres (Deb and Dey, 2017).

• Functional depth: The number of bootstrap samples for the threshold is chosen to

be 1000. The smoothing method is as suggested by Febrero et al. (2008). Similarly,

the percentile chosen for this analysis is the 1st percentile, as suggested by Febrero

et al. (2008).

• Functional depth + ARIMA extrapolation: Thresholds are calculated as in functional

depth. The orders of the ARIMA extrapolation are selected using auto.arima in R,

based on AICc, with the augmented Dickey-Fuller test used to choose the order of

differencing. The parameters are estimated using maximum likelihood with starting

values chosen by conditional-sum-of-squares.

We provide further details on the extent of the computational study, including aggregated

results, in Appendix B.

6 Simulation Results

To investigate different outlier simulation and detection techniques, we follow a four-step

process. We contrast foresight detection performance of different outlier detection methods

in Sections 6.1 and 6.2. This analysis focuses on detection performance across the booking

horizon, and evaluates the detection approaches’ ability to detect outliers early in the

booking horizon. We also quantify the gain in outlier detection performance resulting

from the inclusion of the extrapolation step proposed in Section 4. Subsequently, Section

6.3 investigates the effect of different types of outliers on the performance of the outlier

detection method. Additionally, Section 6.4 considers an empirical data set to demonstrate

the practical implications of the approach. Finally, Section 6.5 presents a final set of

experiments intended to measure the potential increase in revenue generated by analysts
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correctly taking actions based on alerts from the proposed method of outlier detection. Note

that all experiments analysed in this section implement the EMSRb-MR heuristic, which is

a better fit with the given demand model. We have investigated the implications of applying

the EMSRb heuristic and assessed the revenue generated as well as the effect on identifying

outliers in an ancillary study. The results under EMSRb (found in Appendix C.1.) and

EMSRb-MR were found to yield similar conclusions, regardless of the outlier detection

method used. Additional results, including those relating to the hindsight detection of

outliers, are available in Appendix C.

6.1 Benchmarking Foresight Detection of Demand-volume Outliers
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Figure 4: Comparison of foresight outlier detection averaged over different magnitudes of

demand outliers with 5% outlier frequency

To evaluate foresight detection performance, Figure 4a displays the average BCR per

booking interval. Very early in the booking horizon, all four methods suffer from poor

performance but for different reasons – some suffer from low true positive rates, others

from high false positive rates (see Appendices C.4 and C.5 for details). At around 21

booking intervals before departure, the average BCR of functional methods quickly accel-

erate towards 1, whereas the univariate and multivariate approaches at best only show

mild improvements in classification performance.
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Including ARIMA extrapolation markedly accelerates classification performance, espe-

cially between 20 and 10 booking intervals before departure. Note that the aim of extrap-

olation is not necessarily to increase the overall BCR, but to achieve peak performance

earlier in the booking horizon to gain time for analyst intervention. The extrapolation

achieves this by increasing the variance of the booking patterns, leading to an increase in

the number classified as outliers. See Appendix C.6 for further details. Additional analy-

sis of Receiver Operating Characteristic (ROC) curves (see Section 6.2), further supports

the inclusion of ARIMA extrapolation. In Figure 4b, we also compare functional depth

with IGARCH and SES extrapolation, and similar improvements are observed as with

ARIMA extrapolation. ARIMA provides overall larger gains in performance compared to

SES and IGARCH. This is likely due to the flexibility of ARIMA in capturing the chang-

ing curvature of the booking pattern, and its ability to encapsulate the autocorrelations

induced by censoring from the booking limits. In the last third of the booking horizon,

the extrapolation makes up a much smaller part of the pattern, i.e. most of the pattern

is now made up of observed rather than extrapolated data. Hence, the input data to the

outlier detection algorithm with different extrapolations is similar, and so they produce

similar results. Further analysis on the relationship between extrapolation accuracy and

the resulting improvement in outlier detection is available in Appendix C.8.

As noted in Section 4, extrapolation could also be combined with multivariate outlier

detection methods such as K-means clustering. Given the superior performance of func-

tional depth we focus our main results on this combination, but additional results regarding

combining with multivariate techniques are presented in Appendix C.3.

6.2 Receiver Operating Characteristic (ROC) Curves

To show that our conclusions in Section 6.1 are robust to different parameterisations of the

outlier detection settings, we perform an ROC curve analysis by varying the thresholds for

K-means clustering, functional depth, and functional depth with extrapolation. Figure 5

shows the results for two time intervals in the booking horizon: one early at 20 intervals

before departure, and one later at 10 intervals before departure.

There are three main conclusions that can be drawn from the results of the ROC

analysis. (i) The area under the ROC curve is consistently higher for functional approaches

than for K-means. Similarly, the area under the curve is even higher when we include
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extrapolation. (ii) For K-means, the area under the ROC curve diminishes as the number

of booking intervals increases, suggesting issues with sparsity caused by high dimensionality.
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Figure 5: Receiver operating characteristic (ROC) curves

Thus, even a better choice of threshold criteria would not result in improved perfor-
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mance for K-means. (iii) The improvement between functional depth and functional depth

with extrapolation is smaller towards the end of the booking horizon. This is due to the

fact that, at this point, the extrapolation makes up a smaller part of the input data and

so the two approaches are more similar.

6.3 Outlier Detection for Diverse Types of Outliers

We next investigate how the average BCR varies depending on the type and magnitude

of outliers. All experiments in this section feature an outlier frequency of 5%. When we

tested the sensitivity of approaches to different frequencies of outliers (ranging from 1% to

10%, results omitted here), we found little impact on outlier detection performance across

methods, such that the conclusions drawn from this section are generally robust. Results

on the effect of outlier frequency are available in Appendix C.2.
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Figure 6: Balanced Classification Rate under different magnitudes of outliers with 5%

outlier frequency

First, we vary the magnitude of demand-volume outliers to ±12.5% and ±25%. Figure

6a displays the average BCR over time for parametric (Poisson) tolerance intervals. We

observe that higher magnitudes of outliers are easier to classify, but also that demand

decreases are easier to classify than increases. The latter observation is intrinsic to RM

systems: an unexpected decrease in demand causes a decrease in bookings, but an increase
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in demand does not necessarily result in an increase in bookings if the booking limit for a

fare class has been reached, i.e. if the fare class is no longer offered. This censoring leads

to the phenomenon of observing a constrained version of demand.

Similar observations arise when testing all other univariate and multivariate outlier

detection approaches. In contrast, Figure 6b displays the average BCR over time with

functional halfspace depth and ARIMA extrapolation. Here the average BCR is very

similar for all four magnitudes of outliers considered. This classification approach therefore

appears to be very robust to the magnitude and direction of outliers considered. The

robustness to the direction of the outlier demand shift is a result of the choice of depth

measure. Hubert et al. (2012) define the multivariate functional halfspace depth for the

purposes of identifying curves which are only outlying for a fraction of the time they are

observed over. This means that if a booking pattern is affected by censoring, as long as

it has still been an outlier before censoring came into effect, it can still be detected later

in the horizon. In terms of robustness to magnitude, we hypothesise that much smaller

outlier magnitudes would need to be considered before the average BCR decreases. We

further consider demand shifts of ±1%, ±5%, ±10%. The results are as expected - for

±10%, the performance is only slightly poorer; for ±5%, we see a drop in performance

with the algorithm at best having a BCR of around 0.75; and a level of ±1% performance

is particularly poor with a BCR of close to 0.5. This is behaviour we would expect, given

that outliers caused by such a small deviation in demand are unlikely to be considered

outliers in any real sense. These results are available in Appendix C.7.

Figures 7a and 7b illustrate effects from willingness-to-pay outliers, where the ratio

of high-value to low-value arrivals changes. The default value in our simulations is φ1 =

φ2 = 0.5 such that there is a 1:1 ratio, but we allow this ratio to change to create outliers.

Here, φ1 < 0.5 creates a higher percentage of total arrivals from low paying, early arriving

customers of type 2. Under functional depth outlier detection, it is easier to detect this

type of outlier when the change in φ1 is larger. There is a dip in performance around

interval 22, as this large number of low-paying arrivals causes censoring when booking limits

render cheaper classes unavailable. Setting φ1 > 0.5 creates a larger percentage of type 1

customers, who arrive late and are willing to pay more. Again, this is easier to detect under

functional depth when the change in φ1 is larger. Incorporating the ARIMA extrapolation

generally improves performance in the last two-thirds of the horizon. However, early in the

booking horizon this provides mixed results.
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different types of outliers
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Figures 7c and 7d demonstrate the performance of functional depth (with and without

extrapolation) for detecting arrival-time outliers. These outliers are caused by changes in

the parameters a1, a2, b1, b2 (resulting in a subset of customer types arriving later or earlier

than in the regular case), as outlined in Table 3.

a1 b1 a2 b2 Effect of parameter choices

Regular Demand 5 2 2 5 low value customers arrive before high value customers

Setting 1 5 2 5 2 some low value customers arrive a lot later

Setting 2 2 5 2 5 some high value customers arrive a lot earlier

Setting 3 5 2 2 2 some low value customers arrive a little later

Setting 4 2 2 2 5 some high value customers arrive a little earlier

Table 3: Parameter choices used to generate arrival time outliers

Outliers in Settings 1, 2 and 3 are easy to detect even early in the booking horizon

using functional depth without extrapolation. This is fairly intuitive - Settings 1 and

3 create almost no bookings early in the horizon, which is very different from regular

behaviour. In contrast, Setting 2 creates far more bookings early in the horizon than the

regular setting. ARIMA extrapolation is not needed nor beneficial in Settings 1-3, due to

the ease of spotting outliers immediately. In contrast, outliers from Setting 4 are more

difficult to detect. This is likely due to the fact that for most of the first half of the

horizon, outlier booking patterns and regular booking patterns are similar. In the later

half of the horizon, booking limits render the cheaper fare classes unavailable, so that

arriving customers purchase higher fare classes only slightly earlier in time. In Setting

4 extrapolation is found to significantly help the classification performance in this more

challenging setting.

6.4 Detecting Outliers in Railway Booking Patterns

We demonstrate the proposed outlier detection method by identifying outliers in a data

set of 1387 booking patterns obtained from the main German railway company, Deutsche

Bahn. This preliminary empirical study can be thought of as a guide to practitioners

for how to apply the algorithm. A detailed analysis of the algorithm’s performance in

practice would require a manually annotated data set or, potentially, a field study. While

of significant interest, such an analysis is beyond the scope of this paper.
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We consider booking patterns that were observed for a single departure time every day

of the week, for one railway leg that directly connects an origin and a destination. The 1387

booking patterns are observed over 18 booking intervals, where the first booking interval

is observed 91 days before departure. Figure 8a illustrates 148 of these booking patterns,

which relate to trains departing on Mondays. For the purposes of Figure 8a, we have

rescaled the number of bookings to be between 0 and 1. The booking data is generated

from an RM system that implements an EMSR variant, which sets and updates booking

limits based on forecasted demand and observed bookings.
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Figure 8: Pre-processing of data

In order to obtain a homogeneous data set to allow for outlier detection, we must

account for two factors: (i) departure days of the week and (ii) shortened booking horizons.

We compare booking patterns for different days of the week by applying pairwise functional

ANOVA tests (Cuevas et al., 2004). In general, booking patterns for different days of the

week are not directly comparable (see Appendix C.10 for details). In addition, shortened

booking horizons are a special characteristic of this data set that are caused by the railway

service provider’s process for implementing schedule changes. As a consequence, some

booking horizons are foreshortened and the majority of bookings typically arrive much

closer to departure (see Appendix C.10).

To prepare the data for outlier detection, we transform the booking patterns to make

them more comparable to each other. To account for both shortened booking horizons and

29



departure days of the week, we apply a functional regression model (Ramsay et al., 2009).

This functional regression model accounts for the way in which average booking patterns

change from day to day, and fits a mean function (see Appendix C.10 for details) to the

booking patterns for each day of the week. The model is of the form:

bookingsi(t) = β0(t) + β1(t)IMondayi + β2(t)ITuesdayi + β3(t)IWednesdayi+

β4(t)IThursdayi + β5(t)IFridayi + β6(t)ISaturdayi + β7(t)IShorter Horizoni
+ ei(t),

(12)

where the βj(t) are functions of time. Here, IMondayi = 1 if booking pattern i relates

to a departure on a Monday, 0 otherwise, and so on. Since every departure belongs to

a single day of the week, β0(t) represents the average bookings for Sunday departures,

with a non-shortened booking horizon. This means that β1(t) accounts for the change

in average bookings between Sunday and Monday departures. The purpose of allowing

the βj(t) to be functions of time is not to remove the trend from the booking patterns

but rather to allow the relationship between different days of the week to change over the

course of the booking horizon. In this model, IShorter Horizoni
= 1 if the booking horizon

has been shortened due to scheduling changes (affecting departures from mid-December to

mid-March), 0 otherwise.

We run the functional depth outlier detection routine on the residuals, as shown in

Figure 8b, with detected outliers shown in red. We also show these corresponding outliers

in red in Figure 8a. Of the 1387 booking patterns in the data set, we classify 66 (≈ 5%) as

outliers. Note that the frequency of outliers is not an assumption provided to the outlier

detection routine, and coincides with the frequency of outliers used in the simulation setup

(5%), thus justifying this choice in our earlier simulations.

For validation, we provided the labelled data set back to Deutsche Bahn. The company’s

domain experts have confirmed that the relative proportion of outliers is appropriate to

support analyst work on improving demand forecast and booking controls. Furthermore,

their hindsight analysis has confirmed that most automatically identified outliers would

have benefitted from such corrections.

In addition, we compared the dates of the booking patterns classified as outliers with

a list of known holidays and events. Of the 66 booking patterns classified as outliers,

30 could be attributed to known events e.g. public holidays. This leaves 36 outlying

booking patterns which would otherwise have gone undetected. However, we do not aim

to solely identify already known events, as there would be little point to only confirming
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known information. Therefore, the additionally identified outliers are not necessarily false

positives – they are in fact the very booking patterns we are attempting to identify.

6.5 Revenue Improvement Under Outlier Detection of Demand-volume

Outliers

To evaluate the effect of demand deviating from the forecasts used by EMSRb and EMSRb-

MR, we now introduce a best-case scenario where the RM system anticipates outliers and

generates accurate demand forecasts (as opposed to implementing booking controls based

on the initial erroneous forecasts). The percentage change in revenue, when switching from

erroneous to correct forecasts, under four demand changes is shown in Table 4. Results

show the impact of detecting and correcting outliers in demand depends on the demand

factor, the choice of booking control heuristic, and the magnitude of the demand deviation.

Under EMSRb, the effect on revenue is asymmetric across positive and negative outliers.

When the outlier is caused by a decrease in demand, correcting the forecast and updating

controls leads to significant increases in revenue, particularly at higher demand factors.

Conversely, when the outlier is caused by an increase in demand, correcting the forecast

and updating controls has a negative impact on revenue. Although counter-intuitive at

first glance, this agrees with previous findings. EMSRb is known to be too conservative

(Weatherford and Belobaba, 2002) and reserve too many units of capacity for high fare

classes, thereby rejecting an excessive number of requests from customers with a lower

willingness to pay. In consequence, there is left-over capacity at the end of the booking

horizon. Hence, under-forecasting can be beneficial under EMSRb.

Under EMSRb-MR booking controls, the results are more symmetric across positive

and negative outliers, in that correctly adjusting forecasts increases revenue regardless of

whether the initial forecast was too high or too low. Under both types of heuristic, the

magnitude of the change in revenue (either positive or negative) is generally larger when

the change in demand from the forecast is larger.

Figure 9 shows the average percentage gain in revenue, at each point in the booking

horizon, from analysts correcting forecasts for those booking patterns identified as outliers.

The percentage gain is in comparison to the analyst making no changes and using the

incorrect forecast for the entirety of the booking horizon.

The outlier detection method of choice in Figure 9 is functional depth with ARIMA
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Optimisation Forecasted % Change in Demand from Forecast

Heuristic Demand Factor -25% -12.5% +12.5% +25%

0.90 +0.1% +0.1% -0.9% -3.6%

EMSRb 1.20 +10.2% +6.4% -2.3% -2.3%

1.50 +12.2% +4.4% -4.5% -6.8%

Avg. +7.5% +3.6% -2.5% -4.2%

0.90 +2.3% +1.3% +0.4% +2.9%

EMSRb-MR 1.20 +2.0% +4.1% +4.4% +9.9%

1.50 +16.2% +7.7% +5.0% +9.5%

Avg. +6.9% +4.4% +3.3% +7.4%

Table 4: % Change in revenue resulting from correcting inaccurate demand forecasts
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Figure 9: Gain in revenue under different magnitudes of outliers using functional depth
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extrapolation. We consider an idealised scenario, in that when a booking pattern is flagged

as an outlier, if it is a true positive (genuine outlier) then analysts adjust the forecast

according to the correct distribution. Similarly, if the flagged outlier is a false positive,

analysts do not make any changes to the forecast. Although idealised, the results here

highlight the potential gains in revenue from analyst intervention, as well as the utility of

using functional outlier detection in detecting true positives and avoiding false negatives

(missed outliers).

Results show the use of our method creates a peak early in the booking horizon, when

the potential revenue gain is highest. This peak is caused by a combination of being far

enough into the booking horizon such that some bookings have occurred and the outlier

detection method is able to identify outliers, but being early enough in the horizon such

that any actions taken still have time to make an impact.

7 Conclusion and Outlook

In conclusion, the work presented in this paper gives rise to several insights.

We benchmarked a set of outlier detection techniques and find that the functional

outlier detection approach offers the best performance and the most scope for further

extensions. Our results show that combining functional outlier detection with our proposed

extrapolation step significantly improves performance overall, and accelerates the correct

identification of outliers earlier in the booking horizon. We do note however that all

methods perform poorly very early in the booking horizon where very little data has been

gathered, and clearly at this stage analyst expertise or prior information is needed rather

than relying on booking data alone.

By analysing an empirical railway booking data set, we demonstrated that such data is

similar in shape as the data generated by the simulation model. Furthermore, the frequency

of outliers detected via applying functional outlier detection to the empirical data was

similar to what was observed with simulation data. In contrast to the simulation setting,

the empirical data does not provide information on the labelling of actual outliers, it was

therefore not possible to compute detection rates for this data. However, we validated our

findings by presenting them to domain experts.

Outliers in demand diminish revenue when they go undetected. The exact effect de-

pends on the combination of outlier and optimisation method, as shown in Section 6.5.
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Nevertheless, we argue that using a heuristic with an intrinsic bias that is then compen-

sated by undetected outliers (as observed for EMSRb and undetected positive demand

outliers) cannot be desirable for an automated system.

We have demonstrated that identifying outlier booking curves and adjusting the de-

mand forecast accurately early in the booking horizon supports revenue optimisation. Cur-

rently, revenue management analysts decide on which booking patterns are outliers based

on their previous experience of observing demand and their knowledge about special events.

Automated outlier detection routines provide another procedure of alerting analysts to un-

usual patterns. If the detection algorithm identifies a booking pattern as an outlier, the

RM system alerts the responsible analyst. When the system and the analyst agree that a

booking pattern is critical and that it requires intervention, an analyst must decide which

action(s) to take. Specifically, they need to decide whether to increase or decrease the

forecast or inventory controls, and by how much. Further work could investigate methods

to adjust the initial forecast to account for outliers.

Within the context of RM, thoroughly examining the effects across further outlier situ-

ations, e.g. outliers affecting only part of the booking pattern, and optimisation solutions,

e.g. dynamic programming, is an interesting area for further research. Furthermore, fu-

ture research might consider more differentiated forecasting situations, featuring trends

and seasonalities. Beyond RM, other paradigms of offer optimisation, such as mark-down

pricing or the pricing of Veblen products, might offer different challenges with regards to

outlier detection. Given that the resulting sales observations should also take the format of

time series, we consider it interesting to find out whether the same methods would broadly

apply in such different settings.
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