
Uncontrolled Randomness in Blockchains: Covert Bulletin Board for Illicit Activity

Nasser Alsalami
Lancaster University, UK
n.alsalami@lancaster.ac.uk

Bingsheng Zhang*
Zhejiang University, China

bingsheng@zju.edu.cn

Abstract—Public blockchains can be abused to covertly store
and disseminate potentially harmful digital content which poses
a serious regulatory issue. In this work, we show the severity of
the problem by demonstrating that blockchains can be exploited
to surreptitiously distribute arbitrary content. More specifically,
all major blockchain systems use randomized cryptographic
primitives, such as digital signatures and non-interactive zero-
knowledge proofs; we illustrate how the uncontrolled random-
ness in such primitives can be maliciously manipulated to enable
covert communication and hidden persistent storage. To clarify
the potential risk, we design, implement and evaluate our
technique against the widely-used ECDSA signature scheme,
the CryptoNote’s ring signature scheme, and Monero’s ring
confidential transactions. Importantly, the significance of the
demonstrated attacks stems from their undetectability, their
adverse effect on the future of decentralized blockchains,
and their serious repercussions on users’ privacy and crypto
funds. Finally, we present a generic framework to immunize
blockchains against these attacks.

I. INTRODUCTION

The blockchain technology has pioneered a new paradigm
to realize large-scale distributed ledgers. While the
blockchain technology is promising in a great number of
application scenarios, it can also be abused to anonymously
store and disseminate potentially harmful digital content.
As shown in a recent study [1], 1.4% Bitcoin transactions
contain non-financial data, some of which contain objection-
able content. Though the absence of a central censor makes
blockchains appealing in some use cases, the increasing
amount of illicit content posted to the blockchains poses
a serious regulatory issue [2]. Subsequently, several tech-
niques have been discussed to either filter unwanted content
before posting to the ledger [3] or remove content from the
blockchain [4] [5].

However, all of the proposed countermeasures are only
effective if the malicious content attached to the trans-
actions can be detected. The situation gets worse when
the attackers hide data into normal transactions and use
blockchain platforms for covert communications. Naively,
one can encrypt the malicious content and attach its cipher-
text to a transaction, but it is noticeable to the public. In
2018, Partala [6] showed a proof-of-concept steganography
technique that allows an adversary to covertly embed one
bit into a standard Bitcoin transaction’s recipient address
without being distinguished from an innocuous transaction
and without burning the funds.

In this work, we further advance this line of research by
demonstrating an effective steganographic method that offers
high throughput and can be launched against any blockchain

*Corresponding author.

platforms that use randomized cryptographic primitives, such
as digital signatures and non-interactive zero-knowledge
proofs. The main observation is that all randomized algo-
rithms need to consume random coins somewhere along
the execution, and these random coins are not audited or
certified publicly. By intentionally manipulating the random
coin supplied to a randomized algorithm, an attacker is
able to embed arbitrary information into the output of the
algorithm, where the output that contains steganographic data
is computationally indistinguishable from normal output.

Our attack can be used for covert channels, persistent stor-
age, and many other scenarios. For instance, the attacker(s)
may try to subvert, or mis-implement cryptocurrency wallets
and re-distribute them to unsuspecting users. The subverted
wallets can then surreptitiously leak the victim’s secret, such
as the signing key, via standard transactions. Importantly,
the transactions generated by the subverted wallets are
computationally indistinguishable from normal transactions
for any third-party observers. Note that the current focus
of research regarding blockchain subversion vulnerabilities
is mainly on the trusted parameter setup process, such as
common reference string (CRS) generation [7] [8], while
software/hardware subversion vulnerabilities in blockchain
cryptocurrency applications has not been extensively studied.

We would like to argue that wallet subversion is prac-
tical and plausible, and the public should be alert to such
risks. Cryptocurrencies have very complex cryptographic
primitives and structures that make them prone to unseen
mis-implementations. Although many cryptocurrencies are
marketed as decentralized projects, studies have found that
the development of many blockchain applications is highly
centralized. For example, 30% of the source files in Bitcoin
are written by a single author, and 7% of the code is
written by the same author [9]. Similarly, 20% of the source
code in Ethereum is attributed to the same author [9]. This
high centralization may cause bias and introduce inten-
tional/unintentional flaws. Moreover, most end users lack
the ability and the means to check the conformity of an
executable wallet with its reference source code. It is uncom-
mon for users to compile the source code of any application
by themselves; instead, they usually relay on downloading
readily prepared executable applications. The difficulty to
examine the implementation of a cryptocurrency wallet is
even more pertinent to hardware wallets, such as the various
Swiss-Army-Knife hardware wallets [10]. These hardware
wallets are typically manufactured in an outsourced loosely-
controlled environment, and it is virtually impossible to audit
the integrity of their implementation through the standard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/370175658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

functionality ‘correctness’ test by observing input/output
pairs in a black-box manner.
Our contributions. The primary objective of this work is
to draw attention to the potential threat of abusing uncon-
trolled randomness in blockchain cryptographic algorithms.
To the best of our knowledge, this is the first work in
literature that discusses such a widely spread vulnerability
in the blockchain context. We summarize our contributions
as follows:
A novel blockchain steganographic technique. We propose a
new steganographic technique that affects most cryptocur-
rencies. Our technique greatly increases the throughput
of the state-of-the-art blockchain steganographic attacks.
We present our general attack against the widely-used
CryptoNote framework, and we implement and evaluate the
attack on two real world cryptocurrencies – Monero and
Bytecoin.
A covert broadcast communication system. We designed and
implemented the world’s first practical covert broadcast com-
munication system by integrating our steganographic tech-
nique with Boneh et al. broadcast encryption scheme [11].
The prototype system is deployed on Bytecoin, and it can
be used to bypass any censorship mechanisms, as the mere
existence of such a channel is unobservable.
Persistent storage. With the proposed steganographic tech-

nique, anyone can use the blockchain as a cheap hidden
persistent storage along with their daily transactions. For
instance, this can be used for uncensorable cyberlockers. At
the time of submission, persistently storing 1GB of data on
Bytecoin blockchain costs less than $3.
Wallet subversion attacks. For the first time, we point out

that there is a troubling risk of massive coin stealing among
all of the current cryptocurrency wallets by demonstrating
efficient and effective subversion attacks within the realm
of Kleptography and Algorithm Substitution Attacks. This
attack possesses the following properties:

• Passive attack. After the victim user downloads and installs
the subverted wallet, the attacker does not need to inter-
act directly with the victim’s wallet. The communication
channel between the subverted wallets and the attacker is
through the posted blockchain transactions.

• Undetectability. The transactions generated by the sub-
verted wallets are computationally indistinguishable from
the honestly-generated ones. Therefore, no watchdog can
detect the subversion in the black-box setting.

• Interoperability. The subverted wallets transact seamlessly
with normal wallets, i.e. they can send to and receive
from other wallets regardless whether other wallets are
subverted.

We have implemented our subversion attacks against the
ECDSA signature scheme, and the ring signature used in
the CryptoNote framework which is implemented by many
cryptocurrencies, such as Bytecoin and Monero. As a result,
this work has direct impact on 18 of the top 25 cryptocur-
rencies in terms of market capitalization [12] as depicted in
Table I.

Cryptocurrencies’ Signatures
Cryptocurrency ECDSA EdDSA Ring Signature Note
1 Bitcoin X
2 Ethereum X
3 Ripple X X
4 Bitcoin Cash X
5 Litecoin X
6 Cardanos X
7 Stellar X
8 Zcash X
9 IOTA Winternitz

10 Monero X
11 Dash X
12 NEM X
13 Ethereum Classic X
14 Komodo X
15 Verge X
16 Lisk X
17 Dogecoin X
18 Decred X X
19 Nano X
20 Wanchain X X
21 Bytecoin X
22 Siacoin X
23 Bitcoin Diamond X
24 BitShares X
25 Waves X

TABLE I: Top 25 cryptocurrencies (currencies checked with
either ECDSA or ring signature are effected by our attacks.)

Countermeasures. We propose a stego-resistant blockchain
framework to prevent steganographic attacks and mitigate
wallet subversion attacks. In short, in this framework, the
miners either re-randomize the transactions’ signatures or
replace them with non-interactive zero-knowledge proofs.
Subsequently, the possibly stego-generated signatures are
dropped.

II. PRELIMINARIES

Notations. Unless specified in the context, we use hashp :
{0, 1}∗ 7→ Zp and hashg : {0, 1}∗ 7→ G as two collision
resistant hash functions that map an arbitrary length string
to a group element in Zp and G, respectively.
Brief description of CryptoNote. CryptoNote is a protocol
proposed by Nicolas van Saberhagen [13], and it has been
implemented in many emerging cryptocurrencies, such as
Bytecoin [14], CryptoNoteCoin [15], Fantomcoin [16], etc.
Compared to Bitcoin-like cryptocurrencies, CryptoNote of-
fers two main features: (i) stealth address via non-interactive
key exchange and (ii) set anonymity via (linkable) ring
signatures.

Precisely, the user’s private key consists of a, b ∈ Zp,
and the corresponding public key consists of A := ga and
B := gb. Note that in a standard CryptoNote implementation,
a is usually defined as hashp(b); therefore, b is the actual
secret key. To transfer funds to a recipient, the payer needs
to generate a transaction public key R := gr and compute
the corresponding one-time address T := ghashp(A

r) ·B. The
recipient is then able to compute the corresponding one-time
private key as t := hashp(R

a) + b. Notice that Ar = Ra.
With regards to the ring signature schemes, it is transformed
from the OR-composition of Schnorr’s identification Sigma
protocols. There exists a LNK algorithm that can link two
signatures together if they are produced by the same signing
key. By design, the one-time signature key can only be used
once, and it can be detected if the same key is used to

Sign({Pj}kj=1, t`, `,m):
• Set I := hashg(P`);

• For j ∈ [k], pick qj
$← Zp;

• For j ∈ [k], j 6= `, pick wj
$← Zp;

• For j ∈ [k]:
– Set Lj := gqj if j = `;

Set Lj := gqj · Pwj
j if j 6= `;

– Set Rj := (hashg(Pj))
qj if j = `;

Set Rj := (hashg(Pj))
qj · Iwj if j 6= `;

• Set c := hashp(m,L1, . . . , Lk, R1, . . . , Rk);
• For j ∈ [k]:

– Set cj := wj if j 6= `;

Set cj := c−
∑k

j=1 cj if j = `;

– Set rj := qj if j 6= `;
Set rj := q` − c`t` if j = `;

• Return σ := (I, c1, . . . , ck, r1, . . . , rk).

CryptoNote Signing Algorithm

Fig. 1: CryptoNote Signing Algorithm.

sign two transactions, which prevents double spending. In
particular, let T := gt be the one-time public key, and define
I := (hashg(T))t as a “key image” as part of the signature.
The ring signatures signed by the same secret key would
have identical key image; therefore, double spending can
be defeated efficiently by simply checking if the key image
has already been used. As depicted in Fig. 1, the signing
algorithm takes input as a set of public keys {Pj}kj=1 (a.k.a.
the ring), the secret key t` such that P` = gt` , ` ∈ [k].
Brief description of Monero (Version 0.12.0.0). Mon-
ero [17] is one of the most successful CryptoNote-based
cryptocurrencies. Although the original Monero was based
on the CryptoNote protocol, its transaction signature has
evolved beyond this protocol1. As mentioned in [19],
CryptoNote suffers from a shortcoming where amounts in
transactions are not hidden. To address this issue, Ring Con-
fidential Transaction (RingCT) [19] has been developed and
deployed in Monero since January 2017. It combines (link-
able) ring signature and Pedersen commitment schemes [20],
and also adopts Multilayered Linkable Spontaneous Anony-
mous Group Signature.
Steganography. Steganography refers to the techniques that
allow a sender to send a message covertly over a communica-
tion channel so that the mere presence of the hidden message
is not detectable by an adversary who monitors the channel
[21] [22]. Let C be a channel on the alphabet Σ with length
`, which can be viewed as a function that maps the channel
history H ∈ (Σ≤`)∗ to a probability distribution upon Σ≤`.
Denote the probability distribution by CH. A stegosystem on
a family of channels C := {Cλ}λ∈N consists of a triple
of PPT algorithms ST := (KeyGen,Encode,Decode) as
follows:

1 The Monero project is very active and evolves rapidly. In fact they
have two major releases each year. In Oct. 2018, Monero released version
0.13.0.0 “Beryllium Bullet”, which switched to Bulletproofs [18]. Since the
technical specification of the latest version is not well documented yet, our
work is for Monero version 0.12.0.0 and earlier versions.

GSPEC

m
s c

GIMP

m
s c’

Extz s
Fig. 2: Kleptography/ASA: specification GSPEC takes input as the
message m and the secret s, and outputs c; whereas, the malicious
implementation GIMP outputs a subverted ciphertext c′ which can

leak the secret s exclusively to the attacker who knows z.

• (ek, dk)← KeyGen(1λ) is the key generation algorithm
that takes as input the security parameter 1λ, and it
outputs an embedding key ek and an extraction key dk.

• st← Encode
CλH
ek (m,H). Given an embedding key ek, a

message m, and a channel history H. Encode generates
a stegotext message st. Note that Encode has sampling
access to CλH.

• m← Decodedk(st), Decode takes as input an extraction
key dk and the stegotext st, and outputs the hidden
message m ∈ {0, 1}∗.

Definition 1. We say a stegosystem ST is indistinguishable
chosen-hiddentext-attack (IND-CHA) secure if for all PPT
adversary A we have
∣∣∣∣Pr

[
(ek, dk)← KeyGen(1λ); b← {0, 1};
b∗ ← AO(b,·,·)(1λ) : b = b∗

]
− 1

2

∣∣∣∣ = negl(λ)

whereO(b,m,H) is the oracle that returns st← Cλh if b = 0;
otherwise, it returns st← Encode

CλH
ek (m,H).

Kleptography/Algorithm-substitution attacks. Our wallet
subversion attacks can be classified as kleptographic attacks
[23]–[25] and algorithm-substitution attacks (ASA) [26] [27].
As a high-level definition, in such attacks, the adversary ma-
liciously tampers with the implementation of a cryptographic
algorithm GIMP and changes it from its specification GSPEC

algorithm, with the aim to subliminally and exclusively leak
the user’s secret information to the adversary while evading
detection in the black-box setting. The depiction in Fig. 2
illustrates how an adversarial implementation GIMP of the
algorithm GSPEC can allow the adversary, given their secret
key z, to detect the subverted output c′ and extract the
user’s secret s. Kleptographic attacks are significant due to
their undetectability in the black-box setting and their severe
consequences on the security of the users.

III. GENERIC STEGANOGRAPHIC ATTACK

Many cryptocurrencies use ring signatures to enhance
users’ privacy. For example, the CryptoNote framework
[13], which is adopted by around 20 cryptocurrencies, uses
ring signatures. As a demonstration, we describe how the
uncontrolled randomness (marked in grey in Fig. 1) in
CryptoNote’s ring signature signing algorithm can be ma-
liciously exploited. Precisely, we show how the randomness
within the ring signatures can be used to communicate
covertly, store arbitrary information, and surreptitiously leak
private keys. Note that the same principles are applicable
to any other uncontrolled randomness in blockchain crypto-
graphic primitives.

b1 IV=Fz(rand||00...0)

<1 bit> <———128 bits ———>

Payload 1

<—124 bits —>

cj:

b2

<1 bit> <———————252 bits———————>

Payload 2rj:

(a) CryptoNote: Format of one pair of ring
signature random numbers (cj , rj) with

47-byte embedded stegotext.

IV=Fz(rand||00...0)
<———128 bits ———>

Rand
<—125 bits —>

cj:

strj: Rand

<———128 bits ———> <—125 bits —>

(b) Bytecoin: embedding
a 16-byte st in one pair of

(cj , rj).

Fig. 3: Pair of subverted random numbers.

Our generic steganographic attack on CryptoNote. The
CryptoNote protocol uses the ED25519 twisted Edwards
curve, and the group order is a 253-bit prime p. The long
term secret key of a user consists of two group elements
a, b ∈ Z∗p, but a := hashp(b) is commonly used in practical
implementation. Therefore, the long term secret key of
a CryptoNote account is effectively 253 bits.

As part of the (linkable) ring signature, a one-out-of-many
non-interactive zero knowledge proof is included. In addition,
for a ring of size k, the format of the ring signature is
σ = (I, c1, . . . , ck, r1, . . . , rk). Suppose the sender’s public
key is PK`, ` ∈ [k]. For all j ∈ [k] and j 6= `, the components
cj and rj are uncontrolled random group elements in Zp
and can be used for covert communication. Hence, our
attack is premised on steganographically embedding arbitrary
information on the ring signature’s random numbers (cj , rj).
In our attack example, ek = dk, which is the common shared
secret z ∈ {0, 1}128. The attack is explained as a three-step
process carried out by two parties: a sender called Alice and
a receiver called Bob.
Step 1: embedding hidden messages (EncodeC

λ
H

ek (m,H)). As
the most significant bit of a random Zp element does not have
uniform distribution (which is more biased to 0), to ensure
(computational) indistinguishability between stegotext st and
innocuous random elements (cj , rj) ∈ Zp, Alice embeds
her secret message m in the least significant 252 bits of
cj and rj , whereas, the most significant bits b1 and b2 are
sampled according to the real distribution of cj and rj . As
depicted in Fig. 3a, the rest consists of a 128-bit IV, 124-
bit Payload 1, and 252-bit Payload 2. Let F : {0, 1}128 ×
{0, 1}128 7→ {0, 1}128 be a PRF that takes as input a 128-bit
plaintext and a 128-bit key, and outputs a 128-bit (pseudo-
random) ciphertext. Alice uses synthetic IV to allow Bob
to efficiently identify which transactions on the blockchain
contain stegotext st. In particular, IV := Fz(rand‖00 . . . 0),
where rand ∈ {0, 1}64 is a 64-bits random string, and 00 . . . 0
is a 64-bit string of 0’s. As a result, to check if a signature
contains any st, Bob can simply try to decrypt a suspected
IV, obtaining d := F−1z (IV). If the lower half of d consists
of 64 bits of 0’s, then this signature contains stegotext st.

In our attack, Payload 1 and Payload 2 are jointly used
to convey a 376-bit hidden message m. The payloads are
encrypted via a semantically secure symmetric encryption
under the secret key z and using IV. Also, to handle an
arbitrary-length hidden message and ensure the resulting
ciphertext has the same length as the message (besides the
IV), Alice can use the Ciphertext Stealing technique with
CTR mode.

Step 2: identifying stegotext. Unlike conventional P2P covert
communication, before attempting to extract a hidden mes-
sage from a transaction, Bob should first identify if the target
transaction contains a stegotext st. As mentioned before, Bob
can accomplish this by parsing IV from the first two cj’s of
the ring signature σ in a transaction, and checking whether
the decryption of IV contains pattern 64 bits of 0’s as shown
in Fig. 3a. Note that Encode embeds the hidden message m
in one of the first two pairs of (cj , rj). If c1 does not yield
the IV, then Alice’s secret index ` must be 1, and Bob moves
on to decrypt c2 which must contain the IV, otherwise, the
signature is an innocent cover text ct that does not contain
st.
Step 3: extracting hidden messages (Decodedk(st)). Once
a steganographic ring signature is successfully identified,
Bob can use the Decode algorithm to extract the hidden
message. More specifically, Bob collects Payload 1 and
Payload 2 as depicted in Fig. 3a. Bob then uses the ex-
traction key dk := z to decrypt the payload, obtaining
m := Decz(IV,Payload 1‖Payload 2).
Security. The proposed generic stegosystem against all
CyptoNote-based cryptocurrencies is undetectable by The-
orem 1. We remark that the content-insertion techniques
that use non-standard Bitcoin scripts or exchange the public
key with an arbitrary string with printable characters, as
mentioned in [28] [1], can be detected. On the contrary,
our proposed steganographic attack on CryptoNote sim-
ply replaces random numbers with pseudo-random ciphers
which, by definition of semantic security, are computationally
indistinguishable from each other.

Theorem 1. The stegosystem ST for CryptoNote-based
cryptocurrencies is IND-CHA secure, if F : {0, 1}` ×
{0, 1}λ 7→ {0, 1}` is a secure PRF.

Robustness and Efficiency. In terms of robustness, it is
easy to see that, unlike image steganography, the stegotext
embedded in the signatures can never be removed while
still preserving the functionality of the signatures. Therefore,
there is no filter that can remove our stegotext.
Throughput. The only similar attack in literature is the proof-
of-concept attack in [6] which sends a hidden message
bit-by-bit through the rejection-sampling of the transaction
address. Besides sending one bit of the hidden message m per
transaction, their attack also sends one transaction per block.
As a result, with 10 minutes to add a new block in Bitcoin,
a sender needs more than 24 hours to send a message of
20 bytes. On the other hand, our steganographic attack takes
advantage of the randomness within each ring signature in
CryptoNote transactions. In fact, a CryptoNote transaction
contains a ring signature for each input. Therefore, if a
transaction tx has y number of inputs, and k public keys
in the ring of each signature, then the total number N of
random numbers (cj , rj) in tx is N = y ∗ (k − 1) ∗ 2.
Whereas, the available bandwidth B in bytes is B = 32N .
Hence, the available bandwidth in one transaction of 10
inputs and 10 public keys is more than 5KB. In comparison,
other techniques that replace segments of the transaction,

• Block height: 1671177
• Transaction id: 52caba6ef4e4716ac8a25681eb3f380
d3d1fee057ada7eb62d687af36f1a44ff

• Sender’s address: 26c6Y mZmLJZY xnV At56kRra
BhxiEUt8yoJR3V V 4UV 5V cRM9Pzs5qV 7KStQ
Haa7xkAHej3WTTxtAc1KHbCSPoZ2ms3bdUs
Y 6.

• Receiver’s address: 26c6Y mZmLJZY xnV At56kRr
aBhxiEUt8yoJR3V V 4UV 5V cRM9Pzs5qV 7KSt
QHaa7xkAHej3WTTxtAc1KHbCSPoZ2ms3bdU
sY 6.

• Mixin count (ring size): 6

Demo Steganographic Bytecoin Transaction

Fig. 4: Stegangraphically-generated bytecoin transaction

e.g. replacing P2SH scripts in Bitcoin transactions as done in
Tithonus [29], can at maximum transmit 1KB per transaction.
Note that many blockchains offer an API to retrieve certain
transactions and blocks. Therefore, if the receiver knows
the heights, i.e. indices, of the blocks that contain the
steganographically communicated data, he does not need to
check the whole blockchain.
Robustness against blocking. Sometimes, censors can dis-
cover censorship-resistant proxies, e.g. Tor bridges, and
block them. On the other hand, censors can not distinguish
steganographically-subverted blockchain transactions; hence,
they can not launch any targeted DoS attack unless they
blacklist the whole blockchain which might have other
financial ramifications. Additionally, from an attacker per-
spective, exploiting uncontrolled randomness is advantageous
over other content-insertion approaches that simply replace
segments of the transactions, as done in Tithonus [29] and
Catena [30]. Namely, other techniques are susceptible to
policy changes where certain scripts become conspicuous
or no longer accepted, forcing the adoption of alternative
techniques.
Cost. Content-insertion through the use of OP RETURN
transactions and the arbitrary replacement of transaction
addresses [28] render the funds unspendable. Therefore,
these techniques burns funds. On the contrary, our proposed
steganographic attack does not incur any additional cost,
except for minimal transaction fees, as the sender can always
send transactions to his own addresses. Technically, we can
choose arbitrarily large ring size in a transaction. In practice,
however, we found that a value between 20 and 30 is the
optimal ring size to get a transaction included quickly with
minimum transaction fees. To further clarify the cost per
Byte, a Bytecoin transaction tx with 2 inputs and 21 public
keys can take about 2KB of covert data and costs 0.1 BCN
as the minimum transaction fee which, given the current
price of Bytecoin is $0.000931 [12], costs $0.0000931.
Therefore, the cost of transmitting 1MB covertly is about
$0.05. Conversely, as shown in [29], Bitcoin-based Tithonus
can covertly transmit up to 1650 Bytes in one transaction
by replacing segments of the P2SH script of a multisigna-
ture transaction. Assuming the minimum transaction fee of
1 Satoshi/Byte and $7925.83 [12] per Bitcoin, the cost of
transmitting 1MB is more than $83.

• Block height: 1502164
• Transaction id: e4b7982b081a17892525f1b1d3011ec0

6a0820cbf451d3a64f8ea998104a753c
• Sender’s address: 455Bu1zXzgXEeXxrjzRSsEif
P8WgtLTKY LreQ7RrA1fcF i2UKjgtc2UBapB9
AcDaitdY 7SdWGFsEZRELL8A1nMnEFRV Zg
47.

• Receiver’s address: 42F5itWciY Ag5QJxZEqWz5h
rQNFaySUbxfxsjcdp8FnrRM68c8Nzujm3Uqfs
cV C6r2c2GwuiP4sRsQv3ZZUc1spjUHuDHsx.

• Mixin count (ring size): 5

Steganographic Monero Transaction

Fig. 5: A steganographically-generated Monero transaction

IV. CASE STUDIES: BYTECOIN AND MONERO

In this section we show our implementation of the pro-
posed attack in Sec. III in two real cryptocurrencies –
Bytecoin and Monero. Specifically, we implemented the
steganographic attack in Bytecoin (v 3.3.3)2. Similarly, we
implemented and tested the attack in Monero. It is important
to note that as of October 2018, Monero (v 0.13.0.0) has
replaced Borromean ring signatures, that is exploited by our
attack, by a succinct zero-knowledge proof called Bullet-
proofs, which is not covered by this work. Consequently,
all of our discussion in relation with Monero is regarding
v 0.12.0.0 and older.
Implementation in Bytecoin. Bytecoin is an open-
source cryptocurrency project [31] that closely follows the
CryptoNote protocol, which, as described in Sec. II, has
sufficiently many uncontrolled random numbers that could
be exploited to covertly communicate arbitrary information.
Therefore, Bytecoin is susceptible to the generic stegano-
graphic attack described in Sec. III. Note that AES128 is
used in the stegosystem because it is already implemented
in Bytecoin source code.

As a proof-of-concept experiment and due to ethical
reasons, we only covertly transfer 16 bytes in the real-
world Bytecoin without significantly abusing the blockchain
system. To generate steganographically hidden messages,
the Bytecoin wallet’s source code is changed by mainly
modifying one source file, crypto.cpp, to alter the random
numbers in the transaction’s ring signature(s) and produce
one pair of (cj , rj) as in Fig. 3b. Note that j 6= ` where `
is the signer’s secret index within the ring. Particularly, the
changes introduced to crypto.cpp affect the following two
functions within the source file: generate ring signature()
and random scalar().

To distinguish and identify signatures containing stego-
text, function add transaction() in BlockChainState.cpp is
slightly modified to check each signature by decrypting each
pair of (cj , rj) numbers. If a pattern is identified, it decrypts
the most significant 16 bytes of rj to extract m. Fig. 4
shows a demo subverted transaction included in the block
at height 1671177 that contains a 16-byte hidden message
“steganography”.

2 Although we describe the attack in (v 3.3.3), we have also successfully
implemented the same attack in the most recent release (v 3.5.1), and the
description is applicable with slight modifications.

Sender

Modified
Wallet

m1, m2 Blockchain
Embed

Tx

Tx’

Receiver 1

Modified
Wallet m1

Extract

Tx’

Receiver 2

Modified
Wallet m2

Extract

Tx’

Master
key

key 1

key 2

Fig. 6: Attack scenario 1: Covert broadcast communication.

Implementation in Monero (version 0.12.0.0). Although
Monero is based on CryptoNote protocol, it uses Borromean
ring signature which is different from the ring signature
used in CryptoNote protocol as previously shown in Sec. II.
Nevertheless, our generic attack in Sec. III is still applicable
to Monero, which illustrates how the same attack can be ex-
tended to all public blockchain applications with randomized
cryptographic primitives.

Monero has a very complex cryptographic structure and
ring signature scheme in particular. The core of Monero’s
wallet involves Multilayered Linkable Spontaneous Anony-
mous Group Signature (MLSAG) and Borromean ring signa-
ture [32]. MLSAG is similar to the 1-out-of-n ring signature
that is used as part of the CryptoNote protocol; however,
rather than using a ring signature on a set of n keys, MLSAG
uses a ring signature on a set of n-key vectors. Using
MLSAG, the signer proves that he knows all the private
keys corresponding to one column in the public keys’ matrix.
Also, despite the massive one-time secret key, the long-term
secret key is still a single group element in Zp. Moreover,
Borromean ring signature [32], which is a generalization and
based on the 1-out-of-n signature [33], is used to mask the
transferred amount while enabling the receiver to know how
much they have received by revealing the mask [34].

In our experiment, we chose to exploit the Borromean
ring signature as it offers higher throughput. Our attack on
Monero is based on embedding a 32-byte hidden message
m in the randomly generated si,j numbers as part of the
Borromean ring signature [32]. In particular, two vectors of
si,j numbers are generated by the genBorromean() function:
s0,j and s1,j . s0,j’s are randomly generated when the jth bit
commitment is 1. Two of these randomly generated s0,j’s
are used to embed m. In a similar manner to our attack on
Bytecoin, we use AES because it is already available in the
source code. This step of the attack is achieved by slightly
modifying two functions: genBorromean() and skGen() in
two files: rctSig.cpp and rctOps.cpp. genBorromean() is
modified to pass two extra parameters to skGen(). Also,
blockchain.cpp is modified to check new transactions for
steganographically hidden patterns, identify, and extract hid-
den messages.3

3 More and specific details of the actual implementation in Bytecoin and
Monero can be made available in the full version upon request.

Throughput and Cost
Tool BW (B/Tx)(1) Tx Fee (coin) Price/coin Tx Fee ($) Cost 1 MB($)

Our technique 2 KB(2) 0.1 BCN 0.000931 0.0000931 ≈ 0.05
Tithonus 1650 B 10−8 BTC/B 7925.83 0.131 ≈ 83

R3C3 1168 B 0.0001 ZEC 75.62 0.0076 ≈ 6.8

TABLE II: Comparison between our covert broadcast technique,
Tithonus [29] and R3C3 [36] in terms of throughput per

transaction (BW) and cost of transmitting 1MB. Assuming a
Bytecoin transaction with 4 inputs and ring size 10.

V. ATTACK SCENARIOS

This section describes the following attack scenarios:
(i) covert broadcast communication, (ii) covert persistent
storage, and (iii) wallet subversion attacks.
Attack Scenario 1: Covert Broadcast Channel. Conven-
tional steganographic techniques typically assume that the
covert communication is between two parties – a sender
and a receiver. However, our steganographic attack can be
used as a covert broadcast channel, i.e. one sender and
multiple receivers. As analyzed in Sec. III, to steganograph-
ically send a hidden message of 1KB, Alice can easily
craft a transaction with 4 inputs and 5 public keys. As
shown in Fig. 6, our covert broadcast system utilizes our
steganographic technique in conjunction with Boneh et al.’s
broadcast encryption [11]. Our implementation is based on
modifying the Bytecoin wallet (vr.3.1.1) using a tweaked
version of the C implementation by Günther [35]. More
specifically, we implemented a broadcast channel with up
to 64 subscribers and one master node. As explained in
Sec. III, the available bandwidth for steganographic informa-
tion in one CryptoNote transaction is BW = 32N , where
N = y ∗ (k − 1) ∗ 2, y denotes number of inputs, and
k denotes the number public keys in each ring signature.
Hence, in one transaction of 4 inputs and 10 public keys,
our broadcast system can transmit more than 2KB of covert
data.4 Moreover, the minimum transaction fee is 0.01 BCN
which costs $0.0000931. Therefore, the cost of transmitting
1MB data via this implementation and persistently storing
it on the Bytecoin blockchain is approximately $0.05. Ta-
ble II compares our implementation with Tithonous [29]
and R3C3 [36], and shows that transmitting 1MB through
Tithonous costs approximately $83, and approximately $6.8
in R3C3. 5

The feasibility of this scenario and the high throughput
demonstrate the severity of this attack, especially if abused
by outlaws to use public blockchains as covert broadcast
networks for their illicit communication.
Attack Scenario 2: Covert Data Storage and Dissem-
ination. Data storage can be viewed as a communication
channel between the user and the user himself in the future.
Unlike covert communication, covert persistent storage re-
quires the uploaded content to be permanently stored and
available on the blockchain. As aforementioned, the cost

4 Boneh et al. broadcast encryption [11] sends a packet denoted as Hdr to
all subscribers to enable them to derive a new symmetric encryption every
time a new subscriber is added/removed. The size of Hdr is square-root of
the number of users; when we have 64 users, Hdr consists of 9 elements.
Since each element is 128 Bytes, the size of Hdr is 1152 Bytes.

5 Comparison is based on prices of relevant cryptocurrencies quoted on
20/05/2019 from [12].

Subverted
Wallet

Blockchain
$$$

Tx’

Ext

Tx’

Bob (Reciver)

Wallet $$$Tx’

key

Subverted
Wallet

Distribute

Download

SK

Alice (Sender)

Carol

SK

Fig. 7: Attach scenario 3: Subversion attack on crypto wallets to
steal users’ private keys

of covertly storing 1MB in Bytecoin’s blockchain is about
$0.05. Consequently, an adversary can use Bytecoin as a
cyberlocker and abuse the P2P network of Bytecoin as a
persistent content-delivery network (CDN). For example, it
could be used to store pirated movies, wikileaks documents,
etc. Another malicious example is for the attacker to covertly
store private information about a victim for blackmail.
Attack Scenario 3: Wallet Subversion. In the aforemen-
tioned attack scenarios, the sender, Alice, is complicit in the
malicious attacks. The third scenario depends on different
assumptions, and presents a different situation where the
sender is oblivious and is in fact a victim of the attack.
Although this scenario may be applicable to open-source
blockchain applications due to their complexity, it is more
pertinent to close-source and hardware-based applications,
e.g. hardware wallets. The significance of this attack scenario
stems from its undetectability in the black-box setting, where
secrets are leaked via normal transactions posted on the
blockchain, and its serious repercussions on the victim’s
privacy and funds.

As depicted in Fig. 7, in this scenario, Alice is an
innocent user who has downloaded, or bought, a wallet that
is produced by a third party Carol who has maliciously im-
plemented the wallet. In particular, Carol used a subversion
attack to modify a wallet and redistribute it so to leak the
signer’s private key, while evading detection in the black-
box setting. The way in which Carol modifies the wallet
depends on the used cryptographic primitives and signature
algorithms.

Below we present three subversion attacks that realize the
scenario in Fig. 7. The first is a direct application of the
generic steganographic attack described in Sec. III and its
demo implementation in Bytecoin and Monero. Addition-
ally, we present two more wallet subversion attacks target-
ing ECDSA-signature cryptocurrencies. The first attack on
ECDSA-signature crypto wallets uses synthetic ephemeral
key to covertly leak the entire signer’s secret key over two
signatures. However, it requires that the wallet is stateful
in the sense that the wallet needs to store some variables
from the previous signing execution. The second attack on
ECDSA-signature crypto wallets is stateless and has lower
throughput compared to the stateful attack.
Subverting ECDSA: Synthetic Randomness. Our first pro-
posed subversion attack on ECDSA is a simplified version
of the attack proposed in [37]. The subverted algorithm
is depicted in Fig. 8. Let z ∈ Zp be the adversary’s

Sign(1)({S}, s,m1):
• Pick random r1 ← Zq ;
• Set R′ := gr1 = (R′x, R

′
y);

• Set w1 := (hashp(m1) + s ·R′x) · r
−1
1 (mod q);

• Output σ1 := (R′x, w1);

Sign(2)({S}, s,m2, r1):
• Set r2 := hashp(Zr1);
• Set R := gr2 = (Rx, Ry);
• Set w2 := (hashp(m2) + s ·Rx) · r−1

2 (mod q);
• Output σ2 := (Rx, w2);

Recover(σ1, σ2,m2, z):
• Set R′ ← map(R′x);
• Set r′2 := hashp((R′)z);
• Set R := gr

′
2 = (Rx, Ry);

• Output s := (w2 · r′2 − hashp(m2)) · (Rx)−1;

Subverted ECDSA signing algorithm 1

Fig. 8: The subverted ECDSA signing algorithm 1.

secret key, and set Z := gz . Let R ← map(Rx) be a
mapping function that takes as input the x-coordinate and
outputs the corresponding point on the curve. The subverted
wallet needs to use algorithms Sign(1) and Sign(2) in turn
to leak the signing key s. For the first time, Sign(1) is
identical to the original signature algorithm; however, the
subtle difference is that Sign(1) stores the ephemeral key
r1 in a long-term memory, which can be accessed during
the next signature invocation. Sign(2) is also similar to the
original signature algorithm except that it deterministically
generates r2 := hashp(Z

r1), where Z is hardcoded in the
wallet. Once the adversary obtains two signatures σ1, σ2, he
can use his secret key z to recover the victim’s signing key
s. First, he parses σ1, σ2 as (R′x, w1) and (Rx, w2). The
attacker then finds the point on the curve that corresponds to
R′x, using R′ ← map(R′x). After that, the attacker computes
r′2 := hashp((R

′)z). Note that if r′2 is equal to r2 then
everything is correct. Let R := gr

′
2 = (Rx, Ry). The secret

key can be extracted as s := (w2 ·r′2−hashp(m2)) · (Rx)−1.
This attack illustrates how the entire long term signing key s
can be leaked exclusively to the adversary over two subverted
signatures.
Subverting ECDSA: Rejection Sampling. While our first
ECDSA subversion attack has a very high throughput, it has
few drawbacks. First of all, it is a stateful algorithm, so it is
not suitable for all scenarios, especially for software wallets.
Furthermore, the first attack can only leak the signing key
by the nature of its design, and not any other confidential
information. Note that most cryptocurrency wallets are able
to avoid the re-use of the address and signing key. As a result,
the leaked signing key in our first attack, may never be used
again even if the signing algorithms are executed twice with
the same signing key. Nevertheless, for most wallets, there
is a master key that is used to deterministically derive all the
one-time signing keys.

As a result, our second subversion attack on ECDSA
is stateless and is designed to leak arbitrary confidential
information. As depicted in Fig. 9, the subverted signing
algorithm takes as input the signing key s, the message
mi, and the secret x ∈ {0, 1}n to be leaked. The signing

Sign({S}, s,mi, x):
• Repeat the following process:

– Pick random r ← Zq ;
– Set R := gr = (Rx, Ry);
– Compute (j, b)← PRFz(Rx);
– If x[j] = b, break the loop;

• Set w := (hashp(mi) + s ·Rx) · r−1 (mod q);
• Output σi := (Rx, w);

Recover(σ1, . . . , σ`, z):
• Init an array S := ∅;
• For i ∈ [`], do:

– Parse σi as (ui, vi);
– Compute (ji, bi)← PRFz(ui);
– Set S[ji] := bi;

• Output S;

Subverted ECDSA signing algorithm 2

Fig. 9: The subverted ECDSA signing algorithm 2

algorithm leaks a random bit of x per signature. Let PRF :
{0, 1}∗×{0, 1}λ 7→ {0, 1}logn×{0, 1} be a pseudo-random
function that takes as input an arbitrary length message and
the λ-bit PRF key, and it outputs a random number of
(log n+1) bits. The first log n bits is interpreted as an index
j, and the last 1 bit is viewed as b. The subverted signing
algorithm performs a rejection-sampling to find a random
R = (Rx, Ry) such that (j, b) ← PRFz(Rx) and x[j] = b.
The rest signing process is identical to the original signature
algorithm. Note that the rejection-sampling is efficient, and
the expected repetition per signature is 1.5 times.

To recover the secret, the adversary needs to obtain a
collection of the signatures generated by the subverted algo-
rithm. We emphasize that when the secret is a master key that
can be tested for its correctness, it is not necessary to leak
the entire key in practice. Assuming the master key is 256
bits, to obtain 50% distinct key bits, the expected number
of signatures is bounded by approximately 256 signatures.
Asymptotically, to obtain n secret bits, we need θ(n log n)
signatures. In practice, for a 128-bit key, we need about 179
signatures.

VI. COUNTERMEASURES

In a blockchain steganographic attack, the attacker is
the sender; therefore, he/she can arbitrarily modify their
client software to produce subverted transactions. This means
that all randomized algorithms can be maliciously tampered
with to embed secret information. In theory, deterministic
cryptographic primitives can be used to eliminate the issue
of uncontrolled randomness. However, most deterministic
signature schemes, e.g. EdDSA, use synthetic randomness
which is not a practical countermeasure against steganog-
raphy; as the attacker can abuse or simply bypass the
randomness generation, and it is impossible to verify an
EdDSA signature is produced properly.
A Stego-Resistant Blockchain Framework (SRBF). A
typical blockchain transaction contains one or more crypto-
graphic components, such as signatures and non-interactive
zero-knowledge (NIZK) proofs. We propose a universal
stego-resistant blockchain framework that can be deployed

User

b2

Miner
b3 b4

(Tx,{PKi},σ)

1. Prepare transaction Tx

3. Sign transaction Tx
σ ← Sign(sk,{PKi},Tx)

2. Collect the PK set {PKi}

4. Broadcast (Tx,{PKi},σ)

2. Generate proof π:
Verify({PKi},Tx,σ’) = 1

1. Verify signature:

3. Include (Tx,{PKi},π) to the next block

b1

⇡ NIZK

⇢
(({PKi}, Tx),�0) :
Verify({PKi}, Tx,�0) = 1

�

<latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw=">AAAChXicdVHbattAEF2plyTqzU0f87LULXUgNZIccimUBvrSEiguxE6o15jVeiQvWa3E7qiNEPqTflXf+jddO05pSzqwcDgzZ2bnTFIqaTEMf3r+nbv37m9sbgUPHj56/KTzdHtsi8oIGIlCFeYi4RaU1DBCiQouSgM8TxScJ5fvl/nzr2CsLPQZ1iVMc55pmUrB0VGzzndWSqYgRW5M8Y2ynOPCps2nj19O2xXPmoAlkEnduApet41qg16PNcPTmWTtHkO4QpM3Z1ft7h6zMsv5q903jAU3ncZgZFq3typ+C95GAQM9X48ImJHZAlk763TDfhTFcXxIw/4gjI+PBg6E4SCOjmnkwDK6ZB3DWecHmxeiykGjUNzaSRSWOHVtUQoFrnFloeTikmcwcVDzHOy0WbnY0peOmdO0MO5ppCv2T0XDc2vrPHGVq93+zS3J23KTCtOjaSN1WSFocT0orRTFgi5PQufSgEBVO8CFke6vVCy44QLd4QJnws2m9P9gHPcj59Xn/e7Ji7Udm2SHPCc9EpFDckI+kCEZEeH5Xs+LvNjf8F/7+/7BdanvrTXPyF/hv/sFTX/EjQ==</latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw=">AAAChXicdVHbattAEF2plyTqzU0f87LULXUgNZIccimUBvrSEiguxE6o15jVeiQvWa3E7qiNEPqTflXf+jddO05pSzqwcDgzZ2bnTFIqaTEMf3r+nbv37m9sbgUPHj56/KTzdHtsi8oIGIlCFeYi4RaU1DBCiQouSgM8TxScJ5fvl/nzr2CsLPQZ1iVMc55pmUrB0VGzzndWSqYgRW5M8Y2ynOPCps2nj19O2xXPmoAlkEnduApet41qg16PNcPTmWTtHkO4QpM3Z1ft7h6zMsv5q903jAU3ncZgZFq3typ+C95GAQM9X48ImJHZAlk763TDfhTFcXxIw/4gjI+PBg6E4SCOjmnkwDK6ZB3DWecHmxeiykGjUNzaSRSWOHVtUQoFrnFloeTikmcwcVDzHOy0WbnY0peOmdO0MO5ppCv2T0XDc2vrPHGVq93+zS3J23KTCtOjaSN1WSFocT0orRTFgi5PQufSgEBVO8CFke6vVCy44QLd4QJnws2m9P9gHPcj59Xn/e7Ji7Udm2SHPCc9EpFDckI+kCEZEeH5Xs+LvNjf8F/7+/7BdanvrTXPyF/hv/sFTX/EjQ==</latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw=">AAAChXicdVHbattAEF2plyTqzU0f87LULXUgNZIccimUBvrSEiguxE6o15jVeiQvWa3E7qiNEPqTflXf+jddO05pSzqwcDgzZ2bnTFIqaTEMf3r+nbv37m9sbgUPHj56/KTzdHtsi8oIGIlCFeYi4RaU1DBCiQouSgM8TxScJ5fvl/nzr2CsLPQZ1iVMc55pmUrB0VGzzndWSqYgRW5M8Y2ynOPCps2nj19O2xXPmoAlkEnduApet41qg16PNcPTmWTtHkO4QpM3Z1ft7h6zMsv5q903jAU3ncZgZFq3typ+C95GAQM9X48ImJHZAlk763TDfhTFcXxIw/4gjI+PBg6E4SCOjmnkwDK6ZB3DWecHmxeiykGjUNzaSRSWOHVtUQoFrnFloeTikmcwcVDzHOy0WbnY0peOmdO0MO5ppCv2T0XDc2vrPHGVq93+zS3J23KTCtOjaSN1WSFocT0orRTFgi5PQufSgEBVO8CFke6vVCy44QLd4QJnws2m9P9gHPcj59Xn/e7Ji7Udm2SHPCc9EpFDckI+kCEZEeH5Xs+LvNjf8F/7+/7BdanvrTXPyF/hv/sFTX/EjQ==</latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw=">AAAChXicdVHbattAEF2plyTqzU0f87LULXUgNZIccimUBvrSEiguxE6o15jVeiQvWa3E7qiNEPqTflXf+jddO05pSzqwcDgzZ2bnTFIqaTEMf3r+nbv37m9sbgUPHj56/KTzdHtsi8oIGIlCFeYi4RaU1DBCiQouSgM8TxScJ5fvl/nzr2CsLPQZ1iVMc55pmUrB0VGzzndWSqYgRW5M8Y2ynOPCps2nj19O2xXPmoAlkEnduApet41qg16PNcPTmWTtHkO4QpM3Z1ft7h6zMsv5q903jAU3ncZgZFq3typ+C95GAQM9X48ImJHZAlk763TDfhTFcXxIw/4gjI+PBg6E4SCOjmnkwDK6ZB3DWecHmxeiykGjUNzaSRSWOHVtUQoFrnFloeTikmcwcVDzHOy0WbnY0peOmdO0MO5ppCv2T0XDc2vrPHGVq93+zS3J23KTCtOjaSN1WSFocT0orRTFgi5PQufSgEBVO8CFke6vVCy44QLd4QJnws2m9P9gHPcj59Xn/e7Ji7Udm2SHPCc9EpFDckI+kCEZEeH5Xs+LvNjf8F/7+/7BdanvrTXPyF/hv/sFTX/EjQ==</latexit>

(Tx,{PKi},π)

P2P node

(Tx,{PKi},σ’)

2. Re-randomize signature σ:
Verify({PKi},Tx,σ) = 1

1. Verify signature:

σ’ ← ReRandSign({PKi},Tx,σ)
3. Broadcast (Tx,{PKi},σ’)

Fig. 10: Stego-resistant blockchain framework

to any blockchain system. Without loss of generality, we
explain our technique to specifically defend against attacks
on signature schemes; however, it can be applied analogously
to NIZK proofs. As depicted in Fig. 10, the proposed SRBF
introduces two elements to immunize blockchains against
steganography and assumes that a given sender of any
transaction may be maliciously implemented to exploit the
random cryptographic signatures.

The first element of SRBF is to require P2P nodes to
sanitize and re-randomize signatures. Currently, the P2P
nodes in blockchains, e.g. in Bitcoin [38], check the va-
lidity of broadcast transactions and their signatures before
relaying them into the network. In SRBF, P2P nodes also
re-randomize the received signatures before propagating
broadcast transactions. This practice filters out any possible
steganographically embedded data and necessitates the use of
re-randomizable signatures like Pointcheval’s randomizable
signature [39].

The second element of SRBF requires miners to replace
signatures with NIZK proofs. Conventionally, upon receiving
a transaction tx, the miners would check the validity of
its associated signature σ, using the signature verification
algorithm Verify(PK, tx, σ) = 1. The miners then include
the transaction together with its signature as it is to the next
block, which will be eventually appended to the blockchain.
However, in SRBF, the miner, instead of showing the signa-
ture, replaces the transaction’s signature with a NIZK proof.
Informally, the proof states that “I have seen a valid signature
such that Verify(PK, tx, σ) = 1”. More precisely, we have

Rsig = {(({PKi}ni=1, tx), σ)|Verify({PKi}ni=1, tx, σ) = 1}

Thus, in SRBF, only (tx, {PKi}ni=1, π) will be posted on the
blockchain, where:

π ← NIZK

{
(({PKi}ni=1, tx), σ) :
Verify({PKi}ni=1, tx, σ) = 1

}

The security guarantee of SRBF is obvious, as signature σ is
the witness of the corresponding NIZK proof. By NIZK def-
inition, π does not leak any information about σ. Therefore,
all the steganographic information hidden in the signatures
are filtered out from the blockchain. In practice, we can
use Bulletproofs [18] as the NIZK instantiation. While our
countermeasure slightly increases the computational effort
for miners, it drastically decreases the effort for others to
verify the validity of a given block; hence, mitigating the
verifier’s dilemma issue [40] when multiple transactions are
combined in one NIZK proof. Note that, as a more efficient

alternative to NIZK, miners can use aggregateable signatures,
e.g. [41], to obfuscate single signatures and obliterate possi-
ble malicious content.

VII. RELATED WORK

This work is related to the following topics.
Arbitrary content insertion in blockchains. was discussed
in [28] where it is reported that 0.8% of 146 million Bitcoin
transactions store content on the blockchain or use non-
standard scripts. Similarly, the authors of [1] surveyed the
methods that are used to store non-financial content, found
that 1.4% of all Bitcoin transactions contain non-financial
data, and retrieved over 1600 files, some of which contain
objectionable content. Nonetheless, there are some benign
applications that rely on content insertion in Bitcoin, like
Tithonus [29] and Catena [30]. Also Minaei et al. [36]
presented a Zcash-based censorship-bootstrapping tool, and
explored content insertion techniques in Bitcoin, Zcash,
Monero, and Etheruem.The authors of [6] are the first to
discuss the use of steganography to covertly communicate in
blockchains; however, they consider their attack to be a proof
of concept and not practical due to its limitations.

Steganography. was introduced by Simmons’ prisoner’s
problem [42]. Anderson et al. listed some of the limits
of steganography and discussed the difficulty associated
with formalizing a general proof of security for steganogra-
phy [43] [44]. A number of works, e.g. [45]–[47], provided
information-theoretic treatment of steganography security
and robustness. More recently, Hopper et al. presented a
definition for the security of a steganographic system in terms
of the computational indistinguishability of stegotext from
cover text [21].

Kleptography/Algorithm-Substitution Attacks. Our wallet
subversion attack falls within the realm of ASA [26] [27],
also called Kleptography [23] [24] and Subversion Attacks
(SA) [48]. The notion of Kleptography was introduced by
Young and Yung in 1996 [23] [24]. Subsequent work demon-
strated the possible use of ASA in mass surveillance, and
the susceptibility of all randomized symmetric encryption
schemes to such attacks [27] [49]. Another demonstration
of ASA attacks against the SSL/TLS and SSH2 protocols
was presented in the work of Goh et al. [50]. In the
context of signature schemes, Young and Yung [25] showed
that DSA signature schemes can be subverted to leak se-
cret information. In addition, Teşeleanu [51] described a
threshold kleptographic attack on the generalized ElGamal
signature that can be extended to similar DL-based signa-
tures. Moreover, as a countermeasure against subversion,
Russell et al. [52] modeled and proved a full domain hash-
based signature scheme achieves subversion resilience. Other
countermeasures include the work of Russell et al. [53] [54]
who proposed a splitting-randomness technique to secure a
randomizable IND-CPA public-key encryption, Ateniese et
al. [48] who proposed the use of trusted reverse firewalls
to re-randomize the output of signature algorithms, and
Fischlin and Mazaheri [55] who proposed to proactively

defend against ASA’s assuming temporary initial trust of the
possibly subverted algorithm.

VIII. CONCLUSION

The main aim of this work is to highlight the potential
threat of maliciously abusing uncontrolled randomness in
randomized cryptographic primitives in blockchain appli-
cations. To illustrate the idea, we designed, implemented,
and evaluated our attacks against the widely-used ECDSA
signature scheme, the ring signature used in the CryptoNote
framework, and the Ring Confidential Transaction used in
Monero (up to version 0.12.0.0). The demonstrated attacks
can be used in three malicious scenarios: covert communi-
cation, persistent storage of objectionable data, and wallet
subversion attacks. Finally, we emphasize that this line of
research is far from being completed, and we hope that our
work motivates the design of stego-resistant blockchains.

ACKNOWLEDGEMENT

Bingsheng Zhang is supported by IOHK.

REFERENCES

[1] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldor, D. Mullman,
O. Hohlfeld, and K. Wehrle, “A quantitative analysis of the impact
of arbitrary blockchain content on bitcoin,” in FC 2018, 2018.

[2] J. Smith, J. Tennison, P. Wells, J. Fawcett, and S. Harrison, “Applying
blockchain technology in global data infrastructure,” tech. rep., Open
Data Institute, June 2016. ODI-TR-2016-001.

[3] R. Matzutt, M. Henze, J. H. Ziegeldorf, J. Hiller, and K. Wehrle,
“Thwarting unwanted blockchain content insertion,” in IC2E 2018,
pp. 364–370, April 2018.

[4] I. Puddu and A. Dmitrienko, “µchain: How to forget without hard
forks,” IACR Cryptology ePrint Archive 2017/106, 2017. https://eprint.
iacr.org/2017/106.

[5] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain – or – rewriting history in bitcoin and friends,” in Euro
S&P 2017, pp. 111–126, April 2017.

[6] J. Partala, “Provably secure covert communication on blockchain,”
Cryptography, vol. 2, no. 3, 2018.

[7] G. Fuchsbauer, “Subversion-zero-knowledge snarks,” in PKC 2018,
pp. 315–347, 2018.

[8] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac, “A subversion-
resistant snark,” in ASIACRYPT 2017, pp. 3–33, 2017.

[9] S. Azouvi, M. Maller, and S. Meiklejohn, “Egalitarian society or
benevolent dictatorship: The state of cryptocurrency governance,” in
5th Workshop on Bitcoin and Blockchain Research, 2018.

[10] Giza Device Ltd, “Giza wallet,” 2017. Avialable Online: https://www.
gizadevice.com/ (Last accessed 7-Feb-2018).

[11] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances in
Cryptology – CRYPTO 2005 (V. Shoup, ed.), (Berlin, Heidelberg),
pp. 258–275, Springer Berlin Heidelberg, 2005.

[12] CoinMarketCap, “Cryptocurrency market capitalizations,” 2018. Avail-
able Online: https://coinmarketcap.com/ (Last accessed 26-Nov-2018).

[13] N. V. Saberhagen, “Cryptonote v 2.0,” 2013. whitepaper, Available
online: https://cryptonote.org/whitepaper.pdf, (Last accessed 23-Nov-
2018).

[14] Bytecoin Org., “Bytecoin (bcn),” 2018. Available Online: https:
//bytecoin.org/ (Last accessed 23-Nov-2018).

[15] CryptoNote Org., “Cryptonotecoin,” 2018. Available Online: http://
cryptonote-coin.org/ (Last accessed 23-Nov-2018).

[16] Fantomcoin, “Fantomcoin,” 2014. Available Online: http://fantomcoin.
org/ (Last accessed 23-Nov-2018).

[17] Monero, “Monero,” 2018. Available Online: https://getmonero.org/
(Last accessed 07-Feb-2018).

[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
S&P 2018, vol. 00, pp. 319–338, 2018.

[19] S. Noether, “Ring signature confidential transactions for monero.”
Cryptology ePrint Archive, Report 2015/1098, 2015.

[20] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in CRYPTO ’91, pp. 129–140, 1992.

[21] N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganog-
raphy,” in CRYPTO 2002, 2002.

[22] N. Dedić, G. Itkis, L. Reyzin, and S. Russell, “Upper and lower bounds
on black-box steganography,” Journal of Cryptology, vol. 22, pp. 365–
394, Jul 2009.

[23] A. Young and M. Yung, “The dark side of “black-box” cryptography
or: Should we trust capstone?,” in CRYPTO ’96, 1996.

[24] A. Young and M. Yung, “Kleptography: Using cryptography against
cryptography,” in EUROCRYPT ’97, 1997.

[25] A. Young and M. Yung, “The prevalence of kleptographic attacks on
discrete-log based cryptosystems,” in CRYPTO ’97, 1997.

[26] M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric
encryption against mass surveillance,” in CRYPTO 2014, (Berlin,
Heidelberg), pp. 1–19, Springer Berlin Heidelberg, 2014.

[27] M. Bellare and J. Jaeger, “Mass-surveillance without the State :
Strongly Undetectable Algorithm-Substitution Attacks,” in CCS, 2015.

[28] R. Matzutt, O. Hohlfeld, M. Henze, R. Rawiel, J. H. Ziegeldorf, and
K. Wehrle, “Poster: I don’t want that content! on the risks of exploiting
bitcoin’s blockchain as a content store,” in CCS ’16, 2016.

[29] R. Recabarren and B. Carbunar, “Tithonus: A bitcoin based censorship
resilient system,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 1, pp. 68 – 86, 2019.

[30] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via
bitcoin,” in 2017 IEEE Symposium on Security and Privacy (SP),
vol. 00, pp. 393–409, May 2017.

[31] B. D. Team, “Bytecoin project github repository,” 2018. Available
Online: https://github.com/bcndev (Last accessed 26-Nov-2018).

[32] G. Maxwell and A. Poelstra, “Borromean Ring Signatures,”
2015. Available Online: http://diyhpl.us/∼bryan/papers2/bitcoin/
Borromean%20ring%20signatures.pdf (Last accessed 07-Feb-2018).

[33] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures from a
variety of keys,” in ASIACRYPT 2002, 2002.

[34] G. Maxwell, “Confidential Transactions,” 2018. Available On-
line: https://people.xiph.org/∼greg/confidential values.txt (Last ac-
cessed 07-Feb-2018).

[35] O. Günther, “Broadcast key encapsulation mechanism github reposi-
tory,” 2012. Available Online: https://github.com/oliverguenther/PBC
BKEM (Last accessed 08-May-2019).

[36] M. Minaei, P. Moreno-Sanchez, and A. Kate, “R3c3: Cryptographi-
cally secure censorship resistant rendezvous using cryptocurrencies.”
Cryptology ePrint Archive, Report 2018/454, 2018. Available online:
https://eprint.iacr.org/2018/454 (Last accessed 14-Feb-2019).

[37] E. Mohamed and H. Elkamchouchi, “Kleptographic Attacks on Elliptic
Curve Cryptosystems,” Journal of Computer Science, vol. 10, no. 6,
pp. 213–215, 2010.

[38] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity
in bitcoin using p2p network traffic,” in Financial Cryptography
and Data Security (N. Christin and R. Safavi-Naini, eds.), (Berlin,
Heidelberg), pp. 469–485, Springer Berlin Heidelberg, 2014.

[39] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in
Topics in Cryptology - CT-RSA 2016 (K. Sako, ed.), (Cham), pp. 111–
126, Springer International Publishing, 2016.

[40] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incen-
tives in the consensus computer,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS
’15, (New York, NY, USA), pp. 706–719, ACM, 2015.

[41] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances in
Cryptology — EUROCRYPT 2003 (E. Biham, ed.), (Berlin, Heidel-
berg), pp. 416–432, Springer Berlin Heidelberg, 2003.

[42] G. J. Simmons, The Prisoners’ Problem and the Subliminal Channel,
pp. 51–67. Boston, MA: Springer US, 1984.

[43] R. Anderson, “Stretching the limits of steganography,” in Information
Hiding, pp. 39–48, Springer Berlin Heidelberg, 1996.

[44] R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganog-
raphy,” IEEE Journal on Selected Areas in Communications, vol. 16,
pp. 474–481, May 1998.

[45] J. A. O’Sullivan, P. Moulin, and J. M. Ettinger, “Information theoretic
analysis of steganography,” in Proceedings. 1998 IEEE International
Symposium on Information Theory, 1998.

[46] T. Mittelholzer, “An information-theoretic approach to steganography
and watermarking,” in Information Hiding, 2000.

[47] C. Cachin, “An information-theoretic model for steganography,” in
Information Hiding, 1998.

[48] G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signature
schemes,” in CCS ’15, pp. 364–375, 2015.

[49] M. Bellare and V. T. Hoang, “Resisting randomness subversion: Fast
deterministic and hedged public-key encryption in the standard model,”
in EUROCRYPT 2015, 2015.

[50] E.-J. Goh, D. Boneh, B. Pinkas, and P. Golle, “The design and
implementation of protocol-based hidden key recovery,” in Information
Security, 2003.

[51] G. Teseleanu, “Threshold kleptographic attacks on discrete logarithm
based signatures.” Cryptology ePrint Archive, Report 2017/953, 2017.
https://eprint.iacr.org/2017/953.

[52] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Cliptography:
Clipping the power of kleptographic attacks,” in ASIACRYPT, 2016.

[53] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Destroying steganog-
raphy via amalgamation: Kleptographically cpa secure public key
encryption.” Cryptology ePrint Archive, Report 2016/530, 2016.

[54] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Generic semantic
security against a kleptographic adversary,” in CCS ’17, (New York,
NY, USA), pp. 907–922, ACM, 2017.

[55] M. Fischlin and S. Mazaheri, “Self-guarding cryptographic protocols
against algorithm substitution attacks,” in 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pp. 76–90, July 2018.

	Introduction
	Preliminaries
	Generic Steganographic Attack
	Case studies: Bytecoin and Monero
	Attack Scenarios
	Countermeasures
	Related Work
	Conclusion
	References

