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Identifying Anatomical Shape Difference by
Regularized Discriminative Direction

Luping Zhou*, Student Member, IEEE, Richard Hartley, Senior Member, IEEE, Lei Wang, Member, IEEE,
Paulette Lieby, and Nick Barnes, Member, IEEE

Abstract—Identifying the shape difference between two groups
of anatomical objects is important for medical image analysis and
computer-aided diagnosis. A method called “discriminative direc-
tion” in the literature has been proposed to solve this problem. In
that method, the shape difference between groups is identified by
deforming a shape along the discriminative direction. This paper
conducts a thorough study about inferring this discriminative di-
rection in an efficient and accurate way. First, finding the discrim-
inative direction is reformulated as a preimage problem in kernel-
based learning. This provides a complementary but conceptually
simpler solution than the previous method. More importantly, we
find that a shape deforming along the original discriminative direc-
tion cannot faithfully maintain its anatomical correctness. This un-
necessarily introduces spurious shape differences and leads to inac-
curate analysis. To overcome this problem, this paper further pro-
poses a regularized discriminative direction by requiring a shape
to conform to its underlying distribution when it deforms. Two
different approaches are developed to impose the regularization,
one from the perspective of probability distributions and the other
from a geometric point of view, and their relationship is discussed.
After verifying their superior performance through controlled ex-
periments, we apply the proposed methods to detecting and local-
izing the hippocampal shape difference between sexes. We get re-
sults consistent with other independent research, providing a more
compact representation of the shape difference compared with the
established discriminative direction method.

Index Terms—Discriminative direction, hippocampal shapes,
preimage problem, shape distribution, statistical shape analysis.

I. INTRODUCTION

I DENTIFYING the morphological differences between
anatomical shapes related to disorders or aspects of normal

anatomy such as ageing and sex is an important area of medical
image analysis. Once identified, this difference may be used to
facilitate the early stage diagnosis of diseases. Detecting the
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difference is typically formulated as a classification problem
which aims optimally to separate two groups of anatomical
shapes from each other. Groups of anatomical shapes are
seldom easy to differentiate even for a medical expert, for
example difference in hippocampal shape between sexes [1]. In
recent years, thanks to their capacity for differentiating linearly
nonseparable classes, kernel classifiers such as support vector
machines (SVMs) [2] and kernel fisher discriminant analysis
(KFDA) [3] have been widely used. They have also been em-
ployed to discriminate anatomical shapes [4], [5]. This works
as follows. Via a kernel function, the training shapes from two
groups are mapped nonlinearly from a shape descriptor space

to a higher dimensional space (known as the feature
space), where they will most likely become linearly separable.
In this way, a linear classifier can be
sought in , where denotes the mapping function. Its
normal indicates the direction that best discriminates the
two groups. Golland et al. in [4], [6], and [7] put forward
that the shape difference between groups can be manifested
by deforming a shape along . Considering that the shape
difference identified in is only mathematically meaningful,
they project such difference back to and explain it in an
anatomically meaningful way. For this purpose, Golland et
al. defined the “discriminative direction” for each point (here
denoting a shape) in . It is a direction such that when a shape
moves along it, the image of this shape in will move in a
way that best agrees with the normal . According to [4], [6],
and [7], travelling along this “direction” will form a curve in
the shape descriptor space , having the property that when a
shape deforms along its course, only the differences related to
group discrimination appear and the within-group variability is
excluded. Therefore, the shape difference between groups can
be captured by observing how a particular shape in one group
gradually changes to look like a shape in another group. The
“discriminative direction” method has been used to localize the
distinctive difference in hippocampal shapes between normal
controls and the schizophrenia patients [4].

This paper conducts a thorough study on inferring the optimal
direction along which the shape difference between groups can
best be manifested. It has two main contributions. First, we re-
visit the original discriminative direction and solve it in a better
way along lines suggested by [4]. As pointed out in [4], it is
better to move a shape’s image in along the normal and ob-
serve the change of this shape in . Clearly, this way has the ad-
vantage of conceptual simplicity and agrees well with intuition.
We find that it can be conveniently realized by formulating the
estimation of the discriminative direction as a preimage problem
that has recently arisen in kernel-based learning methods. Its

0278-0062/$25.00 © 2009 IEEE
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connection to and difference from Golland’s method are dis-
cussed. Experimental study shows that the two methods produce
comparable results in shape difference analysis. Second, and
this is the more significant contribution of this paper, we propose
a new direction which is more accurate than the original dis-
criminative direction in revealing the shape difference between
groups. Following the terminology in [4], [6], and [7], we name
the new direction the “regularized discriminative direction.”

Our work is driven by our observation that when deforming
a shape along the original discriminative direction proposed in
[4], spurious shape difference may appear. In this paper, we an-
alyze the problem and discover the possible causes: the orig-
inal “discriminative direction” ignores the fact that the high di-
mensional shape descriptors often reside on a lower dimensional
manifold. Deforming along this direction will deviate from the
manifold and the underlying shape distribution. This will gen-
erate shapes which do not really exist for a given anatomical
object. This drawback has to be removed before the discrimina-
tive direction approach can be applied to any practical study. We
overcome this drawback by making the newly deformed shapes
comply with the underlying distribution of the shape population.
For this purpose, we develop two approaches that impose reg-
ularization from two different perspectives, that of probability
distribution and that of geometry. The relationship between the
two approaches and their advantages are discussed, respectively.
Moreover, for one of the approaches, an analytical solution to
the regularized discriminative direction is derived, which avoids
iterative optimization. Our experimental study demonstrates the
advantages of the regularized discriminative direction over the
original one by carrying out controlled experiments. After this,
the proposed regularized discriminative direction is employed
to detect and localize the group difference of the hippocampal
shapes between sexes.

It is worth noting that the direction proposed in this paper
and that proposed in [4] have a significance not limited to shape
difference analysis. Essentially, inferring these directions is an
inverse problem for the kernel mapping. In the field of ma-
chine learning, such a problem has been studied for a genera-
tive model in the context of kernel principal component analysis
(KPCA) with the applications of image denoising and compres-
sion [3], [8], [9]. However, the inverse kernel mapping problem
for discriminative models such as classifiers has not been given
enough attention. This may be due to the fact that people often
care more about obtaining a good classification performance
than characterizing the nature of the difference between classes.
The latter however has significance in medical image analysis.
The decoding of the shape difference in not only helps in un-
derstanding the morphological difference between anatomical
organs, which may have an association with the organ functions
[10]–[12], but also helps to improve the classification perfor-
mance by selecting the discriminative features.

An earlier and briefer description of these results has ap-
peared in our previous paper [13].

II. RELATED WORK

We first give a brief introduction to the established “discrimi-
native direction” method, which is the foundation of this paper.

Fig. 1. Explanation of how to infer the “discriminative direction” in Golland’s
method. A point � in the input space is mapped to a point ���� in the
feature space � . When � moves a small step �� in , a displacement ���� will
be induced in � accordingly. The divergence of ���� from� is ��������������,
which is perpendicular to�. Minimizing this divergence with respect to �� can
make ���� move along� as much as possible in � . Such a direction �� is the
“discriminative direction” at point � in .

After that, two approaches to solving the preimage problem
for KPCA are reviewed. The basic ideas behind these two ap-
proaches inspire our reformulation of the “discriminative direc-
tion” problem described in Section III. There they are extended
to solve a different preimage problem for kernel classifiers such
as KFDA or SVMs.

A. Discriminative Direction

Let denote a set of
training shapes labelled in two groups. Training a kernel clas-
sifier implicitly performs a mapping from an input space
(for example, a shape descriptor space) to a high dimensional
Hilbert space (known as the feature space) . By training an
SVM classifier or conducting KFDA, an optimal separating hy-
perplane with unit normal and bias can be obtained in as

(1)

where and are estimated from the training data in . Vector
indicates the direction that best discriminates the two groups.

Given an unseen data point , ideally should move along
direction strictly to reflect only the shape difference between
two groups. However, there is a problem. Given a kernel func-
tion, the associated mapping often maps the training data
onto a lower dimensional manifold in .1 For example, when
a Gaussian radial basis function (RBF) kernel is used, all the
training data (indeed the whole ) will be mapped onto a unit
hypersphere in . The normal does not necessarily reside
on this manifold. As a result, if moves strictly along ,
the resulting images may not have a preimage in any more.
In other words, by forcing the preimage of to exist,
cannot move strictly along .

Golland’s Method: In [4], Golland et al. used the following
strategy to handle this problem (Fig. 1). They searched for a
direction in . When moves along , a displacement

will be induced in accordingly.
The divergence from to , i.e., the displacement compo-
nent of which is perpendicular to , is computed as

1Please note that this manifold is induced by the kernel mapping ����. It is
in the feature space � . It should not be confused with the manifold in the shape
descriptor space on which the shapes reside. The latter is used in this paper to
develop the regularized discriminative direction.
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. Minimizing the divergence from makes the move-
ment of agree with as much as possible. The optimiza-
tion problem is given as

(2)

where is a preset small positive real number. Note that the
constraint of is used, allowing to be searched
identically along all directions in . This method implicitly
assumes that the distribution of the shapes occupies the whole
of the space , which brings up the problem of spurious shape
differences addressed in this paper. Also, it is pointed out in [4]
that a conceptually simpler way to infer the discriminative di-
rection is to move strictly along and observe the change
of in . We achieve this by using the preimage techniques
discussed in Section II-B.

To analyze the shape difference for populations, a commonly
used way is to take the mean of a population as a representative
shape and reveals the population difference by comparing the
mean shapes of two populations. This approach works when the
population distribution follows a simple model, for instance, a
unimodal Gaussian distribution. However, when the population
distribution is complex, such as a mixture of Gaussian distribu-
tions, the shape difference varies among different parts within
one population. Simply comparing two means will fail to cap-
ture such change in shape differences. Golland’s “discrimina-
tive direction” provides a remedy to this problem. In the case
of linear classification, this method is comparable to the com-
monly used method since the “discriminative direction” is con-
sistent everywhere within a population. In the case of nonlinear
classification, the “discriminative direction” varies among dif-
ferent parts within a population. Hence, it conveys a more com-
plex shape difference between two populations. In [4], it is also
pointed out that instead of deforming the mean of the training
data, the input vectors close to the opposite class, i.e., the sup-
port vectors, should be selected for analysis. This is because the
support vectors define the optimal separating boundary between
two classes, and thus determine the shape class difference.

B. Preimage Techniques in Kernel Methods

Traditionally, the preimage problem for kernel methods is
studied in the context of kernel PCA (KPCA) which models the
variation of one class ([8], [9], [14], [15]). This problem is dif-
ferent from that of the kernel methods for two-class classifica-
tion which we want to address in this paper. However, the basic
ideas behind the existing approaches inspire the development of
the solution for our problem.

In the same manner as kernel classifiers (Section I), KPCA
implicitly maps the data from the input space to a high di-
mensional feature space via a nonlinear mapping . Then a
linear PCA is performed in , giving a set of orthogonal eigen-
vectors. Data points in are projected onto the space spanned

Fig. 2. Preimage problem in KPCA. The point � in the input space is
mapped to the point ���� in the feature space � . Projecting ���� onto the
first � significant eigenvectors found by KPCA in � gives the point � ����.
The preimage of � ���� in is approximated as �, provided that ���� is the
point nearest to � ���� in � .

by these eigenvectors and reconstructed there using only the
leading eigenvectors ranked by their eigenvalues. Finding the
preimages of the reconstructed data is important in applications
such as image denoising and statistical shape analysis [8], [9],
[14], [15]. Fig. 2 illustrates the preimage problem for KPCA.
Two noniterative approaches for solving this problem are re-
viewed below.

Rathi’s Approach: In [9], Rathi et al. solve this preimage
problem by minimizing the squared residual error

, where represents the recon-
structed point of from its projections on the leading
eigenvectors, and is the estimate of the preimage of .
Using an RBF kernel and
setting at extrema gives

(3)

where is training data, and is the total number of . The co-
efficients are learned by training a Kernel PCA. The novelty
of Rathi’s method is that the authors do not use the fixed point it-
eration scheme as proposed in [15], which is an iterative method
and causes numerical instability. Instead, they replace the term

in the kernel function by a distance
in , which is further replaced by a corresponding

distance in via a simple
relationship. Though is unknown, is for-
mulated in terms of inner products, and hence may be calculated
by kernel functions. Assuming that ,
the distance becomes computable and thus a
closed-form solution of is achieved.

Kwok’s Approach: Kwok et al. proposed a different approach
in [8], which does not minimize the squared residual error
as in Rathi’s approach. The basic idea assumes that the local
structure, i.e., the distance relationship between an input vector

and its neighbouring training points , is
preserved when mapping from to . That is, the -nearest
neighbors of in remain the -nearest neighbors of its
preimage in . Moreover, Kwok assumes that distances

between points and in the input space can be com-
puted explicitly from the distances between
their corresponding points and in the feature-space

. This is true for a Gaussian RBF kernel, or more particu-
larly for isotropic kernels, for which

for some function . Given a point in fea-
ture space, and “neighboring” points ; , the
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Fig. 3. Discriminative direction for a point, ��. A nonlinear mapping�maps the
shape descriptor space onto a feature space � , where the two classes (gray
and white dots) become linearly separable. The� is the normal of a hyperplane
found in � to best discriminate the two classes. Move ����� along � to a new
position ��� �, and project ����� back to as � . The vector � � �� is the
“discriminative direction” of ��. Similar results can be obtained for ��� � and
��� �.

back-projected point obtained by Kwok’s method is the point
that minimizes the function

(4)
subject to the constraint that lies in the subspace spanned by
points .

There is a closed-form solution to this problem as follows.
Define the matrix where is the
centroid . Let be the singular
value decomposition. Then the solution is given by

(5)

where is the vector and is the vector with
th entry equal to . For details, see [8].

III. REFORMULATION OF THE ORIGINAL

DISCRIMINATIVE DIRECTION

In this section, we reformulate Golland’s “discriminative di-
rection” from a different perspective, which is the first contribu-
tion of this paper. As argued in [4] and [6], for a particular shape
descriptor , its image in should be moved along the di-
rection in order to study the changes of introduced by this
process. However the mapping is generally too complex to
work out, preventing from being accessed directly. Hence,
in [4], the discriminative direction is explored via a search in the
shape descriptor space . In this paper, we circumvent the ex-
plicit manipulation of by formulating the discriminative
direction problem solely in terms of kernel functions. Then we
approximate the preimages of in while is moving
strictly along the direction in . In this way, we provide a
complementary and conceptually simpler means of inferring the
discriminative direction. The basic idea is shown in Fig. 3. To
solve our reformulation, the preimage methods in [8] and [9] are
modified for use by considering two key issues: 1) we need to
formulate our cost function in terms of inner products only, so
that the unsolvable can be eliminated and 2) we need to de-
rive the distance in the feature space , and
formulate it in terms of inner products, so that it is computable
via the kernel function. Our work is elaborated below.

Without loss of generality, assume that has been normal-
ized to a unit vector. Moving along in for a step
leads to a new position . Let be the best estimate
of the preimage of , representing the new shape of
after deformation. The vector is just the discriminative di-
rection. To estimate the preimage, the residual error should
be minimized with respect to

(6)

Notice that

and that is constant with respect to
the variable .

We now assume a Gaussian RBF kernel
. In this case,

is constant, and so

where is a constant value. Therefore, the minimization
problem in (6) is equivalent to

(7)

The Rathi-Inspired Method: Noting that lies in a space
spanned by the training points, we may write .
Now, to find the minimum of we set the derivative with
respect to to zero and rearrange terms. For a Gaussian RBF
kernel, this results in the equation

Observe that appears on both sides of this equation. However,
using a trick of Rathi, we can eliminate from the right hand
side of the equation. Assuming that for any ,
which is true for normalized kernels and some isotropic kernels
such as the RBF kernel, we may write

so see equation at the bottom of the next page.
We now assume that , and recall that

. This allows us to eliminate from the right hand side
of this formula, resulting in a closed-form solution for , namely

(8)
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Finally, can be computed as follows:

(9)

where given training data, denotes ( ,
denotes , and denotes

.
The Kwok-Inspired Method: Although Kwok described his

method specifically for the KPCA problem, he remarked that the
method can be generally used for other inverse kernel problems.
We apply it here for our discriminative direction problem.

Considering a point in , we find a set of
training points such that the are the nearest neighbors
to . Next, we compute the distances
in using (9). We need to relate these distances to distances

in the shape-descriptor space . For a Gaussian RBF kernel,
we can write

Therefore

(10)

The back-projected point corresponding to
is then computed using (5).

Extension to Polynomial Kernels: Although the previous dis-
cussion has focused on the Gaussian RBF kernel to derive the
preimage solutions, it is not difficult to extend the idea to other
invertible kernel functions, for instance the polynomial kernel

, where is odd (to make the kernel func-
tion invertible). In the Rathi-inspired method, the minimization
problem in (7) becomes

(11)

Setting the first derivative of the objective function to zero and
again assuming , the optimal solution of
is obtained as

(12)

In this formula, and
while

. The definitions for and are the
same as those in (9). The symbol denotes the kernel matrix.
A polynomial kernel reduces to a linear kernel when . In
this case, the solution in (12) becomes simply ,
which means the points can be moved precisely along the
direction .

The extension of the Kwok-inspired method to a polynomial
kernel is straightforward. The shape descriptor space distance

in (10) can be calculated directly from the kernel functions
without calculating the feature space distance . That is,
can be computed as

. The rest of the method remains the same.
Remarks: Both Rathi-inspired and Kwok-inspired methods

are noniterative and only involve linear algebra. Given and
, can be obtained immediately. Experimental study in Sec-

tion VI-A shows that the discriminative direction estimated
using the preimage techniques produces results similar to
those of Golland’s method. Therefore, in the rest of this paper,
for the purpose of conceptual simplicity we keep using the
formulation in (6) to model the discriminative direction. The
main contribution of the present section is how we reformulate
the discriminative direction problem compared with Golland’s
work. In the rest of this paper, we point out that strictly fol-
lowing such a discriminative direction is problematic either in
Golland’s method or in the Rathi-inspired or Kwok-inspired
methods. In the following sections, variants of the discrimina-
tive direction are proposed to address this problem. These are
the most important contributions of this paper.

IV. PROBLEMS WITH THE ORIGINAL

DISCRIMINATIVE DIRECTION

The original discriminative direction approach projects the
shape difference between groups captured by the kernel clas-
sifiers back to the shape descriptor space where the deformed
shape can be interpreted (for example, visualized) as an anatom-
ically meaningful object. By comparing the changes of a shape
before and after its deformation along the discriminative direc-
tion, the class difference is therefore localized or isolated.
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Fig. 4. The problem caused by strictly following the original discriminative
direction provided by the classifier. Two groups of right-angled triangles which
share the same hypotenuse are differentiated by the position of the vertex � ,
which corresponds to the right angle. The positive class has � in quadrant I,
while the negative class has � in quadrant II. Take the position of � as the
shape descriptor. Moving� along the optimal discriminative direction� given
by the classifier will cause the point � to deviate from the semi-circle where
it resides. This causes the deformed triangle ��� � to lose its property of
right-angledness. As a result, an angle difference will be falsely observed when
comparing the triangles���� and��� �.

However, it is observed that simply deforming along the op-
timal discriminative direction provided by a classifier cannot
maintain a shape’s intrinsic characteristic which makes it belong
to a particular shape group (called “anatomical correctness” in
this paper). This is because the deformed shape deviates from
the underlying distribution of the original shapes. In such cases,
when the shapes before and after the deformation are compared,
artefact differences will be introduced.

Take the two classes of right-angled triangles in Fig. 4 for ex-
ample. They share the same hypotenuse with different ver-
tices corresponding to the right angle. All these right angle
vertices are located on a semi-circle which takes as its diam-
eter. Label triangles whose vertex belongs to the first quadrant
as a positive class and triangles whose vertex belongs to the
second quadrant as a negative class. The is fully deter-
mined by once has been fixed. Thus when representing

by the position of , the optimal discriminative direc-
tion given by a classifier to best separate the two classes is
perpendicular to the axis. Moving the vertex strictly fol-
lowing the direction causes it to deviate from the semi-circle
where it lies. This causes to lose the right angle during
the deformation. When comparing the triangles before and after
the deformation, two kinds of differences—the position changes
of the vertex and the angle changes of —will be ob-
served. However, the angle change is a spurious change because
all the triangles in the two groups are right-angled. Evidently
this is because the fact that the point lies on a semi-circle is
unreasonably neglected.

To remedy such problems, we argue that the underlying dis-
tribution of the shapes should not be neglected because 1) the
shapes often reside on a lower dimensional manifold though the
shape descriptor space has high dimensionality, and 2) the de-
formation of an anatomical object may be spatially restricted
by its surroundings; for example we may say that a deformation

of an organ such as the liver will be in part constrained by the
organs surrounding it. This consideration underpins the regular-
ized discriminative direction approach described below.

V. REGULARIZED DISCRIMINATIVE DIRECTION

The key idea of our approach is that when seeking the
preimage of a point in the feature space , the possible so-
lutions should be confined to the underlying distribution of
the shapes rather than the whole shape descriptor space as
before. That is, the preimage should be computed as follows:

(13)

where is defined in (6), and may be a submanifold in .
The key change is the use of rather than as be-
fore. Now the problem becomes finding a suitable definition of

and efficiently solving the resulting constrained optimization
problem. In this paper, we propose two approaches to regularize
the solution of , one from a local distribution perspective, and
the other from a geometric point of view.

A. Regularization via Local Distribution

Let denote a particular shape to be deformed. Recall that
moving along in for a step arrives at a new posi-
tion . Let approximate the preimage of .
We argue that to ensure “anatomical correctness,” the preimage

should comply with the probability distribution of the shape
. For example, when resides on a lower dimensional mani-

fold, should reside on it too. Let
be a neighborhood of and be an empirical
probability density function of in estimated from
training shapes. Here, we model as a normal distribution2

with mean and covariance matrix
. Note that for an RBF kernel, a small distance

in corresponds to a small distance in . This can
be clearly seen by the distance relationship in (10), i.e.,

. Hence, moving with a sufficiently
small step in will always ensure that stays in . Fol-
lowing the argument that should comply with the probability
distribution of , we require that should be large enough,
or equally that be adequately small, pro-
vided that has full rank. In this way, the optimal is defined
as

(14)

where is a regularization parameter. When is 0, this
problem reduces to the minimization of in (6).

Consider the case when the shapes reside on a lower dimen-
sional manifold in , causing to be rank-deficient. Decom-
pose as , where each column of is an eigenvector

2Using a more complicated model may be dangerous in the sense that its pa-
rameters may not be reliably estimated because the number of training samples
in � ���� is quite limited in practice.
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and is . The is the th positive
eigenvalue and is the rank of . An optimal solution should
satisfy

(15)

where is a vector in . The matrix is
. The matrix

contains the eigenvectors corresponding to .
The result in (15) is explained as follows. Let be the man-

ifold where the shapes reside, and be a tangent plane
of at . This tangent plane is spanned by the eigenvectors
in . Since a manifold can be locally approximated by its tan-
gent plane, the result in (15) can be thought of as confining the
solution to the manifold . Moreover, note that the shapes
do not necessarily uniformly distribute in . Our regu-
larized method naturally incorporates the variance along dif-

ferent directions of the orthogonal basis via in (15). This
makes it achieve a better performance than merely projecting
which minimizes (6) onto the tangent plane,3 as shown later in
Section VI-B.

Finally, combining (15) and (14), the problem in (14) can be
simplified by optimizing as

(16)

and is then computed by (15). In practice, the number of the
training shapes is often much less than the dimensionality of the
shape descriptors. This results in a rank-deficient , whose rank

. Hence, optimizing over greatly reduces the number
of parameters to estimate in comparison to directly optimizing
over . Iterative optimization methods can be used to estimate

. However, when is large, optimizing is still cumbersome.
Below we propose a new differential equation based solution
so that for a given step , first and then can be directly
worked out as an analytical solution.

1) Analytic Solution to the Preimage : According
to (7), the problem in (16) is equivalent to maximizing

provided
is a constant, which is the case for an RBF

kernel. As before, lies in a space spanned by the training
samples: with . We maximize the
following expression:

3This approach is called “tangent plane projection” later in our experiments.

For each given , there will be a which maximizes .
This optimization problem is not convex and has multiple iso-
lated local maxima. Here, we propose an approach which does
not directly solve the static optimization over for a given .
Instead it makes use of the fact that (0, ) is a global maximum
of and traces the change of the global maximum with re-
spect to . As long as is continuous and differentiable, our
solution remains the global maximum or at least locally max-
imum. The change of with respect to can be considered as
a curve in parameterized by , such that .
The curve can be traced out by computing its tangent .
We approximate by a second-order Taylor expansion

(17)

where and are the Jacobian and Hessian of the functions
, and with respect to , evaluated at . Here, maxi-

mizes when . The first-order derivative of with
respect to vanishes at and any other extremum . From

, we get . Combining it
in , we get

This gives

(18)

This curve passes through an initial point (0, ) with the tangent
direction

(19)

The curve of can be therefore traced out and the regular-
ized discriminative direction is formed as a sequence of points

according to

(20)

where , and are estimated from ,
and . The mean and covariance are computed
at each step from the training points close to .

Runge-Kutta method: A four-stage Runge Kutta method is
integrated to suppress the lower-order error terms of this ordi-
nary differential equation. Runge Kutta methods are iterative
methods to approximate the solution of ordinary differential
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TABLE I
ALGORITHM: AN ANALYTICAL SOLUTION

Operator ������� is the diagonal of a matrix; operator. � the component-wise multiplication of
two matrices; � the number of training data; � the dimensionality of the input space; � an identity
matrix; � � ���� � ��� � 	


	��� � �� ��� � ��� � 	


	��� � �� � � � ���� � ��� � 	


	��� � ��;

and � � ������ 	


	��� � � � �� ����� 	


	��� � � � �� � � � ������ 	


	��� � � � �� .

equations. They use trial steps at the middle points of an interval
to remove the lower-order error terms. Our algorithm is summa-
rized in Table I.

2) Discussion: Estimate of : The covariance matrix has
to be estimated from the neighborhood of . When the number

of training samples in the neighborhood is sufficiently larger
than the dimensionality of the data, we can safely assume
the sample-based estimate to be its true value. However, the
common case may be that is much smaller than . It is
known that in such cases, the sample-based estimate tends to
bias the larger eigenvalues towards values that are too high and
the smaller ones towards values that are too low (artificially
zero) [16]. Therefore, we may overestimate the variances of
the points in along the eigenvectors corresponding to
large eigenvalues, and underestimate the variances along the
eigenvectors corresponding to small eigenvalues. When is
not large enough, we employ a “shrinking” [16] scheme which
shrinks towards a multiple of the identity matrix by using

, where controls the
shrinkage, and is the average value of the eigenvalues ob-
tained from the sample-based estimate . The value of is em-
pirically set to a small positive value , which works well for
the different data sets used in our experiments. The shrinkage
compensates for the biased estimates of the eigenvalues. After
applying the shrinkage, the eigenvectors with the leading eigen-
values are selected to use in (15).

Regularization Parameter: The parameter in (14) and (16)
balances the fitting of the data and the fitting of the local dis-
tribution model. In our experiment, it is empirically set as

, where is defined above, and is the parameter of the
RBF kernel used by the classifier. The parameter is automat-
ically selected by a grid search with a 5-fold cross-validation.

The experiment in Section VI-B-2 shows that our algorithm is
not sensitive to the selection of in a reasonably wide range (0.1
to 10 times ).

In Relation to Golland’s Method: There is an interesting ob-
servation about the analytic solution when . In such case,
we maximize with respect to di-
rectly. Let and , we have

. Using the idea mentioned above, the
optimal which maximizes for a given is obtained
by tracing out the curve . It is not difficult to derive that

where and are the Jacobian and Hessian of the functions
and with respect to , evaluated at . Using an RBF

kernel, we have , which is a multiple of the
identity matrix. Therefore the regularized discriminative direc-
tion is parallel to the direction of when . Note that is
same as the gradient of the classifier function used in [4]. This
result coincides with that of Golland’s method in [4]. It indi-
cates that Golland’s method is a special case of our regularized
discriminative direction when .

Extension to Polynomial Kernels: The analytical solution in
(18) can be extended to polynomial kernels
(where is odd) under the same framework. According to (11),
the problem in (16) is equivalent to maximizing



ZHOU et al.: IDENTIFYING ANATOMICAL SHAPE DIFFERENCE BY REGULARIZED DISCRIMINATIVE DIRECTION 945

The derivation of the analytical solution is straightforward and
the results are directly given as follows. We have

provided is invertible. Com-
pared with (18), when a polynomial kernel is used, there is an
additional term , which is the Hessian of

. An optimal is obtained by using
(20). When a linear kernel is used with no regulariza-
tion , optimizing (11) directly over leads to a solution
of , which agrees with our expectation.

B. Regularization via a Convex Combination of the Neighbors

In this section, we provide an alternative method to confine
the solution of the preimage to the shape manifold using local
geometric restrictions. As mentioned previously in Section V-A,
for an RBF kernel, moving for a small step always ensures
that lies in , the neighborhood of . Hence here we
constrain to be a convex combination of the ,
that is, , where , , and is
the number of neighbors. In other words, lies in the convex hull
of . Then finding the regularized discriminative direction
comes down to solving the following optimization problem over
the weights , which can be solved by iterative methods

such that

and

(21)

Consider the relationship between the convex combination
method in (21) and the local distribution regularized method
in Section V-A. Let be a sequence of random
variables sampled independently and identically from a distribu-
tion defined over , taking the values .
Assume has a mean and covariance . Let denote a
random variable , representing the possible positions
of the preimage with respect to . It can be shown that has
the same mean as the neighbors

since

Fig. 5. Discriminative direction recovered by (a) the Rathi-inspired method
and (b) the Golland’s method. The discriminative directions at different points
consistently point to the direction that best differentiates the two classes.

Therefore

(22)

Since and are independent of each other,
when . Hence

That is, has the same eigenvectors as and the eigen-
values which are times the eigenvalues of . Since

, according to Cauchy’s inequality, we have

showing that the eigenvalues of are not larger than the
eigenvalues of . Combining the results above, we see that com-
pared with the local distribution regularized method, the distri-
bution of given by the convex combination method has the
same mean, and a covariance matrix with the same eigenvectors
but smaller eigenvalues. Hence, the convex combination method
implicitly makes its solution comply to the local distribution
of its neighborhood but in a more strict manner.

Compared with the local distribution regularized method, the
most salient advantage of the convex combination method is that
there is no need to empirically set the parameter . However, its
connection to the requirement of complying to the underlying
shape distribution is not as obvious as the local distribution reg-
ularized method. Furthermore, it does not have an analytical so-
lution which the local distribution regularized method has. Its
constrained optimization problem has to be solved in an itera-
tive way, which is more computationally expensive.

Note that in the Kwok-inspired method in Section III, the
local geometric relationship is also considered for estimating
the deformed shape . There the new shape is confined by
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Fig. 6. Verification on the USPS data by (a) Golland’s method and (b) our regularized method. The top row shows the deformation from digit 5 to digit 8.
The bottom row shows the deformation from digit 0 to digit 9.

its neighbors in the shape descriptor space through a dis-
tance relationship which is carried from the feature space .
This constraint is different from what we use in the convex
combination method, where the new shape is confined in the
convex hull formed by its neighbors. Our experiment in Sec-
tion VI-B-1 demonstrates that the convex combination method
generates less spurious shape difference than the Kwok-inspired
method (Fig. 9).

VI. EXPERIMENTS

Different types of controlled experiments are conducted to
test the performance of the variants of the discriminative direc-
tion proposed in this paper, such as the comparability between
our reformulation of the discriminative direction and Golland’s
original method, the fidelity of the deformed shapes obtained by
our regularized discriminative direction methods, and the sen-
sitivity of our methods to the regularization parameter . But
more importantly, and also being our ultimate target, the pro-
posed regularization method is applied to characterize shape dif-
ferences in sex for human hippocampi: key class differences are
localized.

A. Comparability of the Methods for the Original
Discriminative Direction

In this section, we demonstrate that reformulating the orig-
inal discriminative direction problem as shown in Section III
gives comparable solutions to Golland’s method. The residual
error in (13) is minimized using the Rathi-inspired method and
tested on two classes of points (dark or light in Fig. 5) lying
on two concentric annuli respectively. The two classes of points
are classified by a support vector machine with an RBF kernel.
Sixteen randomly selected support vectors are moved for 10
steps along the direction in toward the opposite class. The
result is shown in Fig. 5. Note that in all points that have
the same projection value on are located in the same hyper-
plane perpendicular to . Such a hyperplane is visualized as a
level contour in . As shown in Fig. 5(a), the “discriminative
directions” obtained by the Rathi-inspired method are consis-
tently radial at different points and best differentiate the two an-
nuli, which agrees well with our intuition and that of Golland’s
method [Fig. 5(b)].

B. Verification for the Regularized Discriminative Direction

Our main purpose is to use the regularized discriminative di-
rection to localize the class difference for human hippocampal

shapes between sexes. This remains an open problem and
lacks ground truth. Hence, first we have to verify our proposed
methods with data for which we know what kind of deforma-
tions to expect, and compare it with Golland’s method.

The verification is performed on the USPS handwritten digit
image database and a subset of the UMIST facial image data-
base [17]. The USPS database contains 16 16 thumbnail im-
ages of ten handwritten digits (0-9). For the UMIST database,
we manually labelled 55 images belonging to eight persons as
left-side view and right-side view. Each image is represented by
a high-dimensional feature vector comprising the intensities at
all pixels, similar to the landmark representation of shapes. The
images are known to only reside in a low-dimensional manifold
[18]. In our local distribution regularized method, a neighbor-
hood size of 20 is used for the USPS data, and 5 for the UMIST
data. We aim to discriminate 1) the shapes of two groups of
digits, and 2) two classes of human faces: left-side view and
right-side view. In the experiments, a particular feature vector
is moved from one class towards the other along the discrimi-
native direction. Note that the newly generated images in this
course do not exist in the database.

1) Fidelity of the Deformed Images: Fig. 6 is the result on
USPS. As shown, Golland’s method introduces much more
noise (spurious difference), while our regularized method lo-
calizes the discrimination well, adding the minimum necessary
shape changes. The advantages of the regularized method are
more obvious on UMIST data as shown in Fig. 7. During
deformation, it only reflects the class difference (the change
of view), leaving the individual variability (the owner of the
face) unchanged [Fig. 7(c)]. Most importantly, the newly
generated images remain faces. However Golland’s method
cannot guarantee this [Fig. 7(a)], and the authentic difference
is overwhelmed by noise. Fig. 7(b) shows the result obtained
by the “tangent plane projection”.3 It is better than Golland’s
method, but still worse than the local distribution regularized
method (see the ghost around the glasses). This demonstrates
the benefit of using in the local distribution regularized
method, as shown in (16).

In addition to the visual comparison above, quantitative
analysis has also been performed on the UMIST data to de-
termine how likely a newly generated image belongs to the
distribution of the training images in the regularized method,
Golland’s method and the tangent plane projection method,
respectively. In this paper, a one-class SVM [19] which esti-
mates the probability density is used for this purpose. Given a
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Fig. 7. Verification on the UMIST data. (a) Golland’s method, (b) the tangent plane projection (see Footnote 3, Page 7), (c) the regularized method. During the
deformation, a right-side-view face (the leftmost image) turns towards left gradually (keep adding class difference) while remaining to be a face image of the same
person (filter individual variability) in (b) and (c). However Golland’s method in (a) does not guarantee this.

Fig. 8. Comparing the values of the � function in a one-class SVM on the
newly deformed facial images obtained by the regularized method, Golland’s
method, and the tangent plane projection respectively. As shown, the deformed
images obtained by the regularized method (the solid line) have highest � values,
indicating that these images better conform to the distribution of the original
facial images compared with the deformed images obtained by the other two
methods.

set of training data, one-class SVMs infer a function which
has positive values in the region where most of the training
data is distributed (a percentage is preset by the user) and has
negative values elsewhere. The function can be expressed
as . Its value decreases from the
densely distributed areas to the sparsely distributed areas. The
values of and are learned by one-class SVMs and is
the employed kernel function. In our experiment, we learn the
distribution using an RBF kernel from the training images in
both classes, and test on a left-side view face deformed in 45
steps. The corresponding values of the function are calculated
for each newly generated facial image during the deformation.
Fig. 8 clearly demonstrates that the regularized method has
larger value (mostly positive) than Golland’s method (mostly
negative) for the image deformed at every step, which indicates
that a new image generated by the regularized method more
likely conforms to the distribution of the original images. The

performance of the tangent plane projection method is in the
middle.

Similarly, we compare the performance of the convex com-
bination method with the Kwok-inspired method because both
methods use the neighbouring information as constraints. This
is shown in Figs. 9 and 10. It can be seen that the Kwok-in-
spired method generates ghost faces which are hard combina-
tions of different views of faces at the intermediate steps, though
the final result is comparable to that of the convex combina-
tion method. In contrast, the convex combination always gener-
ates clear faces, giving smooth transitions at the intermediate
steps. The change of the value in Fig. 10 affirms this re-
sult. The convex combination has an obvious advantage over
the Kwok-inspired method in the middle part of the curves.

2) Sensitivity to the Regularization Parameter: To measure
how the regularization parameter affects the performance
of the local distribution regularized method proposed in Sec-
tion V-A, we conduct experiments as described below. First, as
mentioned before, each face image in the UMIST database is
represented by a feature vector comprising the intensities at all
pixels. Then we compute the Euclidean distance between each
feature vector and its nearest neighbor, and average such a dis-
tance over all the feature vectors of the facial images belonging
to the same person. This indicates the average distance between
two neighboring feature vectors belonging to the same person.
It is so-called “average minimum neighboring distance” in this
paper. A left-side-view face is deformed for 45 steps using three
different values of , respectively, i.e., , ,
and , where (see Section V-A-2). At
each of the 45 steps, we obtain three deformed shapes by using
each of the three different values of . The pairwise Euclidean
distances among these three deformed faces are computed. The
results for all the 45 steps are plotted in Fig. 11 as three curves,
i.e., the distances between the corresponding deformed shapes
obtained using (a) and (indicated by the
long dashed line), (b) and (indicated
by the short dashed line), and (c) , and
(indicated by the marked solid line). Notice that even when
changing the value of from to , which is
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Fig. 9. Comparison of the convex combination method (b) and the Kwok-inspired method (a) on the UMIST data.

Fig. 10. Comparing the values of the � function in a one-class SVM on the
newly deformed facial images obtained by the convex combination and the
Kwok-inspired method. As shown, the deformed images obtained by the convex
combination method (the solid line) have higher � values, indicating that these
images better conform to the distribution of the original facial images than the
deformed images obtained by the Kwok-inspired methods.

100 times larger, the pairwise distance between two deformed
images (the short dashed line) at the corresponding steps is
no more than 2.13. It is still lower than the average minimum
neighboring distance 3.30 (the thick solid line) for the same
person. The performance change can be alternatively evaluated
in terms of the average pixel intensity change in the scale of
[0, 255]. The average pixel intensity change is computed as

, where and are the intensity
values at pixel in two images and , and is the number of
pixels in the image. When changes from to ,
the average pixel intensity change for a single image is no more
than 5.46 units of intensity, smaller than the average pixel in-
tensity change over all the images belonging to the same person
(8.44 units of intensity). Hence, the change in performance of
the local distribution regularized method for different values of

is not significant over a reasonably large range of .

C. Hippocampal Shape Analysis Using the Regularized
Discriminative Direction

The hippocampus serves as a biomarker for ageing dis-
ease and is involved in neurodevelopmental processes. It has
aroused great interest in neuroscience. Though the commonly
used volumetric measures can provide some indication of

Fig. 11. The distances between corresponding pairs of deformed facial im-
ages obtained at each deformation step using different �: (a) � � � and � �

���� , indicated by the long dashed line; (b) � � ���� and � � ����� ,
indicated by the short dashed line; and (c) � � � and � � ���� � , indicated
by the marked solid line. The average minimum neighbouring distance is indi-
cated by (d), the thick solid line. It can be seen that when changing the value of
� from ��� � � to �� � � , which is 100 times larger, the pairwise distance
between two deformed images (the short dashed line) at the corresponding steps
is no more than 2.1332. It is still lower than the average minimum neighbouring
distance 3.2985 (the thick solid line).

normal variation and anomaly, they lack sensitivity and speci-
ficity. Therefore, the analysis on the hippocampal anatomy is of
great significance. Using our proposed regularized discrimina-
tive direction methods, we now investigate the shape difference
of hippocampi between sexes. This is part of a longitudinal
study, PATH through Life, from the Centre for Mental Health
Research, the Australian National University.

1) Data: A database of left hippocampi of healthy individ-
uals is used, comprising 219 females and 181 males in an age
span of 40-44. The hippocampal surfaces have been hand-traced
using the Watson et al. protocol [20]. They contain the head
and tail, but not the posterior section of the tail. Each shape
is represented by landmarks reconstructed from the spherical
harmonics (SPHARM) representation [21]–[24] of different de-
grees. They are normalized with respect to volume. Using high
degree SPHARM, more details appear in the shape model, but
the chances of including noise also increase. As shown in our
previous work [25], using SPHARM degree 5, we are already
able to detect a statistically significant difference
between sexes by a fast permutation/bootstrap test [25], [26]. In
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Fig. 12. The values of the � function in a one-class SVM on 18 support vec-
tors in the hippocampus database are compared for the local distribution regu-
larized method and Golland’s method. The hippocampal shapes are represented
by SPHARM degree 5 and normalized with respect to volume. It can be seen
that for most of the cases the deformed hippocampal shapes obtained by our
local distribution regularized method have higher � -values (the red line) than
those deformed shapes obtained by Golland’s method (the blue line).

our experiment below, each shape is represented by 642 land-
marks obtained from SPHARM degree 5 with established land-
mark correspondences. To remove the translation and rotation,
each hippocampal shape is represented by an ellipsoid with de-
gree one SPHARM expansion. It is aligned to a template shape
by matching the three principal axes of these two shapes. There
is a two-way ambiguity for each axis. This ambiguity is solved
by choosing the alignment that maximizes the overlap of the two
shapes.

An SVM classifier with the RBF kernel is employed for clas-
sification. Following [4], support vectors are selected from the
input shape descriptors to study the discriminative direction. A
neighborhood size of 20 is used in the local distribution regu-
larized method.

2) Result: The localized difference between shapes is
shown in Fig. 13. These hippocampi belong to six individuals
(a column for each one), three females and three males. The
color code indicates the nature of deformation that an actual
hippocampal shape undergoes to become a shape akin to the
opposite class. Take the leftmost hippocampus in Fig. 13 for
example. To make this female hippocampus to be male-like, the
blue areas should shrink. As observed, the shape changes are
not uniform over the whole hippocampus: small changes (either
compression or expansion, in green color) occur on most of the
shape, while sharp changes are localized on the head and the
tail. Comparing the deformations in both ways (female to male
and vice versa), the regularized method consistently captures
the compression in the lateral parts at the head and the tail for
male hippocampi. Compared with Golland’s method which
shows a different pattern (a compression next to an expansion
in the head), our results are also more compact, with changes
concentrated in fewer regions but at greater magnitude. Inter-
estingly, the work in [27] has reported findings similar to that
of our method. In [27], the hippocampal shapes are represented
by medial models [28], [29], which are totally different from
our SPHARM-based shape descriptors. Shape difference for

Fig. 13. Localized discrimination for sexes on hippocampi of six individuals
(three females on the left, three males on the right) from two perspective views.
The top two rows are generated by our regularized method, while the bottom
two rows are generated by Golland’s method. The color code indicates the de-
formation that a female/male hippocampus undergoes to become a male-like/fe-
male-like one. Green indicates a small shape change. From green to red, the
amount of protrusion increases. From green to blue, the amount of shrinkage
increases.

sex is observed and estimated to correspond to volume loss in
males in the lateral areas of the hippocampus head and tail.
This change happens in young male adults, a phenomenon
not observed in females. This finding supports our regularized
method.

Quantitative analysis similar to the verification on UMIST
face data is performed on the hippocampal shapes deformed
from 18 support vectors. The result is summarized in Fig. 12.
Each shape descriptor is moved for 35 small steps. The results at
the final step are compared here. To achieve an accurate estima-
tion of the probability distribution for the hippocampal shapes,
a relatively small is used in the RBF kernel for training the
one-class SVM. This produces a complex decision boundary
which tightly encloses these shapes by the one-class SVM. In
this case, all the shapes including the deformed ones are close
to the decision boundary where the values of the function
are zero. This is why the -values in Fig. 12 are small. How-
ever, comparing the relative relationship between the -values,
Fig. 12 still demonstrates that our regularized discriminative
direction gives higher values for most of the cases, indicating
that the deformed shapes conform to the underlying distribution
better than those obtained by Golland’s method.

VII. CONCLUSION

In this paper, we conducted a thorough study of the discrim-
inative direction method which is used for localizing and visu-
alizing differences between groups of anatomical shapes. We
approached the established method from a different perspec-
tive, pointed out the limitations of this method, proposed and
demonstrated two new regularized variants of the established
method that respect the underlying distribution of the shapes as
well as capturing the essential class difference. The result on
controlled experiments shows a significant improvement in the
fidelity of the generated shapes of our approaches. Finally, our
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proposed regularized discriminative direction approach is ap-
plied to studying the sex difference of hippocampal shapes, lo-
calizing the key difference at the lateral parts of the head and
the tail. More applications are expected in our future work.
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