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Realizing Fully Secure Unrestricted ID-based Ring
Signature in the Standard Model Based on HIBE

Man Ho Au, Member, IEEE, Joseph K. Liu∗, Willy Susilo$, Senior member, IEEE,, Jianying Zhou

Abstract—We describe a secure and unrestricted identity-based
ring signature scheme in the standard model. Our construction
is provably fully secure in the standard model under static
assumptions and is motivated by an existing HIBE scheme. Our
observation on the relationship between ID-based ring signatures
and HIBE is of interest to researchers in other fields as well.
Following the strongest anonymity definition in ring signatures,
we define a new level of anonymity for ID-based ring signatures
in which the attacker can specify the randomness used in the
creation of the user secret key, in addition to the PKG’s master
key. Our scheme provides unconditional anonymity in this model.

Keywords: ring signature, HIBE, anonymity, standard model

I. INTRODUCTION: MOTIVATION AND BACKGROUND

Consider a scenario where Alice, who is an innocent member
of a minority political party, has had charges brought against
her and is being tried in court. One of the key pieces of
evidence in support of her innocence is a copy of a digital
photo, but this must be authenticated to ensure that it is
genuine. Further, since the owner of the digital photo is from
the minority party, he wants to ensure that his identity will
not be revealed after submitting the evidence, even though
the forensic photography1 team must verify the evidence. In
order to enable this, a promising cryptographic approach is
the identity-based (ID-based) ring signature scheme, which
allows the formation of a spontaneous signature on behalf of
the minority political party while still ensuring that the real
identity of the source remains hidden. The protection of the
real identity of the signer is unconditional, which means that
nobody will be able to find out who has actually issued the
signature on the photograph provided. A thorough survey of
the early constructions of ID-based ring signatures as well as
of the advantages of ring signatures without the need for public
key infrastructure can be found in [25]. It is unfortunate that
the existing constructions of ID-based ring signatures in the
standard model is not yet efficient2, either because of the size of
the parameters involved or because of the security assumptions.

$This work is supported by ARC Future Fellowship FT0991397.
Joseph K. Liu and Jianying Zhou are with Institute for Infocomm Research,

Singapore; Man Ho Au and Willy Susilo are with University of Wollongong,
Australia.
∗Joseph K. Liu is the corresponding author.
1http://en.wikipedia.org/wiki/Forensic photography
2We will discuss in Section I-A that the two schemes presented in [3] are

either insecure or with a flawed security analysis. On the contrary, we note that
efficient constructions based on static assumptions in the random oracle model
exist [27]. Our goal in this paper is to consider security in the standard model,
since recent results demonstrated [4] that schemes secure in the random oracle
model may be insecure in practice.

In this work, we aim to bridge this gap by providing an ID-
based ring signature which is provably secure in the standard
model under static assumptions. Our ID-based ring signatures
also exhibit interesting properties such as unrestricted ring size
and full anonymity even when the attacker has control over the
randomness used in all key generations.

A. Related Cryptographic Notions

RING SIGNATURE: Ring signature [49] is a group-oriented
signature which takes into account privacy concerns. A user
can choose autonomously to sign anonymously on behalf of
a group, while group members can be totally unaware of
being included in the group. Any verifier can be assured that
a message has been signed by one of the members in this
group, but the actual identity of the signer remains hidden.
Unlike group signatures [5], there is no group manager and no
revocation. The formation of the group is spontaneous. Due to
these properties, it can be used for many different applications,
including the following:

1) Whistle Blowing [49]: Assume there is a council meeting
and members of the council are not allowed to tell
outsiders about anything discussed during the meeting.
Because as the discussion topic is related to the public,
Alice (one of the council members) would like to leak the
news to some journalists. If she sends an anonymous letter
or email to the journalists, they may not believe it is from
a council member as anyone could do this. If she signs
the email using her secret key, although the journalists will
believe it is Alice (a council member) who is leaking the
news, she will be punished because she has violated the
regulation. In this case, she can generate a ring signature
with the public keys (or identities) of all members of
the council. To do so, she does not need to seek any
collaboration (she only needs to know their public keys
or identities, which are known to the public), and she can
simply use her own secret key. In this way, any verifier
can be sure that the signature is generated by one of the
members of the council but no one is able to find out who
the actual signer is, even if all the secret keys are revealed.
Thus Alice avoids being punished.

2) Ad Hoc Networks Authentication [43]: The fast growing
popularity of portable devices and mobile applications has
formed new types of groups of interacting parties: ad hoc
groups. An ad hoc group has a very dynamic nature.
Each member can join and leave spontaneously without
seeking approval from any centralized party. Due to the
lack of any trusted party, security of ad hoc network is a
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challenging problem. Ring signatures are perfectly suited
to the authentication scenario of such networks, since no
set-up protocol or trusted centralized party is required
and each member can authenticate itself using only its
own secret key and other public information. In particular,
Vehicular Ad Hoc Networks (VANET) (a kind of ad hoc
network specifically designed for vehicles) can also deploy
ring signatures for authentication purposes [17].

3) Smart Grid Security [45]: The smart grid is a new form
of electricity network. One of the distinctive features in
a smart grid is its capabilities for two-way data com-
munication. While the supplier can output electricity to
consumers, on the other side consumers and their devices
can also send data to grid controllers. The ability to
analyze and have access to more precise and detailed data
from consumers and their devices is a major benefit of the
smart grid. Based on this infrastructure, some third-parties
may provide a platform for consumers to upload energy
usage data, based on which a statistical report is created
[28]. The purpose is to encourage consumers to compare
their energy consumption with others and, as a result,
use electricity more efficiently. From a security point of
view, data integrity is necessary since the comparison
would be meaningless if the data were faked or modified
by some malicious person, however privacy is also an
important concern as consumers may not want to give
their identification information to any third-party service
provider. A ring signature can act as a promising solution
in this scenario to provide both integrity and privacy.
Using a ring signature means that a valid signature will
convince the service provider that the data is uploaded by
a consumer on a certain street, without telling who exactly
the consumer is.

4) E-voting [24]: A variant of ring signature, called ’linkable
ring signature’ [43], allows any verifier to know whether
two ring signatures are signed by the same signer. This
variant can be applied for e-voting [26], [24].

5) Ad hoc anonymous key agreement [21]: Due to their
anonymous and ad hoc nature, ID-based ring signatures
can be used in key agreement protocol in the ID-based
setting to provide privacy protection. For instance, the ad
hoc anonymous key agreement protocol [21] is based on
the ID-based ring signatures from [27].

There is only a small number of secure ring signature
schemes without random oracles. Xu et al. [57] described a
ring signature scheme in the standard model but the proof is
not rigorous and is apparently flawed [7]. Chow et al. [23] gave
a ring signature scheme with proof in the standard model, but
this requires a new assumption. Bender et al. [7] presented a
ring signature which is secure in the standard model, assuming
trapdoor permutations exist. Their scheme uses generic ZAPs
for NP as a building block, which is inefficient. Shacham and
Waters [51] proposed an efficient ring signature scheme without
using random oracles. The scheme requires a computational
assumption for anonymity. Chandran et al. [16] gave a sub-
linear size ring signature scheme in the untrusted common
reference string model. The scheme provides unconditional
anonymity. Schäge and Schwenk [50] provided another ring

signature scheme in the standard model using basic assump-
tions. However, their scheme can be only proven in a model
which does not allow the adversary to query any private key.

ID-BASED RING SIGNATURE: The identity-based (ID-based)
cryptosystem, introduced by Shamir [52], eliminates the neces-
sity for testing the validity of the certificates. In an ID-based
cryptosystem, the public key of each user is easily computable
from a string corresponding to this user’s identity, such as an
email address or a telephone number. A private key generator
(PKG) then computes the private keys for the users from a
master secret key. This property avoids the need for using
certificates and associates an implicit public key (user identity)
to each user within the system.

ID-based ring signature combines the properties of ring
signatures and ID-based signatures. The first construction is
in Zhang and Kim [61]. Since then, several constructions have
been proposed [22], [37], [42], [25]3,[27], [18], [19], [20]. All
the above schemes are based on pairings with signature sizes
which are proportional to the number of members in the ring. A
non-pairing-based approach can be found in Herranz [36] and
Tsang et al. [54]. The first constant-size construction, given
by Nguyen [47], used an accumulator. The public parameters
determine an upper bound n on the number of identities in the
ring. We regard it as a restricted ring signature. The scheme
was found insecure, however, by Zhang and Chen [60] and they
outlined a patch. All the above constructions are only secure
in the random oracle model.

Au et al. [3] proposed two ID-based ring signature schemes
in the standard model. Their first construction was discovered to
be flawed [29], while the second construction is a restricted ring
signature, and it can be only proven in a very weak model: The
adversary needs to select the challenged identities and message
in the beginning, before getting the public parameters from the
simulator, however, we discovered that there is a flaw in the
proof of the unforgeability of this scheme. The flaw is presented
in Appendix A.

Han et al. [35] claimed their scheme is secure in the standard
model but Tsang et al. [54] showed that their proof is incorrect.
We do not regard [35] as a provably secure scheme.

Boneh and Hamburg [13] suggested a construction of an
identity-based ring signature scheme from their spatial encryp-
tion primitive, but they could only prove it selectively secure.
Although full security can be achieved in a way pointed out
in [2], it is also a restricted ring signature. Although the size
of their signature is constant, the private key of each user is
of length O(n), where n is the upper bound on the number of
identities in the ring determined by the public parameters.

Generic transformation from public-key based signature to
(1 user) ID-based signature is possible [6], however, the trans-
formation does not work in the case of ring signatures. In the
case of ring signatures, ID-based scheme can be constructed
generically but based on non-interactive zero-knowledge proof-
of-knowledge. The commonly-used technique without relying
on random oracles is due to [33]. Schemes constructed gener-
ically using this technique would be unrestricted and possess

3The work in [25] did not propose any new scheme. Instead it explains the
design of a number of schemes.
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comparable asymptotic complexity in the same way as as our
construction. However, anonymity depends on the trusted set-
up assumption4 as the proof technique requires a common
reference string.

ATTRIBUTE-BASED SIGNATURE: An attribute-based signature
(ABS) assures the verifiers that a single user with a determined
set of attributes satisfying a predicate has attested to the
message. It is a versatile variant of digital signatures. Some of
them [48], [46], [59] support non-monotone access structures
and offer attribute privacy. While attribute-based encryption is a
generalization of identity-based encryption, it might be natural
to think that an attribute-based signature scheme supporting
a predicate consisting of disjunctions with attribute privacy
will provide the essential feature of an identity-based ring
signature. For instance, one could set each identity to be an
attribute and issue the key for this attribute to the owner of
this identity. Existing construction of ABS, however, does not
support this naive construction efficiently. The reason is that the
maximum number of attributes or the maximum complexity of
the access structure must be given in the public parameter. In
other words, existing ABS can only be used to realize a ring
signature scheme with restricted ring size (or restricted ring
signature). Another possibility is to set each bit of an identity
as an attribute, say, a1, . . . , a`, where ` is the identity bit-length.
The identity owner is given the signing key of the attribute set
corresponding to the bits of his identity string. For example,
owners of ID1 = 1001 and ID2 = 0011 will be assigned the
attributes (a1, a4) and (a3, a4), respectively. To realize a two-
party ID-based ring signature on ring (ID1, ID2), the access
polity will be set as (a1∧ā2∧ā3∧a4)∨(ā1∧ā2∧a3∧a4), where
ā represents the negation of an attribute a. Nonetheless, the
complexity of the resulting access structure is O(`n), where n
represents the size of the ring. Thus, realizing the functionality
of ID-based ring signatures with ABS in this way incurs an
overhead of complexity O(`), which can be quite inefficient.
We call the ID-ring signature scheme constructed this way IDR-
from-ABS and its properties are shown and compared with
existing schemes in Table I.

MESH SIGNATURE: The mesh signature [14] is a variant of ring
signatures. While a mesh signature can be used to realize the
functionalities of a ring signature, it is not clear whether or not
it is sufficient to realize an ID-based ring signature. One reason
is that the clauses in the access policy of a mesh signature must
not share the same public key. Another issue is related to the
expressiveness of a mesh signature, in which a basic policy
[V K1 ∶M1] assures the verifier that the mesh signature creator
is in possession of a valid signature on message M1 under
verification key V K1. The access policy of a mesh signature
is an arbitrary combination of the basic policy using AND, OR
as well as THRESHOLD gates. While it is easy to represent a
ring signature using the policy [V K1 ∶M] or [V K2 ∶M] , . . .,
[V Kn ∶M], it seems to be insufficient for the realization of an
ID-based ring signature. Nonetheless, the anonymity model of
the mesh signature motivates the definition of anonymity in our

4The common reference string model requires that the randomness used in
the setup should be erased.

scenario. It is pointed out in [14] that the existing anonymity
notion for ring signatures is constrained in the sense that the
secret keys are not chosen by the adversary. This concern is
particularly relevant in our case as the adversary is the public
key generator itself which is responsible for the creation of the
users’ signing keys.

HIERARCHICAL IBE: An identity-based encryption (IBE) [10],
[11], [8], [55], [31] system is a public key system where
an encryptor uses only the identity of the recipient and a
set of global public parameters, so a separate public key for
each entity is not required. A trusted authority holds a master
secret key which allows it to create secret keys for identities
and distribute them to authenticated users. A hierarchical IBE
system (HIBE) [32], [38], [9], [40] provides more functionality
by creating levels of an organizational hierarchy. A user at level
k can delegate secret keys to descendant identities at lower
levels, but cannot decrypt messages intended for a recipient
that is not among its descendants.

HIBE has also been used as a building block of digital
signatures where signer anonymity is of concern. For instance,
a generic transformation from HIBE to ID-based group signa-
tures is presented in [53]. There are several subtle differences
between a group signature and a ring signature. Specifically, no
party should be able to reveal the identity of the signer when
a ring signature is used. In addition, the group formation is
ad hoc, and the signer can select members arbitrarily. Finally,
there should be no central set-up in a ring signature. While the
last difference is not applicable to the case of identity-based
cryptography (since the public key generator can be viewed
as the central party), the differences between ID-based group
signature and ID-based ring signature are still substantial.

The second ID-based ring signature scheme in [3] was built
based on HIBE, but due to the differences in the two primitives
(more on that discussed in Section III), their construction is
only proven secure in a restricted model that seems to be
tightly coupled with the definition of the selective-ID security
for HIBE. We observe that even in the restricted model, the
proof is flawed. (This will be further explained in Appendix
A)

B. Level of Anonymity

According to [7], the strongest level of anonymity in ring
signature is against full key exposure. That is, even if the secret
keys of all members of the ring are exposed, or, more generally,
even if the randomness used to generate the secret keys of all
members of the ring are exposed, anonymity is still preserved. It
makes sense when erasure cannot be ensured, or when it cannot
be guaranteed that all users will comply with the directive to
erase their random coins.

A direct transposition of this definition to the case of ID-
based ring signatures is not straightforward. In particular, the
master key and the user secret keys are created by the PKG,
which may be the adversary itself. Thus, it may also be desir-
able for anonymity to be preserved even when the randomness
used to generate the keys is chosen by the adversary. In this
case, the adversary not only gives the indexes of the challenged



4

users to the challenger, it also instructs the challenger to use
its chosen randomness to generate two secret keys, and uses
either one to generate the challenged signature. We call this
’anonymity against chosen key randomness’.

In the context of our definition, we also allow the adversary
to specify the randomness used in the creation of the public
parameters, the master secret key and all the other keys of the
users in the system. It is reasonable because we are modelling
against a dishonest PKG. The ability to choose this randomness
may increase the power of the adversary to guess the actual
signer. In our definition, the adversary gives the randomness
to the challenger and instructs it to use this randomness to
generate the secret keys for the challenged identities, one of
which will be used to generate the challenged signature.

We will formally define it in a later section.

C. Comparison with different ring signature schemes

Here we compare our scheme with different provably secure
unrestricted ring signature schemes that do not rely on random
oracles5. Note that since there are no concrete unrestricted
ID-based ring signature schemes without random oracles, we
also include public key-based schemes in the comparison. We
compare the following aspects: size of secret key, size of
signature, unforgeability and anonymity. We summarize it in
Table I. We use n to represent the number of users in a
signature.

We also note:
(1) Unforgeability is divided into the following categories:

● ID-EF-CMA: ID-based existential unforgeablility
against chosen message attack. This is also known as
fully secure unforgeability in the ID-based setting.

● EF-CSA: Existential unforgeablility against chosen
sub-ring attack [50]. The adversary is not allowed to
query private keys.

● EF-CMA: Existential unforgeablility against chosen
message attack. The adversary is allowed to corrupt
any users (to obtain their secret keys) except those
included in the forged signature.

(2) The legends are: U for unconditional, HS for heuristically
statistical and C for computational.

(3) The unconditional anonymity provided in [16] is heuristi-
cally statistical. As analyzed in their paper, assuming the
key size is 1024 bits and the ring size is less than 10000,
there is less than one in a million risk of the signature not
being unconditionally anonymous.

(4) m represents the number of bits in the message space.
(5) For the assumptions: DsjSDH is a new and strong as-

sumption proposed in [23]. ‘generic’ means the assumption
depends on the underlying schemes, as the construction is
generic. ‘subgp’ stands for subgroup decisional assumption.

5We exclude the restricted ID-ring signature by [13], [2] and following
schemes although they also claim to be secure without random oracles: For the
scheme in [57], the proof presented is not rigorous and is apparently flawed
as stated in [7]. For the scheme in [35], the proof is incorrect as indicated
in [54]. For the first scheme from [3], it is proven insecure by [29]. For the
second scheme from [3], it is a restricted one and there is a flaw in the proof
as explained in Appendix A.

(6) The generic construction of an ID-based ring signature
from ABS is described in Section I-A. In this construction,
the size of the secret key and the size of the signature
do not depend on the underlying ABS scheme. ` is the bit-
length of an identity and we use ` = 160. Under our generic
construction, the size of the secret key and the signature
depends on the number of ‘1’ in the bit string of the (hash
of the) identity. O(`) just gives the upper bound of the
complexity. We state here as an open problem to construct
an unrestricted ID-based ring signature scheme from any
ABS that does not rely on random oracle with the upper
bound of the secret key less than O(`).

D. Our Contribution

In this work, we propose a feasible ID-based ring signature
scheme based on an existing HIBE scheme. We define a strong
level of anonymity for ID-based ring signatures. Our scheme
provides anonymity against a computationally unbounded ad-
versary in this strong model. Our observation and explanation
of the relationship between ID-based ring signatures and HIBE
is of more general interest.

II. PRELIMINARIES

A. Notations

If a, b are integers with a < b, we use [a, b] to represent the
set {a, . . . , b}. For simplicity, we use [n] to represent the set
{1, . . . , n} if n is a positive integer. If G is a cyclic group, we
abuse the notation and use 1 to represent the identity element of
G regardless of its actual structure. As usual, ∣∣ denotes string
concatenation.

B. Composite Order Bilinear Pairing

Composite order bilinear groups were first introduced in [12].
We define them by using a group generator (G), an algorithm
which takes a security parameter (λ) as input and outputs a
description of the bilinear group (G). In our case, G outputs
(N = p1p2p3,G,GT , e) where p1, p2, p3 are distinct primes, G
and GT are cyclic groups of order N = p1p2p3 and e ∶ G×G→
GT is a map such that :

1) Bilinearity: For all g, h ∈ G, and a, b ∈ ZN , e(ga, hb) =
e(g, h)ab.

2) Non-degeneracy: There exists g ∈ G such that e(g, g) has
order N in GT .

3) Computability: It is efficient to compute e(g, h) for all
g, h ∈ G.

Also we assume the group descriptions of G and GT include
generators of the respective cyclic groups. We let Gp1 , Gp2
and Gp3 denote the subgroups of order p1, p2 and p3 in G
respectively. Likewise Gpipj denotes a subgroup of G of order
pipj . We note that when hi ∈ Gpi and hj ∈ Gpj for i ≠ j,
e(hi, hj) is the identity element in GT . To see this, suppose
h1 ∈ Gp1 and h2 ∈ Gp2 . We let g denote a generator of
G. Then gp1p2 generates Gp3 , gp1p3 generates Gp2 and gp2p3

generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and
h2 = (gp1p3)α2 . We note:

e(h1, h2) = e(g
p2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1
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TABLE I
COMPARISON OF UNRESTRICTED RING SIGNATURES WITHOUT RANDOM ORACLES

Scheme Size of Size of ID / Unforge- Anonymity(2) Assumption(5) Pairing
secret key signature PKI-based ability(1) (group order)

Chow et al. [23] O(1) O(n) PKI EF-CSA U DsjSDH prime
Bender et al. [7] O(1) O(n) PKI EF-CMA U generic non-pairing
Shacham et al. [51], O(1) O(n) PKI EF-CMA C SDH, subgp composite (2 primes)
Yuen et al. [58]
Chandran et al. [16] O(1) O(

√
n) PKI EF-CMA HS(3) SDH, subgp composite (2 primes)

Brakerski et al. [15] O(m)(4) O(mn) PKI EF-CMA unspecify generic non-pairing
Schäge et al. [50] O(1) O(n) PKI EF-CSA U CDH prime
IDR-from-ABS(6) O(`) O(`n) ID ID-EF-CMA U generic prime
Our Scheme O(1) O(n) ID ID-EF-CMA U subgp composite (3 primes)

This orthogonality property of Gp1 , Gp2 and Gp3 has been used
in [40].

Every element E ∈ G can be uniquely decomposed into
three components (E1,E2,E3) ∈ (Gp1 ,Gp2 ,Gp3) such that
E = E1E2E3. For notational convenience, we use Ψi(E) to
denote Ei for i = 1 to 3. Note that 1 is the identity element of
G as well as Gpi for i = 1 to 3 since Gpi is a subgroup of G.

C. Intractability Assumptions

We review some intractability assumptions in bilinear groups,
which have been defined in [41].

Assumption 1 (Subgroup decision problem for 3 primes):
Given a group generator (G), we define the following
distribution:

G = (N = p1p2p3,G,GT , e)
R
←Ð G,

g
R
←Ð Gp1 ,X3

R
←Ð Gp3 ,

D = (G,g,X3),

T1
R
←Ð Gp1p2 , T2

R
←Ð Gp1

We define the advantage of an algorithm (A) in breaking
Assumption 1 to be:

Adv1G,A(λ) ∶= ∣Pr[A(D,T1) = 1] −Pr[A(D,T2) = 1]∣

Definition 1: We say that G satisfies Assumption 1 if
Adv1G,A(λ) is a negligible function of λ for any polynomial
time algorithm A.

Assumption 2: Given a group generator (G), we define the
following distribution:

G = (N = p1p2p3,G,GT , e)
R
←Ð G, α, s

R
←Ð ZN ,

g
R
←Ð Gp1 , g2,X2, Y2

R
←Ð Gp2 , g3

R
←Ð Gp3 ,

D = (G,g, g2, g3, g
αX2, g

sY2),

T1 = e(g, g)
αs, T2

R
←Ð GT

We define the advantage of an algorithm (A) in breaking
Assumption 2 to be:

Adv2G,A(λ) ∶= ∣Pr[A(D,T1) = 1] −Pr[A(D,T2) = 1]∣

Definition 2: We say that G satisfies Assumption 2 if
Adv2G,A(λ) is a negligible function of λ for any polynomial
time algorithm A.

Assumption 3: Given a group generator (G), we define the
following distribution:

G = (N = p1p2p3,G,GT , e)
R
←Ð G,

g,X1
R
←Ð Gp1 , g2

R
←Ð Gp2 ,X3

R
←Ð Gp3 ,

D = (G,g, g2,X1X3),

T1
R
←Ð Gp1 , T2

R
←Ð Gp1p3

We define the advantage of an algorithm (A) in breaking
Assumption 3 to be:

Adv3G,A(λ) ∶= ∣Pr[A(D,T1) = 1] −Pr[A(D,T2) = 1]∣

Definition 3: We say that G satisfies Assumption 3 if
Adv3G,A(λ) is a negligible function of λ for any polynomial
time algorithm A.

Assumption 4: Given a group generator (G), we define the
following distribution:

G = (N = p1p2p3,G,GT , e)
R
←Ð G,

g,X1
R
←Ð Gp1 ,X2, Y2

R
←Ð Gp2 , g3, Y3

R
←Ð Gp3 ,

D = (G,g,X1X2, g3, Y2Y3),

T1
R
←Ð G, T2

R
←Ð Gp1p3

We define the advantage of an algorithm (A) in breaking
Assumption 4 to be:

Adv4G,A(λ) ∶= ∣Pr[A(D,T1) = 1] −Pr[A(D,T2) = 1]∣

Definition 4: We say that G satisfies Assumption 4 if
Adv4G,A(λ) is a negligible function of λ for any polynomial
time algorithm A.

III. OVERVIEW OF OUR CONSTRUCTION

We provide an overview of our construction. Firstly, we
describe a design principle for an ID-based ring signature
from HIBE. We would like to stress that this is not a generic
construction as the security requirement of ID-based ring
signature differs significantly from HIBE. Nonetheless, given
any HIBE that satisfies a certain condition, one could construct
an ID-based ring signature scheme. Next, we describe the
methodology for proving our proposed scheme.
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A. Relationship between HIBE and ID-based Ring Signature

a) Hierarchical ID-Based Encryption and Signatures.:
Any (n+1)-level HIBE can be converted into a n-level Hierar-
chical ID-based Signature (HIBS) [11]. Specifically, an n-level
HIBS (σ~I,m) from signer of identity vector ~I = (ID1, . . . , IDn)
on message m is the decryption key of the (n+1)-level HIBE
on identity vector ~I = (ID1, . . . , IDn,m). To verify signature
σ~I,m, the verifier creates ciphertext C which is the encryption
of random value V under the (n + 1)-level identity vector
~I = (ID1, . . . , IDn,m) in the HIBE. If signature σ~I,m in the
n-level HIBS can decrypt ciphertext C and output V correctly,
the verifier accepts σ~I,m.

b) HIBS and ID-Based Ring Signatures.: We first observe
the similarities between HIBS and ID-based ring signature
schemes. Both of them are ID-based signatures. They also
include a number of identities in the signature. In a HIBS
(converted from a HIBE), a signature in fact is a secret
key generated by a node delegated to his child where the
message is set to be the identity of the child. If this key
is indistinguishable from another key generated by the PKG
directly (or from any previous nodes in the upper level), the
signature still provides some measure of signer ambiguity. As
the keys are indistinguishable, the signature can actually be
generated by any part of the prefix of the embedded identity.
For instance, a signature on message m on identity vector
~I = (ID1, ID2, ID3, ID4, ID5) can be created from signers
of 5 different identities: ~I1 = (ID1), ~I2 = (ID1, ID2),
~I3 = (ID1, ID2, ID3), ~I4 = (ID1, ID2, ID3, ID4), ~I5 =
(ID1, ID2, ID3, ID4, ID5). In other words, it already shares
the characteristic of a ring-signature. That is, it is created by
1-out-of-5 possible signers.

However, there is a crucial difference: consider a signing key
of identity ~I = (ID1). While it can be used to create signatures
on behalf of any identity vector of the form (ID1,∗,∗,∗), it
can only place its identity as the first element of the vector.
Specifically, it can create signatures on behalf of (ID1, ID2),
(ID1, ID2, ID3) but not (ID2, ID1) nor (ID3, ID2, ID1).
On the other hand, the identity of the actual signer in a ring
signature can be placed in any position in the list of signers.
We can see that an ID-based ring signature cannot be obtained
directly from a HIBS.

c) Our Approach.: We need to apply a special ‘rotational
system’ to eliminate the ordering in HIBS. Suppose it is
possible to modify an HIBS in such a way that the key for
the identity vector ~I = (ID) could be used to sign on behalf of
any identity vector ~I ′ containing ID at any position. Then the
signature on behalf of an n-level HIBS of signer with identity
(ID1, . . . , IDn) can be treated as an ID-based ring signature
from n possible signers of identities (ID1), (ID2), . . ., (IDn)
because it could have been created by the signer having a key
of identity vector ~I = (IDi) for i ∈ [n]. Of course, none of
the existing HIBS would support this feature. For if this is
the case, an adversary could simply request the key of identity
vector ~I = (ID2) and use it to forge a signature on identity
vector ~I∗ = (ID1, ID2) and thus breaking the unforgeability
of the HIBS.

While this modification could lead to a trivial attack in

the HIBS security model, it can still be proven secure in the
ring signature model. The reason is that the adversary is not
allowed to possess any keys in the ring of signers of the forged
signature. In other words, the forgery of a signature on a ring
(ID1, ID2) is not a valid attack if the adversary has asked the
key for identity ID1 or ID2, as the adversary is not allowed to
do so. Now the remaining questions are (1) whether or not such
a modification is feasible in existing HIBS and (2) whether the
modified scheme is secure in ID-based ring signature model.
We answer both questions affirmatively.

We answer the first question by showing how some existing
HIBE schemes can be modified to have the above property.
We use an existing HIBE as a starting point. Recently, Lewko
and Waters [41] proposed an unbounded HIBE (referred to
as LW11-HIBE hereafter). LW11-HIBE supports an arbitrary
number of levels. That is, the maximum depth of the hi-
erarchy does not need to be fixed at the set-up stage. In
addition, the hierarchical structure of the secret keys is not
embedded in the system parameter. Rather, special encod-
ing is applied to the identity vector to deploy the hierar-
chy. LW11-HIBE requires that for any identity vector ~I =
(ID1, . . . , IDj) that is not a prefix of another identity vector
~I ′ = (ID′

1, . . . , ID
′
`), IDj ≠ ID

′
k for k ∈ [`]. One encoding

method which ensures this property is proposed. For instance,
an identity vector (ID1, ID2, . . . , IDk) would be encoded as
(ID1, ID1∣∣ID2, . . . , ID1∣∣ID2∣∣⋯∣∣IDk). If we remove this
encoding, a 1-level key for identity ~I = (ID) can be used
to easily produce a key for n-level identity (ID1, . . . , IDn) as
long as ID = IDi for some i.

The final question is, after the modification, is the scheme
secure in the ring signature model? We present an overview of
the answer in the next subsection.

B. Security of Our Scheme following the Design Principle

d) On Anonymity.: Recall that a signature in HIBS, and
thus our ring signature, is an (n+1)-level decryption key of the
underlying HIBE. The perfect anonymity of the resulting ring
signatures follows closely from the delegation invariance of the
HIBE scheme. That is, a key for an (n+1)-level identity created
by the PKG is indistinguishable from the key generated from
any previous nodes in the upper level. It is straightforward to
see after the modification, an n-level key can be created from
one of these n possible 1-level keys with the same distribution.
This will be clear when we present our construction.

e) On Unforgeability.: Our scheme is derived from the
HIBE scheme [41] the security of which is analyzed using
a new methodology, often called the dual system encryp-
tion methodology, for proving the security of encryption sys-
tems [56]. Before explaining the setting of our proof, it will
be necessary to review some basic concepts in a dual system
encryption. In such a paradigm, keys and ciphertexts can take
on one of two forms: normal (type-N) or semi-functional (type-
S). A private key or ciphertext is of type-N if it is created
normally from the system parameters following the correct key
generation and encryption algorithm. A type-S key or ciphertext
is of a special structure that only appears in the security proof.
A type-S key will be able to decrypt all ciphertext of type-N but
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it will fail to decrypt a ciphertext of type-S. On the other hand,
a type-N key will be able to decrypt both type-S and type-N
ciphertexts. One important feature is that keys and ciphertexts
in the two forms are indistinguishable from each other.

Dual system encryption opens up a new possibility in secu-
rity proof by reduction. Reduction in the setting in which all
the keys and the challenge ciphertext returned by the simulator
are of type-S are often relatively straightforward. A sequence of
games is established to demonstrate that the success probability
of the adversary in the game where all keys and the challenge
ciphertext it received are of type-S is equivalent to its success
probability in the normal game where all keys and challenge
ciphertexts are of type-N.

A similar idea applies to digital signatures. [56] described
how the dual system technique can be applied to demonstrate
the security of the signature schemes converted from the IBE in
the same paper. Inspired by this and the dual system encryption
proof in [40], [41], we prove the security of our ring signature
scheme as follows. There are two types of signature and
key: type-N and type-S. Under normal system operation, all
signatures and keys are of type-N. The forgery can be classified
into two types according to the type of signature that the forger
outputs and we describe the reduction proof for each of these.
Looking ahead, our scheme follow this structure. Let G1, G2

and G3 be subgroups of a cyclic group (G). A type-N key
or signature consists only of elements in G1 while a type-S
component contains terms of all G1, G2 and G3.

● Type-S Forger: Suppose the forger is of type-S. The
simulator in this case only outputs type-N signatures and
keys. Thus, it can be set up using elements in G1 only.
Finally, the forger outputs something that has an element
in G2. The simulator can then make use of this element
in G2 to decide if the element in the problem instance has
a G2 component by pairing it with the forged signature.

● Type-N Forger: Suppose that the forger is of type-N.
The simulator in this case first uses a game-hopping
technique to change the key and the signatures that it
gives to the adversary from type-N to type-S in each
query until finally everything given to the forger from the
simulator is of type-S. Specifically, in the first game, all
keys and signatures given to the adversary are of type-N.
In the second game, the first key or signature given to
the adversary is of type-S and the remaining are of type-
N. In the j-th game, the keys and signatures given to the
adversary before the j-th query are of type-S. In the final
game, all keys and signatures given to the adversary are
of type-S. This is possible due to the indistinguishability
of type-N and type-S keys and signatures so the simulator
can switch one answer in a game. In the final game, the
reduction is simple. Given a type-N forgery consisting only
of elements from G1, the simulator can distinguish if the
problem instance is a random element in G or not.

IV. SECURITY MODELS

A. Definition

An ID-based (1, n) ring signature scheme is a tuple of
probabilistic polynomial-time (PPT) algorithms below:

● Setup. On input of a unary string (1λ) where λ is a
security parameter, the algorithm outputs master secret key
α and list of system parameters (param) that includes λ
and the descriptions of user secret key space SK, message
spaceM, identity space ID as well as signature space SG.

● Extract. On input system parameters param, identity
ID ∈ ID for a user and master secret key α, the algorithm
outputs the user’s secret key (skID ∈ SK). When we say
identity ID corresponds to user secret key skID or vice
versa, we mean the pair (ID, skID) is an input-output
pair of Extract with respect to param and α.

● Sign. On input param, group size n of length polynomial
in λ, set L = {IDi ∈ ID∣i ∈ [n]} of n user identities,
message m ∈M, and secret key {skID′ ∈ SK∣ID′ ∈ L},
the algorithm outputs an ID-based (1, n) ring signature
(σ ∈ SG).

● Verify. On input param, group size n of length polyno-
mial in λ, set L = {IDi ∈ ID∣i ∈ [n]} of n user identities,
message m ∈M, signature σ ∈ SG, it outputs either valid
or invalid.

Correctness. An ID-based (1, n) ring signature scheme should
satisfy verification correctness – signatures signed by honest
signers are verified to be invalid with negligible probability.

B. Security Requirement

A secure ID-based (1, n) ring signature scheme should be
unforgeable and anonymous, defined in a similar way to that
of a traditional ring signature scheme.
Unforgeability: It should not be possible for an adversary to
forge any signature from the identities of the group members
alone. We specify a security model which captures the follow-
ing two attacks:

1) Adaptive chosen message attack
2) Adaptive chosen identity attack

An adaptive chosen message attack allows an adversary to
obtain message-signature pairs on demand during the forging
attack. An adaptive chosen identity attack allows the adversary
to forge a signature with respect to a group chosen by the
adversary. To support an adaptive chosen message attack, we
provide the adversary with the following oracle queries.

● Extraction oracle (EO): On input ID, skID ←
Extract(param, ID) is returned.

● Signing oracle (SO): A chooses set of n identities
L = {IDi}i∈[n] and message m, the oracle outputs a
valid ID-based (1, n) ring signature denoted by σ ←
Sign(param, n,L,m). The signing oracle may query the
extraction oracle during its operation.

Let (param, α) ← Setup. An adversary (A)
with oracles EO and SO succeeds if it outputs
(L,m,σ) ← ASO,EO(param), such that it satisfies
Verify(param,L,m,σ) = valid, where L ⊆ ID, and
with restriction that (L,m) should not be in the set of oracle
queries and replies between A and SO, and A is not allowed
to make an Extraction query on any identity ID ∈ L.

The advantage of adversary A is defined to be

AdvA = Pr[A succeeds]
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Definition 5 (Unforgeability): An ID-based (1, n) ring sig-
nature scheme is unforgeable against adaptive chosen message
and chosen identity attack if all polynomial time adversaries
achieve at most a negligible advantage in the above security
game.

Note that we cannot achieve unforgeability in the stronger
sense that the adversary produces a different signature on the
same message and the same list of identities, as described in [1],
[44] since our proposed scheme does not possess this stronger
level of security.
Anonymity: It should not be possible for an adversary (A) to
tell the identity of the signer with a probability larger than 1/n,
where n is the cardinality of the ring, even assuming that the
adversary has unlimited computing resources. We further allow
the adversary to choose the randomness used in the generation
of the public parameters, the master secret key, as well as
the secret keys corresponding to the challenged identities. It
is formally defined in the following game:

1) The adversary sends a randomness ωSetup to the simulator.
The simulator generates (param, α) ← Setup using
randomness ωSetup. It gives A (param, α).6

2) A outputs message m, two identities ID0, ID1, list of
identities L such that ID0, ID1 ∈ L and two randomness
ω0, ω1.

3) The simulator randomly chooses a bit (b ∈R {0,1}), and
generates secret key for IDb using randomness ωb. It uses
this secret key to generate a ring signature for message m
and ring L. It gives A the signature.

4) A outputs a bit (b′) and succeeds if b′ = b.
The advantage of an adversary A is defined to be

AdvA = Pr[A succeeds] − 1/2

Definition 6 (Anonymity against chosen key randomness):
An ID-based ring signature scheme is said to be unconditional
anonymous against chosen key randomness attack if the
advantage of A is zero.

V. THE PROPOSED 1-OUT-OF-n ID-BASED RING
SIGNATURE SCHEME

A. Construction

We use the setting from the ID-based cryptosystem in LW11-
HIBE.

Setup. Choose a bilinear group (G) of order N = p1p2p3
(where p1, p2, p3 are distinct primes). Let ` be the length of the
identities. Let H0 ∶ {0,1}∗ → ZN ,H1 ∶ {0,1}∗ × {0,1}∗ → ZN
be two collision-resistant hash functions. Choose α ∈ ZN as the
master secret key and g, h, u, v,w ∈ Gp1 . The public parameters
are published as

param = {N,g, h, u, v,w, e(g, g)α,H0,H1}.

The master secret key is α.

Extract. To generate a private key for ID ∈ {0,1}`, randomly
generate r, y, ∈R ZN , compute ID =H0(ID) and

A = gαwy, B = gy, C = vy(uIDh)r, D = gr.

6
A can check if S is computing the keys using randomness ωSetup.

Output the private key for user with identity ID as SKID =
{A,B,C,D}.

Sign. Let L = {ID1, . . . , IDn} be the list of n identities to
be included in the ring signature. We assume the user with
identity ID′ is the actual signer, where ID′ ∈ L. W.l.o.g. we
also assume that ID′ is in the π-th position in L, where π ∈
{1, . . . , n}. That is, IDπ = ID

′. To sign message m ∈ {0,1}∗,
compute IDi = H0(IDi) for i = 1 to n. Further compute
IDn+1 = H1(m,L). Then, execute the following using private
key SKID′ = {A,B,C,D}:

1) Randomly generate yi, ri, λi ∈R ZN for i = 1 to n + 1
subject to the constraint that

λ1 + . . . + λn + λn+1 = 0 (1)

2) FOR i = 1 to n + 1 Do BEGIN
● IF i ≠ π THEN

Ai = g
λiwyi , Bi = g

yi ,

Ci = v
yi(uIDih)ri , Di = g

ri

ELSE // i = π

Aπ = Ag
λπwyπ , Bπ = Bg

yπ ,

Ci = Cv
yπ(uIDπh)rπ , Di =Dg

rπ

END IF
END

3) Output signature σ = {Ai,Bi,Ci,Di}
n+1

i=1
.

Verify. Given signature σ = {Ai,Bi,Ci,Di}
n+1

i=1
for list of

identities L = {ID1, . . . , IDn} on message m, first compute
IDi = H0(IDi) for i = 1 to n and IDn+1 = H1(m,L). Then
randomly generate s, t1, . . . , tn+1 ∈R ZN and check whether

n+1
∏
i=1

e(gs,Ai) ⋅ e(g
ti ,Ci)

e(wsvti ,Bi) ⋅ e((uIDih)ti ,Di)

?
= e(g, g)αs (2)

Output valid if the equality holds. Otherwise output invalid.

B. Feasibility Study

It is known that schemes working in groups equipped with
composite order pairing, including the LW11-HIBE on which
our proposal is based, are much slower than those with prime
order pairing. For instance, [30] estimates that the former is
50 times slower. We provide an estimation of the performance
of our scheme based on the latest results in the realization of
groups with composite order pairing [34]. Table II provides an
estimation of the timing of each operation in our proposal (for
ring size n = 10) based on the benchmark results from [34] for
various operations.

The benchmark of [34] for exponentiations and pairing are
from groups equipped with composite order pairing, where the
group order is of 3072-bit and is a product of three primes.
This setting offers a security comparable to 128-bit AES. The
software implementation of [34] is executed on a 2.6 GHz Intel
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TABLE II
COMPLEXITY ANALYSIS OF OUR CONSTRUCTION

Algorithm Computation Cost Estimation (when n = 10)
Setup 1 Pairing 1.27s

Extract 7 G-Exponentiations 3.85s
Sign 7*(n+1) G-Exponentiations 42.35s

Verify (4n + 6) G-Exponentiations, 1 GT -Exponentiations, (4n+4) Pairing 44.1s

Celeron 64 bit PC with 1 GB RAM and Ubuntu 10.04.4 LTS
OS. The estimation shows that while our proposal is not fast,
it is at least feasible for a small ring size.

Recent work on improving systems based on composite
order pairing has been promising. These include transform-
ing schemes based on composite order pairing into schemes
requiring prime order pairing only [30], [39]. Improved tim-
ing is made possible based on optimised implementation of
composite-order bilinear pairings with the help of the process-
ing power of GPU [62]. It is hoped that our proposal would
become practical for larger ring sizes in the near future.

C. Security Analysis

Correctness. Our construction is correct as shown in the
following:

n+1
∏
i=1

(
e(gs,Ai) ⋅ e(g

ti ,Ci)

e(wsvti ,Bi) ⋅ e((uIDih)ti ,Di)
)

=
e(gs,∏

n+1
i=1 Ai)

e(ws,∏
n+1
i=1 Bi)

n+1
∏
i=1

(
e(gti ,Ci)

e(vti ,Bi)e((uIDih)ti ,Di)
)

=
e(gs, gαwy+∑

n+1
i=1 yi)

e(ws, gy+∑
n+1
i=1 yi)

n+1
∏
i=1

(
e(g,Ci)

e(v,Bi)e((uIDih),Di)
)

ti

= e(g, g)αs (
e(g,C)

e(v,B)e(uIDπh,D)
)

tπ

⋅

n+1
∏
i=1

(
e(g, vyi(uIDih)ri)

e(g, vyi)e(g, (uIDih)ri)
)

ti

= e(g, g)αs
⎛

⎝

e(g, vy(uIDπh)r)

e(v, gy)e((uIDπh), gr)

⎞

⎠

tπ

= e(g, g)αs

Theorem 1: Our construction satisfies definition 5 (i.e. our
scheme is unforgeable) under Assumptions 1, 2, 3 and 4.

Proof Overview: We divide the signature into two types,
namely, type-N and type-S. A signature ({Ai,Bi,Ci,Di}

n+1
i=1 )

is of type-N if Ai = Ψ1(Ai), Bi = Ψ1(Bi) for i = 1 to n + 1,
where n is the size of the ring. In other words, a type-N
signature is a signature such that all components Ai,Bi are
from group Gp1 only. A signature is of type-S if it is not of
type-N. In the normal system operation, all signatures are of
type-N. Likewise, a private key (A,B,C,D) is of type-N if
both A = Ψ1(A) and B = Ψ1(B). Otherwise, a private key is
of type-S.

In proof part I, we show the adversary cannot output a
forgery of type-S. Then, in proof part II, we show that the
adversary cannot output a forgery of type-N.

Proof part II is more involved and is achieved via the game-
hopping technique. The first game is the game of unforgeability.

In the next game, Game0, we make the restriction that any
distinct hash values produced by the adversary are also distinct
modulo p3. That is, the adversary cannot produce two identities
ID and ID′ such that ID ≠ ID′ but H0(ID) =H0(ID

′) mod
p3. Furthermore, the adversary cannot produce two distinct
rings of identities and messages (L,m) ≠ (L′,m′) such that
H1(L,m) = H1(L

′,m′) mod p3. (From here on, the term
restricted adversary refers to one which works within this
restriction.) In Gameι, the first ι queries are answered so that
the reply is of type-S. For instance, if the κ-th query is an
extract query and that κ < ι, the key returned to the adversary
is of type-S. Likewise, if the κ-th query is a signature query and
that κ < ι, the signature returned to the adversary is of type-
S. Otherwise, the key or signature returned to the adversary
is of type-N. We first show that the adversary in Gameι for
ι = 0 to k is always restricted. Then we show the behavior
of the restricted adversary between Gameι−1 and Gameι is
the same for ι = 1 to k where k is the number of queries
made by the adversary. Finally, we show that probability of the
adversary wining Gamek is negligible with another reduction.
This completes proof part II.

To provide a consistent view to the adversary in the proof
part II, the distributions of the type-S keys and type-S signatures
provided to the adversary in Gameι for ι = 1 to k must be iden-
tical. Specifically, the type-S keys and signatures provided to
the adversary in proof part II satisfy the following distribution.
Let e ∈R G ≠ 1G be an element in G such that Ψ1(e) = 1Gp1 .
Let a,b ∈R ZN be two constants that is chosen at the beginning
of the simulation. Any type-S key (A,B,C,D) given to the
adversary in the simulation satisfies the following equations:

Ψ2(A)Ψ3(A) = ea

Ψ2(B)Ψ3(B) = e
Ψ2(C)Ψ3(C) = eb

Ψ2(D)Ψ3(D) = 1G

In other words, all type-S keys given to the adversary in a
game always contain the same element in subgroup Gp2 and
Gp3 . Furthermore, only components A, B and C (but not D)
contain the those subgroup elements. In addition, for each type-
S signature {A,B,C,D}n+1i=1 given to the adversary within the
same simulation, there exists a random value y′ ∈R ZN such
that

Ψ2(An+1)Ψ3(An+1) = ey
′a

Ψ2(Bn+1)Ψ3(Bn+1) = ey
′

Ψ2(Cn+1)Ψ3(Cn+1) = ey
′b

Ψ2(Dn+1)Ψ3(Dn+1) = 1G
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and that for i = 1 to n:
Ψ2(Ai)Ψ3(Ai) = 1G
Ψ2(Bi)Ψ3(Bi) = 1G
Ψ2(Ci)Ψ3(Ci) = 1G
Ψ2(Di)Ψ3(Di) = 1G

In other words, all type-S signatures given to the adversary
in a game contain different elements in subgroup Gp2 and Gp3
in signature component An+1, Bn+1, Cn+1. All other signature
components are from Gp1 .

Part I: Assume the adversary (A) outputs a forgery of
type-S, we show how to construct a simulator (S) that breaks
Assumption 1.

● Setup. S is given (g,X3, T ) and its task is to determine
if Ψ2(T ) = 1 or not. In fact, we only require a weaker
version of assumption 1 when component X3 is not
necessary. S randomly picks α,a, b, c, d ∈R ZN , computes
h = ga, u = gb, v = gc,w = gd, chooses two hash functions
H0, H1 and gives

param = {N,g, h, u, v,w, e(g, g)α,H0,H1}

to A.
● Query. S is in possession of the master secret key (α) and

can thus answer all the queries correctly.
● Forgery. Finally, A outputs a signature

({Ai,Bi,Ci,Di}
n+1
i=1 ) on ring L and message m

such that ∣L∣ = n. S first computes IDn+1 =H1(m,L) and
IDi = H0(IDi). We have, for any s, t1, . . . , tn+1 ∈R ZN ,
that

n+1
∏
i=1

e(gs,Ai) ⋅ e(g
ti ,Ci)

e(wsvti ,Bi) ⋅ e((uIDih)ti ,Di)
= e(g, g)αs

● Since A outputs a type-S forgery, there exists an index (j)
such that Aj ≠ Ψ1(Aj) or Bj ≠ Ψ1(Bj). We show how
it can be used to test if T contains a component in Gp2 .
Note that values p2 and p3 are completely hidden from the
view of A. That is, A cannot tell whether S is trying to
use A to test if Ψ2(T ) = 1 or Ψ3(T ) = 1. Without loss of
generality, we assume either Aj or Bj contains an element
in Gp2 .

● S checks if

n+1
∏
i=1

e(T,Ai) ⋅ e(g
ti ,Ci)

e(T dvti ,Bi) ⋅ e((uIDih)ti ,Di)

?
= e(g, T )α

If T ∈ Gp1 , there exists s such that T = gs and the above
equation holds. Otherwise, there exists s, k such that T =
gsgk2 where g2 is a generator of Gp2 . In that case the
equation holds if and only if

(
e(g2,∏

n+1
i=1 Ψ2(Ai))

e(gdmod p2
2 ,∏

n+1
i=1 Ψ2(Bi))

)

k

= 1

This happens with negligible probability since the value
d mod p2 is information theoretically hidden from A. All
A can infer that d is d mod p1 which is unrelated to d mod
p2.

Part II: In this part of the proof, we assume the forgery
is of type-N. Furthermore, we assume A makes a total of k
extract and signature queries. Recall that the proof is done via
the game-hopping technique and the sequence of the game is
recalled below.

Game0, . . . ,Gamek

Below we first show that A is restricted in Gameι for ι = 0
to k under Assumptions 3 and 4. Assume, on the contrary,
A produces two values ID and ID′ such that ID ≠ ID′ and
ID = ID′ mod p3. ID can be H0(ID) or H1(m,L) for some
identity ID or ring of identities L and message m.

Let P = gcd(ID − ID′,N). P will be a non-trivial factor of
N and a multiple of p3. In other words, P ∈ {p3, p1p3, p2p3}.
Denote by Q the value of N/P . We consider two cases and
describe a reduction for each of them.

1) (P,Q) = (p3, p1p2)∨(p2p3, p1). In this case we construct
a simulator (S) that breaks assumption 3 as follows.
● Setup. S receives (g, g2,X1X3, T ) as input and its

goal is to tell if Ψ3(T ) = 1. S randomly chooses
α,a, b, c, d ∈R ZN , two hash functions H0, H1 and
gives param = {N,g, h = ga, u = gb, v = gc,w =
gd, e(g, g)α,H0,H1} to A.

● Queries. For the jth query such that j > ι, S uses
master secret key α to create a key or signature of
type-N. For j ≤ ι, S computes a type-S key by
randomly generating y, r ∈R ZN and

A = gα(X1X3g2)
dy, B = (X1X3g2)

y,
C = (X1X3g2)

cy(uIDh)r, D = gr.

Likewise, a type-S signature can be created by trans-
forming a type-N signature ({Ai, Bi, Ci, Di}

n+1
i=1 ) as

follows using y′n+1 ∈R ZN :

An+1 ∶= An+1(X1X3g2)
dy′n+1 ,

Bn+1 ∶= Bn+1(X1X3g2)
y′n+1 ,

Cn+1 ∶= Cn+1(X1X3g2)
cy′n+1 ,

Dn+1 ∶=Dn+1.

This is a signature of type-S. Note that only compo-
nents An+1, Bn+1, Cn+1 contain elements in Gp2 and
Gp3 as will be the case in the subsequent proof.

● Output. S first checks if it is the case that (P,Q) =
(p3, p1p2) ∨ (p2p3, p1) via testing if gQ = 1 and
(X1X3)

Q ≠ 1. This check ensures that p1 ∣ Q and
p3 ∤ Q. Finally, S tests if TQ = 1 to tell if Ψ3(T ) = 1
or not.

2) (P,Q) = (p1p3, p2). In this case, we construct a simulator
(S) that breaks Assumption 4 as follows.
● Setup. S receives (g, g3,X1X2, Y2Y3, T ) as input and

its goal is to tell if Ψ2(T ) = 1. S randomly chooses
α,a, b, c, d ∈R ZN , two hash functions H0, H1 and
gives param = {N,g, h = ga, u = gb, v = gc,w =
gd, e(g, g)α,H0,H1} to A. S keeps random value
ψ ∈R ZN secret.

● Queries. For the jth query such that j > ι, S uses
master secret key α to create a key or signature of
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type-N. For j ≤ ι, S computes a type-S key by
randomly generating y, r ∈R ZN and

A = gαwy(Y2Y3)
ψy,

B = (gY2Y3)
y,

C = vy(Y2Y3)
cy(uIDh)r,

D = gr.

Likewise, a type-S signature can be created by trans-
forming a type-N signature ({Ai, Bi, Ci, Di}

n+1
i=1 ) as

follows, using y′n+1 ∈R ZN :

An+1 ∶= An+1(Y2Y3)
ψy′n+1 ,

Bn+1 ∶= Bn+1(Y2Y3)
y′n+1 ,

Cn+1 ∶= Cn+1(Y2Y3)
cy′n+1 ,

Dn+1 ∶=Dn+1.

This is a signature of type-S. Note that only compo-
nents An+1, Bn+1, Cn+1 contain elements in Gp2 and
Gp3 as will be the case in the subsequent proof.

● Output. S first checks if it is the case that (P,Q) =
(p1p3, p2) via testing if gQ ≠ 1 and gQ3 ≠ 1. This check
ensures that p1 ∤ Q and p3 ∤ Q. Since PQ = N and
both P and Q are non-trivial factors of N , it implies
P = p1p3. S tests if TP = 1 to tell if Ψ2(T ) = 1 or
not.

As a second step of the proof, we need to show that the
behavior of a restricted adversary in Gameι−1 and Gameι is
the same for ι = 1 to k.

We state the following oracle lemma developed and proven
in [41]. Let O0 and O3 be two oracles whose specifications
are as follows7

● Init. Both O0 and O3 initialize themselves as follows. It
picks random elements g, u, v,w ∈R Gp1 , g2 ∈R Gp2 , g3 ∈R
Gp3 and random exponents ψ,σ, a′, b′, s, δ, y ∈R ZN and
outputs {N,g, h, u, v,w, gsgγ2 ,w

y(g2g3)
yψ, gy(g2g3)

y,
vy(g2g3)

yσ}
● Both oracles support two types of queries:

1) CT-Query. On input I ∈ ZN , both oracles randomly
choose t ∈R ZN and return

{wsgδ2v
t, gt, (uIh)t}

2) CK-Query. On input I ∈ ZN ,
O0 randomly chooses r, y′ ∈R ZN and returns

{wy
′

, gy
′

, vy
′

(uIh)r, gr}

O3 randomly chooses r, y′ ∈R ZN and returns

{wy
′

(g2g3)
y′ψ, gy

′

(g2g3)
y′ , vy

′

(g2g3)
y′σ(uIh)r, gr}

Let D be a PPT algorithm that is given access to an oracle
O ∈ {O0,O3} and D makes only one CK-Query and an
arbitrary number, say q, of CT-Query to O. Let I be the
input of the CK-Query and I∗i for i = 1 to q be the input
of the CT-Query. Further suppose I ≠ I∗i mod p3 for all i. The
oracle lemma states that under Assumption 3 and 4, D cannot
distinguish if it is interacting with O0 or O3.

7The oracles are labeled as 0 and 3 to be consistent with [41].

Assume there exists A that behaves differently in Gameι−1
and Gameι, we show how to construct a simulator (S) that
distinguishes oracle O0 and O3, thus either breaking Assump-
tion 3 or 4.

● Setup. S is given an oracle O and its task is to determine if
O is O0 or O3. S receives from O the following elements:

{N,g, h, u, v,w, gsgγ2 ,w
y(g2g3)

yψ, gy(g2g3)
y, vy(g2g3)

yσ}.

S randomly picks α ∈R ZN , two hash functions H0, H1

and gives

param = {N,g, h, u, v,w, e(g, g)α,H0,H1}

to A.
● Query. S is required to return a key or a signature of type-

S or type-N depending on value j.
– For the jth query such that j > ι, S uses master secret

key α to create a key or a signature of type-N.
– For j < ι and the jth query being a key query for

identity ID such that ID = H0(ID), S computes a
type-S key by randomly generating y′, r ∈R ZN and

A = gα(wy(g2g3)
ψy)y

′

, B = (gy(g2g3)
y)y

′

,

C = (vy(g2g3)
yσ)y

′

(uIDh)r, D = gr.

– For j < ι and the jth query being a signature query for
ring L = {ID1, . . . , IDn} and message m such that
IDi =H0(IDi) for i = 1 to n and IDn+1 =H1(m,L),
S randomly picks λ1, . . . , λn+1 ∈R ZN subject to the
constraint that ∑n+1i=1 λi = α. It also randomly chooses
y1, . . . , yn, y

′, r1, . . . , rn+1 ∈R ZN and computes a
type-S signature ({Ai, Bi, Ci, Di}

n+1
i=1 ) as follows:

Ai = g
λiwyi , Bi = g

yi ,
Ci = v

yi(uIDih)ri , Di = g
ri for i = 1 to n

An+1 = gλn+1(wy(g2g3)
yψ)y

′

,

Bn+1 = (gy(g2g3)
y)y

′

,

Cn+1 = (vy(g2g3)
yσ)y

′

,

Dn+1 = grn+1 .

– For j = ι and the jth query being a key query for
identity ID such that ID = H0(ID), S issues a CK-
Query to O on input ID and obtains four elements
denoted as (T0, T1, T2, T3). S computes a key by

A = gαT0, B = T1,
C = T2, D = T3.

– For j = ι and the jth query being a signature query for
ring L = {ID1, . . . , IDn} and message m such that
IDi =H0(IDi) for i = 1 to n and IDn+1 =H1(m,L),
S issues a CK-Query to O on input IDn+1 and
obtains four elements denoted as (T0, T1, T2, T3). S
randomly picks λ1, . . . , λn+1 ∈R ZN subject to the
constraint that ∑n+1i=1 λi = α. It also randomly chooses
y1, . . . , yn, r1, . . . , rn ∈R ZN and computes

Ai = g
λiwyi , Bi = g

yi ,
Ci = v

yi(uIDih)ri , Di = g
ri for i = 1 to n
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An+1 = g
λn+1T0, Bn+1 = T1,

Cn+1 = T2, Dn+1 = T3.

● Forgery. Finally, A outputs a signature
({Ai,Bi,Ci,Di}

n+1
i=1 ) on ring L and message m

such that ∣L∣ = n. S first computes IDn+1 =H1(m,L) and
IDi = H0(IDi). We have, for any s, t1, . . . , tn+1 ∈R ZN ,
that

n+1
∏
i=1

e(gs,Ai) ⋅ e(g
ti ,Ci)

e(wsvti ,Bi) ⋅ e((uIDih)ti ,Di)
= e(g, g)αs

● Output. Note that if O = O0, S is playing Gameι−1 with
A. Otherwise, S is playing Gameι with A. Any difference
in A’s success probability would lead to S distinguishing
the oracles. However, it is possible that while A’s success
probability remains the same, it changes its forgery type
from type-N to type-S. Thus, S has to detect if A is still
outputting the type-N forgery as well. To do this, S issues
n + 1 CT-Query to O on input IDi for i = 1 to n + 1.
Due to the setting of the game, none of these IDi will
have been input to the CK-Query since A is not allowed
to query any of the keys from the ring of the forged ring
signature. At the same time, due to the collision resistant
property, IDn+1 has not been input to CK-Query as well.
Let T1,i, T2,i, T3,i be the elements received by S from O
on the CT-Query of IDi for i = 1 to n + 1. S checks if

n+1
∏
i=1

e(gsgγ2 ,Ai) ⋅ e(T2,i,Ci)

e(T1,i,Bi) ⋅ e(T3,i,Di)

?
= e(g, gsgγ2 )

α

If the forgery is of type-N, the above equation holds.
Otherwise, the above equation will not hold since the
Gp2 component in the T1,i, T2,i, T3,i is never shown to
the adversary. Thus, if A behalves differently in Gameι−1
and Gameι, S can use A to distinguish O0 from O3. This
implies breaking Assumption 3 or 4 according to the oracle
lemma.

Finally, we present a reduction of A that produces a type-N
forgery in Gamek to simulator S that breaks Assumption 2.

● Setup. S is given (g, g2, g3, g
αX2, g

sY2, T ) and its task is
to determine if T = e(g, g)αs or not. S randomly picks
a, b, c, d ∈R ZN , h = gb, u = ga, v = gc,w = gd ∈R Gp1 ,
two hash functions H0, H1 and gives

param = {N,g, h, u, v,w, e(g, gαX2),H0,H1}

to A. Note that S does not know master secret key α.
● Extract Query. To answer an extract query on identity ID

such that ID = H0(ID), S chooses y, r, f ∈R ZN and
computes

A = (gαX2)
d+1wy(g2g3)

f(d+1),

B = gαX2g
y(g2g3)

f ,

C = (gαX2)
cvy(uIDh)r(g2g3)

fc,

D = gr.

This is a key of type-S.

● Signature Query. To answer a signature query on ring L =
{ID1, . . . , IDn} on message m such that IDi =H0(IDi)
for i = 1 to n and IDn+1 = H1(m,L), S chooses f, λ1,
r1, y1, . . ., λn, yn, rn, λ′n+1, y′n+1, rn+1 ∈R ZN subject to
the constraint that λ1 + . . . + λn + λ′n+1 = 0 and computes
for i = 1 to n:

Ai = gλiwyi , Bi = gyi ,
Ci = vyi(uIDih)ri , D = gri .

S then computes the following:

An+1 = (gαX2)
d+1gλ

′

n+1wy
′

n+1(g2g3)
f(d+1),

Bn+1 = gαX2g
y′n+1(g2g3)

f ,

Cn+1 = (gαX2)
cvy

′

n+1(uIDn+1h)r(g2g3)
fc,

Dn+1 = grn+1 .

This is a signature of type-S.
● Forgery. Finally, A outputs a signature

({Ai,Bi,Ci,Di}
n+1
i=1 ) on ring L and message m

such that ∣L∣ = n. S first computes IDn+1 =H1(m,L) and
IDi = H0(IDi). We have, for any s, t1, . . . , tn+1 ∈R ZN ,
that

n+1
∏
i=1

e(gs,Ai) ⋅ e(g
ti ,Ci)

e(wsvti ,Bi) ⋅ e((uIDih)ti ,Di)
= e(g, g)αs

● S randomly generates t1, . . . tn+1 ∈R ZN and computes

e(g, g)αs ∶=
n+1
∏
i=1

e(gsY2,Ai) ⋅ e(g
ti ,Ci)

e((gsY2)dvti ,Bi) ⋅ e((uIDih)ti ,Di)

This is the case since Ai = Ψ1(Ai) and Bi = Ψ1(Bi).
S can then test if T = e(g, g)αs or not and break
Assumption 2.

Theorem 2: Our scheme satisfies definition 6 (i.e. our
scheme is anonymous).

Proof: The proof is straightforward. The challenger con-
structs the master key as well as signing keys SKID0 and
SKID1 for identities ID0 and ID1 following the Setup and
Extract algorithm based on randomness ωSetup, ω0, ω1 specified
by the adversary.

For any challenge signature σ ∶= {Ai,Bi,Ci,Di}
n+1
i=1 created

using SKIDb on message m and ring L, there exists values
R0 ∶= {λi,0, yi,0, ri,0}

n+1
i=1 and R1 ∶= {λi,1, yi,1, ri,1}

n+1
i=1 such

that σ is created from signing key SKID0 using randomnessR0

or SKID1 using randomness R1. In addition, R0 and R1 have
identical distributions. Thus, even computationally unbounded
adversary cannot identify the actual signer with probability
better than random guessing.

VI. CONCLUSION

In this paper, we presented a secure identity-based ring sig-
nature scheme in the standard model. Our scheme is provably
fully secure in the standard model without relying on any
interactive assumptions and enjoy unconditional anonymity.
Further, we also observed the relationship between HIBE and
identity-based ring signature schemes.
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The size of our signature grows linearly with the number
of users in the ring. Constructing constant size (or at least,
sub-linear size) ID-based ring signatures in the standard model
remains an open problem. Another interesting open problem
is to improve the efficiency of our scheme. For example, to
construct a scheme with the same functionality and security as
ours while working in the prime order pairing setting.
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[50] S. Schäge and J. Schwenk. A CDH-Based Ring Signature Scheme with
Short Signatures and Public Keys. In Financial Cryptography, volume
6052 of Lecture Notes in Computer Science, pages 129–142. Springer,
2010.

[51] H. Shacham and B. Waters. Efficient Ring Signatures Without Random
Oracles. In Public Key Cryptography, volume 4450 of Lecture Notes in
Computer Science, pages 166–180. Springer, 2007.

[52] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In
CRYPTO 1984, volume 196 of LNCS, pages 47–53, 1984.

[53] N. P. Smart and B. Warinschi. Identity Based Group Signatures from
Hierarchical Identity-Based Encryption. In H. Shacham and B. Waters,
editors, Pairing, volume 5671 of Lecture Notes in Computer Science,
pages 150–170. Springer, 2009.

[54] P. P. Tsang, M. H. Au, J. K. Liu, W. Susilo, and D. S. Wong. A Suite of
Non-pairing ID-Based Threshold Ring Signature Schemes with Different
Levels of Anonymity (Extended Abstract). In ProvSec, volume 6402 of
Lecture Notes in Computer Science, pages 166–183. Springer, 2010.

[55] B. Waters. Efficient Identity-Based Encryption Without Random Oracles.
In EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127. Springer, 2005.

[56] B. Waters. Dual System Encryption: Realizing Fully Secure IBE and
HIBE under Simple Assumptions. In S. Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pages 619–636. Springer,
2009.

[57] J. Xu, Z. Zhang, and D. Feng. A Ring Signature Scheme Using Bilinear
Pairings. In WISA 2004, volume 3325 of Lecture Notes in Computer
Science, pages 163–172. Springer, 2004.

[58] T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Threshold Ring
Signature without Random Oracles. In ASIACCS ’11, pages 261–267.
ACM, 2011.

[59] T. H. Yuen, J. K. Liu, X. Huang, M. H. Au, W. Susilo, and J. Zhou.
Forward secure attribute-based signatures. In ICICS, volume 7618 of
Lecture Notes in Computer Science, pages 167–177, 2012.

[60] F. Zhang and X. Chen. Cryptanalysis and Improvement of an ID-Based
Ad-hoc Anonymous Identification Scheme at CT-RSA 05. Cryptology
ePrint Archive, Report 2005/103, 2005. eprint.iacr.org/.

[61] F. Zhang and K. Kim. ID-Based Blind Signature and Ring Signature
from Pairings. In ASIACRYPT 2002, volume 2501 of Lecture Notes in
Computer Science, pages 533–547. Springer, 2002.

[62] Y. Zhang, C. J. Xue, D. S. Wong, N. Mamoulis, and S. M. Yiu.
Acceleration of composite order bilinear pairing on graphics hardware.
In T. W. Chim and T. H. Yuen, editors, ICICS, volume 7618 of Lecture
Notes in Computer Science, pages 341–348. Springer, 2012.

APPENDIX A
ANALYSIS OF THE PROOF OF THE SECOND SCHEME IN [3]

We point out a flaw in the unforgeability proof of the second
scheme in [3]. We use the notation as in that paper to avoid
any confusion.

Let n−1 be the maximum number of users allowed in the ring
signature. In the proof of unforgeability, the simluator is given
the n-DHI∗ problem instance g, gx, . . . , gx

n

and is asked to
output gx

n+1

. The secret key of each user contains the following
elements:

{ai, bi, ci,1, . . . , ci,i−1, ci,i+1, . . . , ci,n}
n
i=1

The flaw appeared in the extraction oracle. The authors in
[3] have written down the simulation of the first part of a user
secret key. The generation of a1, b1, c1,2, . . . , c1,n is correctly
simulated. The authors then claimed that

The computation for (ai, bi, ci,j) where 1 ≤ i ≤
n − 1 are similar and hence are omitted.

However, when we try to generate the second part of the secret
key in a similar way, we have encountered a problem. The
second part of the secret key contains a2, b2, c2,1, c2,3, . . . , c2,n.
Using the way that the authors used to generate c1,2, . . . , c1,n,
we have

c2,1 = û
r2
1 = (gγ1−x

n

)
( x

id−id∗
2
+r̃2)

where γ1, r̃2 are chosen by the simulator, id is the identity
submitted by the adversary to the extraction oracle, id∗2 is
one of the challenged identities submitted by the adversary at
the beginning and gx

n

is an element in the problem instance.
The simulator needs to expand the terms in order to compute
this element, as it does not have the knowledge of x. After
expansion, we have

g
γ1x

id−id∗
2
− xn+1

id−id∗
2
+γ1r̃2−xnr̃2

= (gx)
γ1

id−id∗
2 ⋅(gx

n+1

)
− 1

id−id∗
2 ⋅gγ1r̃2 ⋅(gx

n

)−r̃2

However, the term gx
n+1

should be unknown to the simulator
(in fact, it is actually the term required to output). That is, this
part of the secret key cannot be computed in this way (the
similar way as in the first part). The authors did not mention
how to resolve this obstacle in the proof. We believe this cannot
be solved easily or in any trivial way. Thus we conclude that
the unforgeability proof of the scheme is incorrect (or at least,
incompleted), though we have not found any concrete attack
on the scheme itself.
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