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Purpose: High Dose Rate (HDR) Brachytherapy is a radiation treatment technique capable of 

delivering large dose rates to the tumour. Radiation is delivered using remote afterloaders to drive 

highly active sources (commonly 192Ir with an air KERMA strength range between 20000 to 40000 U, 

where 1U = 1 μGy m2/h in air) through applicators directly into the patient’s prescribed region of 15 

treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it 

is essential that there are methods for quality assurance (QA) that can directly and accurately verify 

the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility 

study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11x11 

epitaxial diode array, named “Magic Phantom”.  20 

Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 

(20 in total) HDR source flexible catheters, arranged above and below the diode array “Magic Plate” 

(MP). Four dimensional source tracking in each catheter is based upon a developed fast iterative 

algorithm, utilising the response of the diodes in close proximity to the 192Ir source, sampled at 100 

ms intervals by a fast data acquisition (DAQ) system. Using a 192Ir source in a solid water phantom, 25 

the angular response of the developed epitaxial diodes utilised in the MP and also the variation of the 

MP response as a function of the source-to-detector distance (SDD) were investigated. These response 

data are then used by an iterative algorithm for source dwelling position determination. A 

measurement of the average transit speed between dwell positions was performed using the diodes 

and a fast DAQ. 30 

Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two 

flat regions above and below the detector face with less than 5% variation. For SDD distances of 

between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good 

agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, 

with SDD of up to 70 mm showing a 40% over response. A method for four dimensional localisation 35 



of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm 

of the expected position. An estimation of the average transit speed for varying step sizes was 

determined and was found to increase from (12.8 ± 0.3) cm/s up to (38.6 ± 0.4) cm/s for a step size of 

2.5 mm and 50 mm, respectively.  

Conclusions: Our characterisation of the designed QA “Magic Phantom” with MP in realistic HDR 40 

photon fields demonstrates the promising performance for real-time source position tracking in four 

dimensions and measurements of transit times. Further development of this system will allow a full 

suite for QA in HDR brachytherapy and analysis, and for future in-vivo tracking. 

  



I. Introduction 45 

High Dose Rate (HDR) brachytherapy has shown to be beneficial due to its ability to provide a highly 

localised dose in short treatment times. The advantages and disadvantages of this technique have been 

well documented within TG-59 report1. As brachytherapy involves high dose rates (air KERMA 

strength range between 20000 to 40000 U), minimal fractionations and short treatment times, it is 

essential that treatments are delivered with high accuracy, as errors will result in severe 50 

complications2,3.  

While contemporary radiotherapy is very accurate, errors have happened. More than 500 HDR 

accidents (including one death2) have been reported along the entire chain of procedures from source 

packing to delivery of dose3. Although most errors in brachytherapy have been the result of human 

errors, rather than failure of the treatment delivery system and treatment planning, the fast verification 55 

of the remote afterloading units and generated treatment plans are important in a “good” quality 

assurance program. The American Association of Physicists in Medicine ratified that to guarantee a 

good quality assurance program, the medical physicist should be able to accurately measure the 

source position, timing, transit velocity and, ideally, absorbed dose distribution4.  

An ideal system for treatment verification should be able to provide the 3D identification of the dwell 60 

positions, measure the dwell and transit times, and compare in real-time these parameters with the 

treatment planning. In the literature there are several studies that investigate different HDR 

brachytherapy Quality Assurance (QA) approaches. The main goal of the majority of these studies, 

described below, was to develop a method of localising the source dwell positions and measure timing 

patterns. 65 

A pinhole imaging system, coupled with an x-ray fluoroscope and radiographic screen-film was 

developed by Duan et al5. The system has two pinholes placed away from the patient and is used to 

reconstruct the source dwell positions in three dimensions using a triangulation reconstruction 

algorithm. The source was localised within 1 mm and allowed for recording of a HDR treatment by 

the fluoroscopy machine on to a standard VCR video-tape for post-treatment verification. This 70 

method, while able to reconstruct the source position in post-processing of film, relied on the user to 

notice any significant deviations in position via the fluoroscope screen during actual treatment. 

Nakano et al6 proposed the use of diamond detectors for HDR source localisation. The detectors were 

characterised for their use in HDR, and, using a suggested triangulation method with a minimum of 3 

detectors, the source position could be calculated in three dimensions. The intended method would 75 

able to localise the source with an accuracy of 2 mm, according to the authors, within a source to 

detector distance of 1 to 12 cm, based on the dose to SDD fit used. 



A method for using a mobile C-arm fluoroscopy machine to image the check cable at dwell positions 

prior to treatment was investigated by Liu et al7. Verifying by visual inspection, the authors remarked 

that the method is useful for observing gross errors, larger than 1 cm, in dwell positions. 80 

The use of a single flat panel detector for tracking the brachytherapy source has been described by 

Song et al8. The flat panel is coupled with ball bearings (BBs) in a set pattern on a tray, and uses the 

shadows of the BBs to determine the coordinates of the source. The source was stepped within a steel 

applicator, taped to the surface of a plastic slab. The device was capable of determining the position of 

the source with a mean difference of 0.7 mm with a standard deviation of 1.5 mm. While it was noted 85 

that the flat panel used was slow, and required 5 seconds per image acquisition, there are flat panels 

capable of 45 frames per second and with development into the automation of the BB shadow 

recognition there is the possibility of fast source tracking. 

Batic et al9 expanded the idea of pinhole imaging, using silicon pixelated detectors instead of film. 

Two catheters were fixed within a support structure with the detection system at a fixed distance away 90 

in air. It offers the ability to reconstruct the source position from a source to pinhole distance in air of 

40 cm with a precision of about 5 mm. However, this is comparable to the distance between two 

dwelling positions of the HDR source during treatment and is based on the accuracy of the alignment 

of the detectors with the pinholes. Although the readout of these detectors allowed for reconstruction 

within 1 second, giving the possibility of tracking, there was no indication if the detection system was 95 

capable of measuring the timing pattern of the source.  

Rickey et al10 developed a quality check tool for HDR brachytherapy combining the use of 

radiochromic film and photodiodes for determination of the dwell positions and temporal patterns of 

the source within the device’s fixed treatment tube. Readout of the temporal response of the four 

photodiodes gave a resolution of 1 ms for measurements of the dwell times. Dwell position are 100 

reconstructed with an accuracy of 0.5 mm by manual optical inspection and 0.2 mm by a digital post-

processing of the film. The authors state that this method allowed for the verification of the position 

and dwell times of a single catheter in about 6 minutes. Assuming up to 18 catheters for a treatment 

plan, the use of this device would not be recommended for QA within clinics. 

The use of commercial ion chamber arrays, designed for external beam radiotherapy, was investigated 105 

by Manikandan et al11 for HDR source position verification by placing the catheters directly on top of 

the device. The I’matriXX (IBA Dosimetry GmbH, Germany) verified treatment dwell positions with 

a maximum error of 1.8 mm for step sizes larger than 2 cm. It found that due to the large width of 

each ion chamber (approximately 5.8 mm), the device displayed a volume averaging effect and step 

sizes below 1 cm could not be resolved. 110 



The transit dose of a HDR unit was quantified by Fonseca et al12, based upon calculations of the 

instantaneous source speed and a Monte Carlo (MCNP5) simulated transit dose profile. The 

instantaneous source speed, measured using a high resolution optical fiber based detector system13 

was used to give weighting to the simulated transit dose and allow for an accurate calculation of 

transit dose values. The results were verified experimentally using radiochromic film and showed that 115 

the transit component can be significant, reaching up to a few hundred cGy per application.  

Two commercial devices have been developed by Mick Radio-Nuclear Instruments for HDR QA. The 

PermaDoc GC Phantom14 allows for the insertion of a single HDR catheter into the device and the 

source exposes its position as well as centimetre markers onto gafchromic film. This solution verifies 

one catheter at a time and would require digital post processing to determine an accurate position.  120 

The second device, the MultiDoc Phantom15, allows for up to 21 catheters inserted into a phantom, 

where the source can be seen through the catheter, above the phantom. Next to each catheter insert are 

positional markings in 1 mm increments, and the source dwelling and timing is captured by a high 

resolution video camera above the phantom. While capable of source position and timing of up to 21 

catheters, the system relies heavily on the user to perform verification by watching and analysing the 125 

video recording.  

These various studies have shown the potential of several systems for HDR QA but may require large 

and expensive imaging systems and most of them are unable to offer a complete stand-alone real time 

quality assurance solution, capable of fast and accurate source localisation and analysis combined 

with high temporal resolution.  130 

This work presents the feasibility study of a new concept of QA for HDR brachytherapy based on 

“magic plate” (MP) developed at the Centre for Medical Radiation Physics, University of 

Wollongong, Australia. The MP, a 0.5 mm thick Kapton plate with an embedded two dimensional 

silicon diode array, was designed for use in a special portable “magic phantom” for fast pre-treatment 

check of the remote HDR afterloader source dwelling and timing by comparison in real time with the 135 

prescribed treatment plan. It could also be used in-vivo for intra-operative assessment of the source 

position, transit time and dwell time within the body of the patient. The MP has a high response to 

radiation, high radiation hardness, small sensitive volume of each diode for pinpoint measurements, 

large field of view (10x10 cm2) and readout electronics capable of accurate readout of all diodes 

within 100 μs.  140 

This study explores the characterisation of the MP and “magic phantom” for pre-treatment QA system 

in terms of real time identification of dwell time and source positioning and verification of the transit 

timing for different distances between dwelling positions. The system is based on a novel adapted for 

HDR QA 2D diode array, MP, developed at the Centre for Medical Radiation Physics (CMRP), 



University of Wollongong, which was originally designed as a dosimeter for IMRT/VMAT quality 145 

assurance16.  

II. Materials  

Several studies have been carried out examining the use of silicon diodes for dosimetry in 

conventional and intensity-modulated external beam radiotherapy17,18,19,20,21. All these studies agree 

on the selection of p-type silicon detectors as the best candidate for dosimetry of high energy photons 150 

for their high radiation hardness and reproducibility of the response. The MP detector was originally 

designed for IMRT radiation therapy quality assurance. It comprises of an 11x11 array of epitaxial 

silicon p-type diodes embedded into a 0.5 mm thick Kapton carrier (Figure 1). Its specialised 

packaging, using “Drop-in” technology, has been designed to minimise perturbation of the radiation 

field, avoid dose enhancement due to high Z materials and to maximise the flexibility of the detector 155 

to be adaptable to curved shape surfaces such as the human body. MP is 99.8% transparent in a 6 MV 

photon field when used in fluence mode16. 

 

Figure 1 - The magic plate detector array. 

Each diode is a 50 μm thick p-type (100 Ω-cm) Si epitaxial layer grown on a 375 μm thick p+ (0.001 160 

Ω-cm) substrate. Dimensions of each detector are 1.5x1.5x0.375 mm3
 with 0.6x0.6x0.05 mm3 

sensitive volume and 10 mm detector pitch. The MP has been pre-irradiated with 60Co gamma 

photons to stabilise diode sensitivity16. MP is readout by a multichannel charge to frequency converter 

preamplifier named TERA06, designed by the Instituto Nazionale di Fisica Nucleare (INFN) – Turin 

Division and University of Turin microelectronics group for readout of pixelated ionisation or strip 165 

chambers for Hadron Therapy22.  

The TERA06 is used in conjunction with a Field Programmable Gate Array (FPGA) module. The 

digital readout and back-end system was designed and developed by the CMRP, and is equipped with 



a custom designed C++ multi-platform user interface, so named “Rad-X DoseView”. It is capable of 

reading out each detector in the MP array with zero dead time over a variable acquisition time 170 

(between 100μs - 100 ms) with real time visualisation and data analysis. 

For pre-treatment verification, the MP based phantom system will be able to assess a complete HDR 

treatment, by verifying the dwell positions and timings, the transit between dwell positions, and the 

integral dose delivered to the MP diodes for the verified treatment. It allows for comparison with a 

plan imported from the treatment planning system that is translated to the “magic phantom” and 175 

would be capable of real time verification providing identification of error on a particular step of 

treatment.  

The MP is sandwiched in a solid water phantom, “magic phantom”, with two insertable rows of 10 

catheter holes, up to 20 in total, to suit the needs of the HDR afterloader and prescribed treatment plan 

as seen in Figure 2. The MP is positioned between the rows of holes and is used to reconstruct in real 180 

time the position of the source within the phantom, moving according to the prescribed treatment 

plan. 

 

Figure 2 - Illustration of the HDR Pre-treatment QA magic phantom with magic plate inserted. 

 185 

Initially, the individual diodes were characterised in terms of their angular response by a 192Ir source 

in a water equivalent plastic phantom. For these tests, the single epitaxial diodes were mounted onto a 

10 mm wide, 25 cm long Kapton carrier with the same packaging process used for MP (“Drop-in” 

technology). The sensor was readout by a single channel fast electrometer named X-Tream. The X-

Tream unit is primarily designed by CMRP as a dosimetry system for Microbeam Radiation Therapy 190 

quality assurance23, and characterised mainly by its high dynamic range (~105) and high sampling rate 

(1 MHz).  



All measurements were taken using the MicroSelectron HDR afterloader (Nucletron, The 

Netherlands) available at the Prince of Wales Hospital, Randwick (Sydney). The 192Ir source activity 

varied during the experimental sessions from 40000 U down to 20000 U and all the measurements 195 

and planning have been normalised the air-kerma strength of the source. In all the experiments, the 

HDR source was driven through the transfer tubes, into a flexible plastic catheter. 

III. Methods 

III.A. Angular Response Measurements 

The intrinsic asymmetric structure of the epitaxial diode of MP and the energy range of the gamma 200 

photons emitted by the 192Ir may result in directional dependence for each detector (Figure 3). To 

predict the angular response of the epitaxial diodes in the MP for any position of the source, it is 

necessary to characterise the angular response of the single diode of the array along both the azimuth 

and polar angles.  

 205 

Figure 3 - Variation of angles of MP sensors (dark grey) with respect to HDR Source (black). 

To measure the azimuth angular response the diode was placed within a rotatable cylindrical phantom 

that was encased in a cubic phantom of 30x30x30 cm3 solid water, to ensure full body scattering 

conditions. A HDR prostate brachytherapy catheter was placed at 20 mm SDD, as seen in Figure 4. 

Initial position (θ = 0°) was taken as when the orientation of the detector’s sensitive volume was 210 

‘face-up’ relative to the source.  

Using a 28000 U 192Ir source, the MicroSelectron HDR brachytherapy afterloader was programmed to 

position the source to a distance of 1240 mm (final dwell position at the end of the catheter) for 45 

seconds at the dwell position and then retract. The system acquired data at 1 MHz sampling frequency 

and averaged it over 10 samples to minimise variance due to electrical and thermal noise. The 215 

cylindrical insert was rotated in a clockwise direction for a total of 180° rotation with measurements 

taken at every 30° increment. There was no need to measure along a full rotation due to the 

rectangular diode design.  



 

Figure 4 - Cross-section view of the set-up for the 

measurement of the azimuth detector response. Sensitive 

volume of the detector in grey. 

 

Figure 5 - Cross-section view of the set-up for the 

measurement of the polar detector response. 

Polar angular response characterisation required the design of a specific phantom where the HDR 

source would move on an arc of radius 5 cm, centred at the detector to minimise the effect of any 220 

variation in the SDD and any anisotropy effects of the source. A schematic diagram of the phantom is 

shown in Figure 5. The detector is placed side on in a groove, machined into the phantom. In this 

orientation, when the source is at the final dwell position of the catheter, the detector sensitive volume 

faces the perpendicular axis of the source at 0°. Stepping the source in 13 mm increments around the 5 

cm arc radius obtains about 15° angle step. The source was driven around an arc of 180°. 225 

III.B. Source-to-Detector Distance Dose Measurements 

Accurate dose verification at regions in the immediate proximity to the source is imperative in HDR 

brachytherapy. Due to the large dose gradients associated with 192Ir source, a slight variation in 

position leads to a large variation in dose. Determination of the position of the source using a 

triangulation algorithm requires knowledge of accurate relative SDD dose response of the diode 230 

measured in a water equivalent phantom, with a diode placed face on relative to the HDR source. 

The MP was used to measure the response of the diode in a solid water phantom with varying SDDs 

from 6 mm to 71 mm, relative to a stationary HDR source along the central axis of the diode, 

perpendicular to the face of the sensitive volume. The catheter was placed at the centre of a 30x30x30 

cm3 solid water phantom and the 28000 U HDR 192Ir source was programmed to dwell directly over 235 

the middle detector of the MP, with the MP placed at different depths in the phantom. 

The diode response was normalised to 100% at 15 mm SDD. This SDD was chosen to minimise the 

effect of uncertainty in experimental setup and energy response of the diode associated with the 

softening of the 192Ir spectra with SDD24. These results used to calculate the radial dose function and 

are compared to the values found within the AAPM TG-43 protocol25. This calculation was 240 

performed to take into account the 1/r2 dependence of the source. 



III.C. HDR Source Tracking using magic plate 

MP is a 2D array of diodes where each detector element is measuring energy deposited by the gamma 

photons or secondary electrons emitted by a source with no directional information. However, the 

radial SDD r can be estimated taking into account the diode response as a function of distance and 245 

angle normalised to the activity of the source. Correlation of the measurements taken by three or more 

detectors can then identify the position of the source in three dimensions using a triangulation method 

based on estimation and iteration26 (Figure 6). This technique requires the accurate characterisation of 

the detector response to 192Ir gamma spectrum in terms of relative SDD dose and angular responses. 

 250 

Figure 6 - Triangulation of the HDR source based on the response of three non collinear detectors. 

A software tool was developed in C++ to calculate the position of the HDR source in 3D using the 

real time response of each detector in MP acquired by the TERA system. As three non-collinear 

detectors are the minimum for localisation of the source, selection of more than three allows for 

redundancy in estimation of the x, y and z coordinates of the source, and inaccuracy reduction. The 255 

MP is an 11x11 array, and every detector can be used for estimating the source position, however, 

only the detector with the highest response and its immediate neighbours (2x2 or 3x3 subset) were 

considered to minimise uncertainty due to lower signal from the detectors at larger distances from the 

source as well as minimise uncertainty with non-isotropic response of the detector and emission of the 

source. The origin of the detector coordinate system is set at the sensor on the bottom left of MP 260 

(Figure 7, point O) that provide coordinate of each detector di on MP.  

 

Figure 7 - HDR Source Triangulation co-ordinate system, z axis is out of page. The xs and zs are constant with the source 

travelling only in the y direction. 



The response of the central diode in the MP per unit source air-kerma strength was measured for 265 

known activity 192Ir source in water with centre of HDR source located 10 mm above the centre of the 

diode under full backscattering conditions. The MP response was normalised prior to this in a 20x20 

cm2 photon field from a 6MV LINAC at a source-to-surface distance of 100 cm in a 30x30x30 cm3 

solid water phantom. The MP was placed at a depth of 10 cm, where the photon field has a flat dose 

profile, verified regularly using an ion chambers as part of the LINAC’s quality checks. 270 

Reproducibility of all diodes before normalization was better than 1%. It is assumed that the response 

of the detector varies linearly with the HDR source strength. 

The HDR 192Ir source is located at position 𝑆(𝑥𝑆,𝑦𝑆, 𝑧𝑆). The data acquisition system acquires a frame 

of the whole MP array. The software tool searches for the highest response within the data set. The 

detector with the highest response is selected to be D1 and the 8 surrounding detectors not all collinear 275 

are also selected, when not considering D1 to be on the edges of MP. Using the response of each 

detector, the detectors distance from the centre of the source can be calculated. 

The response of the i-th detector, Ri, is a function of its distance ri from the HDR source, based upon 

the SDD dose response measured, 𝑅𝑖 = 𝑓(𝑟𝑖). The distance of the source to the detector i, can be then 

calculated by the inverse function 𝑟𝑖 = 𝑓−1(𝑅𝑖), derived from the calculation of the radial dose 280 

function, which was measured for angle θ = 0°. This estimation of distance of the source to the 

detector assumes no angular dependence and is corrected for on further iterations. Based on several 

(at least from three detectors) derived distances ri the source initial position 𝑆′(𝑥𝑠′ ,𝑦𝑠′, 𝑧𝑠′), (Figure 7) in 

the MP frame is estimated. 

 Using the estimated source position, 𝑆′(𝑥𝑠′ ,𝑦𝑠′, 𝑧𝑠′), and the coordinate of the i-th detector 𝐷𝑖(𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖), 285 

the geometrical distance 𝑑𝑖 is calculated. An iterative technique has been devised to find the source 

position by calculating the minimization of the square of the sums of the percentage difference of the 

values of 𝑑𝑖 and 𝑟𝑖 with varying position estimations and taking into account angular response of the 

diodes for each consecutive position. 

min��
𝑑𝑖 − 𝑟𝑖
𝑟𝑖

�
2𝑛

𝑖=1

 

As the source is assumed to be closest to the detector with the highest response, 𝐷1(𝑥1,𝑦1, 𝑧1), the sum 290 

of the squares is calculated using the first estimation of the source position, 𝑆′(𝑥𝑠′ ,𝑦𝑠′, 𝑧𝑠′) =

𝑆′(𝑥1,𝑦1, 𝑧𝑠′), with 𝑧𝑠′ derived from the equivalence of 𝑟1 and the distance between 𝐷1 and the source 

coordinate estimation. The second and third iterations are performed by changing 𝑥𝑠′  by ±5 mm, and 

then determining which sum of the squares is lower. The method is then repeated with a change in the 

estimation that is half of the previous, until the change is lower than 0.04 mm. The method is then 295 

repeated with changes in the estimation of 𝑦𝑠′.  



This robust method essentially fits the best estimation of the source position to the detectors response. 

The relative angle of each diode to the source is then calculated and corrections are then applied to the 

MP response based upon the angular dependence of each detector. The source position is then re-

estimated by the above method. 300 

Validation of the source tracking method was performed using the afterloader programmed to drive 

the HDR source at 2.5 mm step sizes and with a dwell time of 2 seconds towards the end of the 

catheter. The catheter was placed within a water equivalent plastic phantom and positioned directly 

above the middle column of the MP detectors (x = 50 mm) with the source stepping across the y 

direction. The method was evaluated with MP at a SDD of 10 mm below the catheter’s plane. The 305 

source positions are reconstructed for each acquisition frame of the whole MP using developed 

routines and compared to the input of the afterloader software. 

III.D. HDR source speed measurement using X-Tream System 

Due to the fast acquisition sampling rate of the X-Tream system, up to 1 MHz, it is possible to 

measure the response of a single epitaxial diode (instantaneous dose rate) while the source is in 310 

transit. The diode mounted in a kapton tail as mentioned earlier is placed at the centre of a 30x30x30 

cm3 solid water phantom, with the HDR catheter placed at 5 mm distance from the detector.  

The HDR source is stepped to the first dwell position within the catheter, and is stationary for 5 

seconds. It then moves to the next dwell position, with a measureable time in transit. The source 

remains at the second dwell position for an additional 5 seconds followed by returning to the 315 

afterloader. The step size was varied from 2.5 mm to 50 mm, and the transit time and average speed 

were recorded. Previous evaluations of the transit velocity using direct measurements have shown a 

range been 5.4 to 33.1 cm/s27,28,29 for the same range of step sizes.  

IV. Results 

IV.A. Angular Dependence 320 

The directional dependence of the epitaxial diode response is shown in Figure 8. Both data sets are 

normalised to 100% at 0°. The azimuth data were taken using the cylindrical insert as shown in Figure 

4. Determination of the angle for this phantom has a Type A uncertainty of 2.5°. The polar data were 

taken using the phantom shown in Figure 5. As the source was driven by the HDR loader to set points 

with 1 mm accuracy, the estimated uncertainty is calculated to be 0.6°. Type A uncertainty in 325 

response in both sets is ±0.8% (1 standard deviation), mainly due to electronic noise associated with 

using a single detector on a kapton tail and is obtained by repeated measurements.  



 

Figure 8 - The angular response of the epitaxial diode (Polar and Azimuth). 

Both data sets show a variation in response of the diode of 15% between the top face (0°) and bottom 330 

face (180°) of the epitaxial detector but it is uniform within ±5% of variation for angles range of 

0±60° and 180±60°. Data measured in the polar direction between 0-110° were excluded due to issues 

in alignment resulting in aberrant values. The obtained angular response in Figure 8 is used in 

modifying the dose response of each detector used within the iterative algorithm for seed position 

identification. The regions of flat angular response can be used for better accuracy of seed 335 

reconstruction algorithm and is corresponding to situation when closest diodes neighbourhood is used 

as in a presented algorithm.  

There is an asymmetrical boundary region surrounding the sensitive volume, made up of silicon 

where charge collection is not ideal, leading to a lower amount of charge collected per detected event 

in this part of the sensitive volume. The structure of the detector, in conjunction with the energy 340 

dependence of the response of silicon for the 192Ir source and attenuation of secondary particles 

through the passive silicon, is the cause of the observed variation of the response30. 

IV.B. Source-to-Detector Distance Dose Measurements 

The SDD dose response of the MP to a 192Ir source in a water equivalent plastic phantom was 

measured using the central element of the detector array. The source was positioned directly over the 345 

sensor at the initial SDD of 6 mm from the central detector and then varied to 71 mm. The type B 

uncertainty associated with the alignment in the z plane was estimated as large as ±1 mm. 

Measurements over 71 mm were not obtainable by the current readout system due to signal being 

below the measurable threshold. 

Based on the TG-43 Protocol, a calculation of the radial dose function was performed using the MP 350 

SDD dose response, taking into the account the estimated radial distance and the 192Ir source physical 

dimensions, shown in Figure 9. This calculation takes into account the 1/r2 dependence and allows for 

deviations from the theoretical to be clearly seen. The large uncertainties shown within the figure at 



low SDDs are due to the combination of the uncertainty of the repeated measurements and the large 

percentage error from using a 1 mm positioning uncertainty.  355 

 

Figure 9 - Comparison between the radial dose function, g(r) for 192Ir from the TG-43 protocol and that based upon the MP 

response. 

Deviations from expected response are seen at source-to-detector distance over 15 mm. The measured 

followed the TG-43 calculated radial dose function up to 30 mm within 8% and for 70 mm within 360 

40%, respectively. This is due to a possible over response of the silicon detector at these SDDs due to 

a larger lower energy scatter contribution31. Although there is a differing response of MP compared to 

the TG-43 protocol, it does not interfere with the source position determination accuracy proposed in 

this work. 

IV.C. Evaluation of HDR Source Tracking 365 

Comparison of the positions and dwell times determined by the HDR source tracking algorithm and 

those inputted into the Nucletron microSelectron HDR afterloader computer show good agreement for 

the MP SDD of 10 mm as seen in Figure 10. Dwell times are all measured to be 2 s, with the catheter 

position measured to be on average xs = 50.3 ± 0.1 mm and zs = 10.5 ± 0.4 mm with type A 

uncertainties calculated by 1 standard deviation.  370 



 

Figure 10 - Comparison of source tracking calculation of a HDR source of step size 2.5 mm and dwell time of 2 seconds 

against expected prescribed position (zs = 10 mm) 

It is also possible to see a slight drop in expected position at the start of the dwell times. This is due to 

the source being measured in transit between dwell positions with an acquisition speed of 100 ms. 375 

Using a faster acquisition frequency, it is possible to accurately measure the source in transit, and 

determine the source transit time.  

 

Figure 11 - Frequency histogram showing the difference in the prescribed position and that measured using the MP source 

tracking algorithm for the described treatment plan. 380 

Figure 11 shows the frequency distribution of the difference between the prescribed position and the 

measured position of the HDR source with approximately 75% of measurements falling within 0.5 

mm. The occurrences of the larger differences are due to the source in transit. This result 

demonstrates the feasibility to track the HDR source in real time, accurately, over a wide field of view 

of MP (10x10 cm2).  385 

IV.D. High Speed HDR Source Tracking using X-Tream System 

Figure 12 shows the temporal response of the single epitaxial diode using the X-Tream acquisition 

system. The HDR source moves through the catheter to the first dwell position, where it is stationary 



for 5 seconds, then moves 15 mm to the final dwell position, and is motionless for an additional 5 

seconds. The source finally retracts back into the afterloader after this time. An increase in response 390 

can be seen as the second dwell position is closer to the detector. Measurements were taken over 16 

seconds, at 1 MHz sampling rate; data has been averaged by a factor of 10 to improve the signal to 

noise ratio on the measurements and to make data handling and processing easier. Standard deviations 

of the average system response for one measurement in the first and second dwell positions are found 

to be 3.9% and 1.9%, respectively. 395 

  

Figure 12 - Temporal response of epitaxial diode due to HDR source being stepped toward diode with 15 mm step size (two 

dwelling positions). 

Due to the high speed of the acquisition system, there are approximately 5000 samples when 

measuring the HDR source in transit, as seen in Figure 13. The source transit time was measured as 400 

the time interval between the two events when the detector response is changing more than one 

standard deviation above the average response at the two consecutive dwell position, to when the 

source reaches the average value of response of the second dwell position, thus giving an average 

speed for a 15 mm step size. The average transit speed was evaluated as a function of step size in the 

range between 2.5 and 50 mm for 3 measurements per step size.  405 



 

Figure 13 - Magnified view of averaged response due to HDR source movement between dwell positions for a 15 mm step 

size. 

The results are shown in Figure 14, along with values published. The type A uncertainty of each result 

is less than 5% and is calculated based on the standard deviation of the average speed of three 410 

measurements per step size. Values found within the literature have a large variation, showing the 

challenging nature of this characterisation. Measurements performed by Sahoo27 using an Ion 

chamber recorded up to 100% uncertainty due to the poor timing resolution of the system. The X-

Tream measurement shows good agreement with the measurements performed by a direct estimation 

of the transit time in Houdek et al29, which was performed using an oscilloscope to measure the pulse 415 

generator of the stepping motor of the afterloader; also the data from Wong et al28 obtained by the use 

of a high speed camera shows good agreement. Minamisawa et al13 used an optical fibre system to 

detect the radiation generated by the moving HDR source to calculate the instantaneous and average 

velocity. 

Although the discrepancy of absolute value is related to the specific afterloader, this direct 420 

measurement technique show similar dependence of the source velocity with the step size. The large 

volume of the detector and indirect estimation of the speed lead to significant errors and uncertainty 

especially for short dwell distances in this method.  



 

Figure 14 - Average transit speed measured using X-Tream System (black). Results extracted from the literature are shown 425 
for comparison. 

Although there is good agreement with previous results, the use of a single detector is not 

recommended for an accurate evaluation of the source speed as only average source speed is 

measured. Using the MP array, with its constant detector spacing and a sampling rate of 100 µs, 

instantaneous speed measurements could be performed for any positions within treatment related 430 

volume, similar to the method proposed by Minamisawa et al13, which uses an optical fibre system 

and digital oscilloscope with timing resolution of 1 nanosecond. 

V. Conclusion 

The MP detectors, detector array and readout electronics, designed originally for use in IMRT and 

VMAT radiotherapy quality assurance, were characterised for their use in fast HDR QA. The 435 

developed epitaxial diodes, which are attractive due to their radiation hardness and high stability, 

were characterised in terms of measured dose and angular responses using the 192Ir HDR source. 

Further development will allow for reliable measurements at larger distances, necessary for future in-

vivo source tracking applications and in-vivo dosimetry based on known location of the source, 

relative to anatomy.  440 

Based on the detailed characterisation of “Magic Phantom” for QA in HDR brachytherapy using 192Ir 

HDR source, the selection of the distance between MP and upper and lower planes of catheters 5-10 

mm away ensures the accuracy of the iterative method. The “Magic Phantom” for QA in HDR 

brachytherapy will verify the correctness of the plan delivery, catheter by catheter in terms of 

dwelling position and time, and will help to avoid accidents associated with the malfunction of the 445 

afterloader. A comparison of the “Magic Phantom” and selected devices from the literature for HDR 

quality assurance is presented in Table 1. 



Table 1 - Comparison of "Magic Phantom" with selected systems found with literature. 

 “Magic Phantom” Radiochromic Film 

and Photodiodes10 

Commercial Ion 

Chamber Array11 

Mick® MultiDoc™ 

Phantom15 

Can test full 

treatment plan? 

- Yes, currently up 

to 20 catheters. 

- Yes, but only one 

catheter per test. 

Not in real time  

- Tested with 3 

catheters only 

- Yes, up to 21 

catheters. 

Dwell Position 

measurement 

uncertainty/error: 

- 75% of source 

positions were 

measured within 

0.5 mm of expected 

position and in real 

time. 

- 0.5 mm by manual 

inspection, 0.2 mm 

by digital off line 

processing. 

- 1.01 mm standard 

deviation. 

- Positional 

Markings in 1 mm 

increments. 

Can check dwell 

times? 

- Yes. - Yes. - No. - Post image 

analysis is required. 

Timing Resolution: - Currently 1 ms. - 1 ms. - Unknown - Timing resolution 

of video camera. 

Advantages: - Instant Readout of 

results via USB PC 

software tool. 

- Inexpensive 

device. 

- Direct 

measurements of 

stationary source 

locations. 

- Film which can be 

kept for records. 

- Exists in clinical 

setting. 

- Water equivalent 

detectors. 

- High resolution 

video recorded for 

records. 

Disadvantages: - Currently not 

focused on 

dosimetric 

information. 

- Needs expensive 

Film for every test. 

- Time consuming 

to verify full plan. 

- Need for post 

processing of data. 

- Limited to source 

step size >1cm. 

- Expensive device. 

 - User needs to 

watch and analyse 

video recording. 

 

 By reconstructing the source position based on directly measuring the radiation source any incorrect 450 

estimate of the source position relative to the needle tip in planning will also be immediately 

identified during QA of the treatment plan. It can be used for full plan QA or for a partial verification 

for accelerated QA for each patient plan. A developed software interface will allow for the immediate 



visualisation of results and analysis of acceptance parameters in terms of tolerance of actual dwelling 

positions and times, in comparison with the treatment plan. 455 
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