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Abstract In the class of surfaces with fixed boundary, critical points of the Willmore functional
are naturally found to be those solutions of the Euler-Lagrange equation where the mean curvature
on the boundary vanishes. We consider the case of symmetric surfaces of revolution in the setting
where there are two families of stable solutions given by the catenoids. In this paper we demonstrate
the existence of a third family of solutions which are unstable critical points of the Willmore func-
tional, and which spatially lie between the upper and lower families of catenoids. Our method does
not require any kind of smallness assumption, and allows us to derive some additional interesting
qualitative properties of the solutions.

Mathematics Subject Classification (2000) 35J40 · 35B38 · 58E99 · 49J45 · 49Q10

1 Introduction

Given a smooth immersed surface f : Σ → R3, the Willmore functional is defined by

W(f) =

∫
Σ

H2 dµg,

where g is the Riemannian metric induced by the standard Euclidean inner product 〈·, ·〉 in R3 along
the pull-back of f , dµg =

√
det (g) dx is the induced surface element, H = (κ1 + κ2)/2 denotes the

mean curvature, and κ1, κ2 are the principal curvatures of f . An important feature of the Willmore
functional is its invariance under the full Möbius group of R3. (See [5,26], [28, Section 7.3] and
Weiner [27].)

A critical point of the Willmore functional is called a Willmore surface and is a solution of the
Willmore equation

∆H + 2H(H2 −K) = 0 on Σ (1)

where ∆ denotes the Laplace-Beltrami operator on f and K = κ1κ2 is the Gauss curvature. In the
literature there are many results concerning the existence and regularity of Willmore surfaces. The
case where f is a closed immersed surface has been well-studied, and we only mention here the papers
[1,7,16,17,22,24]. For the case where f is an immersed surface with boundary much less is known. In
this setting one must supplement (1) with appropriate boundary conditions. A discussion of the range
of possibilities can be found in Nitsche [19]. One possible choice is the Dirichlet boundary conditions
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where the boundary of the surface and the tangent bundle at the boundary are prescribed. Another
is the natural (or Navier) boundary conditions. In this case the position and the mean curvature
H ≡ 0 are prescribed as boundary data. The latter boundary condition arises naturally from the
formula for the first variation (see (4) below). The Navier Willmore boundary value problem is
that which we shall study in this paper. For both types of boundary conditions, existence results
obtained through perturbative methods can be found in [19,21]. Schätzle in [23] proves the existence
of Willmore surfaces satisfying Dirichlet boundary conditions in Sn. These are embedded if their
Willmore energy is small enough. Uniqueness theorems without symmetry assumptions are due to
Palmer [21] and the first author [9]. So far other existence results are known only in the class of
embedded surfaces of revolution. It is interesting to study this special case in order to understand
the possible qualitative behavior of the solutions and which phenomena may occur. Existence results
for Willmore surfaces of revolution subject to Dirichlet and Navier boundary conditions have been
obtained in [10,11,13] and [2,3,12] respectively. Before stating our new result we must first fix some
notation.

Given a smooth and positive function u : [−1, 1] → R we consider the surface of revolution
Γ (u) = fu

(
[−1, 1]× [0, 2π]

)
, where fu is the embedding associated to u defined by

fu : (x, ϕ) 7→ (x, u(x) cosϕ, u(x) sinϕ), x ∈ [−1, 1], ϕ ∈ [0, 2π]. (2)

The surface Γ (u) is said to be generated by u. For such a surface the mean curvature and the Gauss
curvature are given by

H(x) = H[u](x) =
1

2

(
− u′′(x)

(1 + u′(x)2)3/2
+

1

u(x)
√

1 + u′(x)2

)
, and (3)

K(x) = K[u](x) = − u′′(x)

u(x)(1 + u′(x)2)2
,

respectively. The Willmore functional reads

W(u) :=W(fu)

=
π

2

∫ 1

−1

(
− u′′(x)

(1 + u′(x)2)3/2
+

1

u(x)
√

1 + u′(x)2

)2

u(x)
√

1 + u′(x)2 dx.

Given α > 0, let us denote by Sα the set of positive, symmetric functions in H2(−1, 1) with boundary
value α; that is,

Sα = {u ∈ H2(−1, 1) | u(x) > 0, u(x) = u(−x), x ∈ [−1, 1] and u(±1) = α} .

The first variation of the Willmore functionalW at u ∈ Sα∩H4(−1, 1) in the direction of a function
ϕ ∈ H2(−1, 1) ∩H1

0 (−1, 1) is given by (cf. [12, Lemma 6])

d

dt
W(u+ tϕ)

∣∣∣
t=0

= −2π
[
H

uϕ′

1 + (u′)2

]1
−1
− 2π

∫ 1

−1
uϕ
(
∆H + 2H(H2 −K)

)
dx . (4)

Critical points then solve the following Navier boundary value problem:

∆H + 2H(H2 −K) = 0 in (−1, 1), (5)

u(±1) = α, H(±1) = 0. (6)

Note that (5) is equivalent to (cf. [10, Section 2.1])

1

u(x)
√

1 + u′(x)2
d

dx

(
u(x)√

1 + u′(x)2
H ′(x)

)
+

1

2
H(x)

(
u′′(x)

(1 + u′(x)2)
3
2

+
1

u(x)
√

1 + u′(x)2

)2

= 0, x ∈ (−1, 1) .

(7)
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By also expressing H in terms of u one observes that (5) is a highly nonlinear ODE of fourth order.
Furthermore, the boundary conditions H(±1) = 0 are nonlinear as well. Particular solutions of
(5)-(6) are given by the family of catenaries

ub(x) =
1

b
cosh(bx),

as long as the equation α = ub(±1) = cosh(b)
b has a positive solution. There is a critical boundary

value α∗ below which catenaries cease to exist, given by

α∗ = inf
y∈(0,∞)

cosh(y)

y
=

cosh(b0)

b0
' 1.5088

with b0 = 1.1996 . . . satisfying cosh(b0) = b0 sinh(b0). For α > α∗ the equation α = cosh(b)
b has

precisely two solutions 0 < b1(α) < b0 < b2(α) < ∞, and since H[ub1 ] ≡ H[ub2 ] ≡ 0, the functions
ub1 and ub2 are solutions of (5)-(6). As W(u) ≥ 0 and W(ub1) = W(ub2) = 0, these functions are
global minimisers of W in the class Sα. It is natural to expect the existence of a third critical point
of W between the two catenaries. By carrying out a bifurcation analysis it was shown in [12] that
(b0, ub0) is the unique bifurcation point for (5)-(6) on the branch b 7→ (b, ub) in the class of symmetric
solutions; in particular one has:

Theorem 1 ([12, Theorem 1.3]) There exists an ε > 0 such that for α ∈ (α∗, α∗+ε) the boundary
value problem (5)-(6) has at least three solutions in Sα. One of these is not a minimal surface.

In order to extend this result for larger values of α it is natural to first attempt a straightforward
adaptation of classical mountain pass theory. The min-max characterisation of the Palais-Smale limit
would then automatically imply instability. Such a strategy was successfully carried out by Struwe
(see [25] and the references therein) to prove the existence of unstable solutions to the Plateau
problem via an adaptation of classical Ljusternik-Schnirelmann theory. Palais-Smale sequences for
the Willmore functional have been recently investigated in [4], where it is proven that local Palais-
Smale sequences that are uniformly bounded in W 2,2∩W 1,∞ possess a convergent subsequence. The
limit is shown to satisfy a system of differential equations which, under a smallness condition on the
energy, is equivalent to the constrained Willmore equation. The indication from [4] is thus that for a
Palais-Smale approach to be successful, one typically requires some kind of energy assumption. By
following a different approach we are able to avoid any smallness assumption in our case and obtain
the following global result.
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Fig. 1: Numerically calculated unstable solutions between the two catenaries for α = 5 (left) and α = 10 (right). (See
also Remark 5.)
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Theorem 2 For every α > α∗ the boundary value problem (5)-(6) has, in addition to the two
catenaries ub1 and ub2 , a third smooth solution u ∈ Sα which is unstable in the sense that u is not
a local minimum of W in Sα. Furthermore

(i) H[u] < 0 in (−1, 1);
(ii) u and H[u] are strictly convex in [−1, 1];

(iii) ub2(x) < u(x) < ub1(x) for x ∈ (−1, 1).

To our knowledge, this is the first existence result for unstable Willmore surfaces satisfying
prescribed boundary conditions. A sufficient condition for unstable closed Willmore surfaces is given
in [20] together with some examples. (See also [18].)

The proof of Theorem 2 essentially consists of two steps. In the first step, we show that the
Willmore equation is equivalent to certain singular first order ODEs for the mean curvature H[u].

Theorem 3 Let u : [−1, 1]→ R be a smooth, positive, symmetric function. Then u is a solution of
(5) if and only if for all x ∈ [−1, 1]

H ′(x)u(x)

1 + u′(x)2
(u(x)− xu′(x))− H(x)u(x)(x+ u(x)u′(x))√

1 + u′(x)2

(
H(x)− 1

u(x)
√

1 + u′(x)2

)
= 0. (8)

Furthermore, if u is a solution of (5) then there exists a constant C such that for all x ∈ [−1, 1]

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2
= C . (9)

The converse holds provided u is not identically constant on [−1, 1].

The proof of this result will be given in Section 2 and relies on the scale and translation invariance of
the Willmore functional. By evaluating (8) at x = 1 one readily confirms that a smooth, symmetric
solution of (5) with u(±1) = ±u′(±1) satisfies

H(±1) = 0 or H(±1) =
1

u(1)
√

1 + u′(1)2
.

This observation allows us in the second step to obtain a solution of (5)-(6) by constructing a
symmetric solution of (5) with u(±1) = α, u′(±1) = ±α in such a way that the caseH(±1) = 1

α
√
1+α2

is excluded. In this manner we are led to consider a particular Dirichlet boundary value problem
(see (15)) which is accessible to the direct method of the calculus of variations. We approach this
problem in Section 3 by minimising W over the sets

Ñα,β := {u ∈ Sα ∩ C1,1([−1, 1]) : u′(−1) = β, u′(x) ≤ α for all x ∈ [0, 1]}

for β > −α. The desired solution u is then obtained as the limit of minimisers when β ↘ −α.
Perhaps surprisingly, the constraint u′ ≤ α ensures that u is convex which in turn implies that
H(±1) = 0. At the same time this method yields the instability of our solution by exploiting the
strict monotonicity of the map

β 7→ inf
v∈Ñα,β

W(v).

Such monotonicity properties were used in [2] to prove the existence of solutions to the Navier
boundary value problem for α < α∗. The qualitative properties (i)–(iii) in Theorem 2 are finally
obtained by combining the minimising property of u with (8) and (9).
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2 Proof of Theorem 3

An important feature of the Willmore functional is its invariance with respect to conformal trans-
formations. It is natural to expect that this large class of invariances yields extra information at
the boundary, in the spirit of the Pohozaev identity. In the case under consideration, we can obtain
quite a lot of additional information. For this purpose it is useful to derive the first variation of W.

Given a compact surface Σ with boundary and a sufficiently smooth immersion f : Σ → R3 we
denote by W(f) :=

(
∆H + 2H(H2 −K)

)
ν the Euler-Lagrange operator of W in L2 at f , with ν

the exterior unit normal vectorfield, and use φ⊥ := 〈φ,ν〉ν to denote the normal projection of a
vectorfield φ. We also use the notation H := −Hν to denote the mean curvature vector.

Lemma 4 ([15, Theorem 2.1]) Let Σ be a compact surface with boundary, t0 ∈ R, and δ > 0.
For a smooth variation h : Σ × (t0 − δ, t0 + δ)→ R3 with φ = ∂th we have

d

dt
W(h(·, t)) = −

∫
Σ

( 〈
W(h(·, t)), φ⊥

〉
+∇∗ω

)
dµg. (10)

Here, given a frame {τi}2i=1 on TΣ, the one-form ω is defined by

ω(τi) = 2
〈
φ, (∂iH)⊥

〉
− ∂i 〈φ,H〉 − |H|2 〈φ, ∂ih〉 , and ∇∗ω = −

2∑
i,j=1

gij∇iω(τj)

where ∂i is the derivative along τi, ∇i is the covariant derivative along τi, and gij = (g−1)ij are
elements of the inverse of the induced metric g.

Choosing h in (10) according to the invariances of the Willmore functional allows us now to carry
out the

Proof (Proof of Theorem 3) We first prove that every smooth, positive, symmetric solution of (5)
satisfies (8) and (9). The opposite implications will be discussed together afterwards.

Consider the cylinder Σ = [−1, 1]×[0, 2π], where we have identified 0 and 2π, and set fu : Σ → R3

to be the embedding associated to u as in (2). As u satisfies (5), fu is clearly a Willmore surface
and W(fu) ≡ 0. Let x1, x2 ∈ [−1, 1] with x1 < x2, and consider the cylinder Σ̃ = [x1, x2] × [0, 2π],
where we have again identified 0 and 2π. Let h : Σ̃ × (t0 − δ, t0 + δ)→ R3 be a family of sufficiently
smooth immersions as in Lemma 4 satisfying h(·, t0) = fu(·). Denote by ∂1Σ̃ and by ∂2Σ̃ the left
and right boundaries of Σ̃ respectively, so that

∂Σ̃ = ∂1Σ̃ ∪ ∂2Σ̃, with ∂jΣ̃ the circle given by ∂jΣ̃ = {xj} × [0, 2π], j = 1, 2 .

We denote by ηj the interior unit conormal of ∂jΣ̃. The embedding (2) induces a global orthonormal
frame {τx, τϕ} for the tangent bundle over Σ, where

τx =
1√

1 + u′(x)2
∂x, and τϕ =

1

u(x)
∂ϕ.

Note that via the embedding this induces the following frame{
τxh((x, ϕ), t0), τϕh((x, ϕ), t0)

}
=
{
τxfu(x, ϕ), τϕfu(x, ϕ)

}
=

{
1√

1 + u′(x)2

(
1, u′(x) cosϕ, u′(x) sinϕ

)
,
(
0,− sinϕ, cosϕ

)}
of the tangent space at (x, u(x) cosϕ, u(x) sinϕ). In these coordinates η1(ϕ) = τxh((x1, ϕ), t0), and
by symmetry η2(ϕ) = −τxh((x2, ϕ), t0). Since h(·, t0) = fu(·) is a Willmore surface, Lemma 4
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combined with Stokes’ theorem (note that ω is a 1-form) yields

d

dt
W(h)

∣∣∣∣
t=t0

=

∫
Σ̃

2∑
i,j=1

gij∇iωj dµg = −
∫
Σ̃

∇∗ω dµg

=

∫
∂1Σ̃

ω(η1) dµ∂1g +

∫
∂2Σ̃

ω(η2) dµ∂2g

=

∫
∂1Σ̃

ω(τx) dµ∂1g −
∫
∂2Σ̃

ω(τx) dµ∂2g,

where dµ∂jg is the induced metric on ∂jΣ̃. Using the explicit expression for τx given above and
taking note of the definition of ω from Lemma 4, we find

d

dt
W(h)

∣∣∣∣
t=t0

=

∫
∂1Σ̃

[
2
〈
φ, (∂xH)⊥

〉
− ∂x 〈φ,H〉 − |H|2 〈φ, ∂xfu〉

] 1√
1 + u′(x)2

dµ∂1g

−
∫
∂2Σ̃

[
2
〈
φ, (∂xH)⊥

〉
− ∂x 〈φ,H〉 − |H|2 〈φ, ∂xfu〉

] 1√
1 + u′(x)2

dµ∂2g

=

∫ 2π

0

[
2
〈
φ, (∂xH)⊥

〉
− ∂x 〈φ,H〉 − |H|2 〈φ, ∂xfu〉

] u(x)√
1 + u′(x)2

dϕ

∣∣∣∣
x=x1

−
∫ 2π

0

[
2
〈
φ, (∂xH)⊥

〉
− ∂x 〈φ,H〉 − |H|2 〈φ, ∂xfu〉

] u(x)√
1 + u′(x)2

dϕ

∣∣∣∣
x=x2

. (11)

In order to proceed we need to choose the direction of the variation φ. It is natural to consider
variations parallel to the generators of the Möbius group of R3, since for such φ the Willmore
functional is invariant and the left hand side of (11) is automatically zero. For the purposes of
proving (8) and (9) it will be enough to consider the invariance of W under scaling and translation
respectively.

We begin with the scale invariance of W. Consider the family of immersions h((x, ϕ), t) =
t(x, u(x) cos(ϕ), u(x) sin(ϕ)) and take t0 = 1. Then

φ(x, ϕ) = (x, u(x) cosϕ, u(x) sinϕ) = fu(x, ϕ).

The exterior unit normal ν is given by

ν(x, ϕ) =
1√

1 + u′(x)2
(−u′(x), cosϕ, sinϕ),

and (∂xH)⊥(x, ϕ) = 〈(∂xH)(x, ϕ),ν(x, ϕ)〉ν(x, ϕ) = −H ′(x)ν(x, ϕ). We thus have for the first term

2
〈
φ(x, ϕ), (∂xH)⊥(x, ϕ)

〉
= −2H ′(x) 〈fu(x, ϕ),ν(x, ϕ)〉 = 2H ′(x)

xu′(x)− u(x)√
1 + u′(x)2

.

Note that the final expression no longer depends on ϕ. Keeping in mind (3), a direct computation
simplifies the second term as

−∂x 〈φ(x, ϕ),H(x, ϕ)〉

= −∂x
(
− H(x)√

1 + u′(x)2

(
− xu′(x) + u(x)

))
= −H ′(x)

xu′(x)− u(x)√
1 + u′(x)2

+ 2H2(x)
(
x+ u(x)u′(x)

)
−H(x)

x+ u(x)u′(x)

u(x)
√

1 + u′(x)2
.
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For the third term we have

−|H|(x, ϕ)2 〈φ(x, ϕ), ∂xfu(x, ϕ)〉 = −H(x)2
(
x+ u(x)u′(x)

)
.

As h is a continuous family of rescalings of fu, the scale invariance of W implies that the left hand
side of (11) vanishes. Inserting the equalities computed above allows us to write down the right hand
side of (11) explicitly. We obtain

0 = 2π u(x)

(
H ′(x)

1 + u′(x)2
(u(x)− xu′(x))− H(x)2√

1 + u′(x)2
(x+ u(x)u′(x))

+
H(x)

u(x)(1 + u′(x)2)
(x+ u(x)u′(x))

)∣∣∣∣x2

x1

. (12)

Clearly, as u′(0) = 0 and H ′(0) = 0 equation (8) holds at x = 0. Formula (8) follows for x > 0 by
taking x2 = x and x1 = 0 in (12), while taking x1 = −x and x2 = 0 in (12) implies (8) for x < 0.

The case of translations gives equation (9) in a similar manner. Let us consider the family of
immersions h((x, ϕ), t) = (x, u(x) cos(ϕ), u(x) sin(ϕ))+t(1, 0, 0) with t0 = 0. Then φ(x, ϕ) = (1, 0, 0).
We have for the first term

2
〈
φ(x, ϕ), (∂xH)⊥(x, ϕ)

〉
= 2

u′(x)H ′(x)√
1 + u′(x)2

.

The second term becomes

−∂x 〈φ(x, ϕ),H(x, ϕ)〉 = −∂x
( u′(x)H(x)√

1 + u′(x)2

)
= − H ′(x)u′(x)√

1 + u′(x)2
− H(x)

u(x)
√

1 + u′(x)2
+ 2H(x)2.

For the third term we have

−|H|(x, ϕ)2 〈φ(x, ϕ), ∂xfu(x, ϕ)〉 = −H(x)2.

As h is a continuous family of translations, the translation invariance ofW combined with the above
formulae simplify (11) to

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2

∣∣∣∣x2

x1

= 0.

Since x1, x2 ∈ [−1, 1] are arbitrary, it follows that there exists a constant C such that

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2
= C, for x ∈ [−1, 1],

which is (9).

Let us now show that every solution of (8) satisfies (5). Denoting the left hand side of (8) by
L[u](x), a long but straightforward computation shows that

0 =
d

dx
L[u](x) = u(x)(u(x)− xu′(x))

(
∆H + 2H(H2 −K)

)
(x) , x ∈ [−1, 1] . (13)

Let E = {x ∈ [−1, 1] | u(x) − xu′(x) = 0}. Clearly, (5) holds at all points x ∈ [−1, 1] \ E. Due
to the smoothness of u, it is sufficient to show that [−1, 1] \ E is dense in [−1, 1]. If this were
not the case, there would be an open interval (x0 − δ, x0 + δ) such that u(x) − xu′(x) = 0 in
(x0 − δ, x0 + δ) ∩ [−1, 1] =: I. This implies u(x) = ax in I for some constant a, and therefore

L[u](x) ≡ 1

4a
√

1 + a2
6= 0 in I ,
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which contradicts (8).
Finally we show that a solution to (9) that is not identically constant in [−1, 1] satisfies (5).

Denoting the left hand side of (9) by M [u](x), a computation shows that

0 =
d

dx
M [u](x) = u(x)u′(x)

(
∆H + 2H(H2 −K)

)
(x) , x ∈ [−1, 1] . (14)

Let E = {x ∈ [−1, 1] | u′(x) = 0}. Note that E ( [−1, 1] since u is not identically constant on
[−1, 1]. Clearly, (5) is satisfied at x ∈ [−1, 1] \ E. As above, it is sufficient to show that [−1, 1] \ E
is dense in [−1, 1]. If this were not the case, there would be an open interval I ⊂ E such that there
exists x∗ ∈ ∂I that is an accumulation point for [−1, 1] \ E. Then by continuity (5) is satisfied at
x∗. On the other hand, since I ⊂ E there exists a positive constant a such that u(x) ≡ a for x ∈ I
and therefore (

∆H + 2H(H2 −K)
)
(x∗) =

1

4a3
6= 0 ,

a contradiction. This finishes the proof of Theorem 3.

Remark 1 In the proof of Theorem 3 we have used the translation invariance only in the direction
(1, 0, 0). In other directions the integrand retains a dependence on the angle ϕ and hence no inter-
esting equation can be derived. This also occurs if we use the invariance with respect to rotations.
It seems that we cannot use the invariance with respect to inversions since we cannot write it as a
continuous transformation.

Remark 2 One can also derive formulas (8) and (9) from (5) by integrating (13) and (14) on
intervals (x1, x2). The surprising fact about (13) and (14) is that the multiplication of the Willmore
operator by suitable factors enables us to recognise a derivative. However it is difficult to guess
the right form of these factors in advance. We have therefore chosen to use the invariances of the
Willmore functional to prove (8) and (9) because this approach seems to be more natural and easier
to generalise.

Theorem 5 Let u : [−1, 1]→ R be a smooth, positive, symmetric solution of (5) satisfying u(1) =
u′(1). Then,

H(1) = 0 or H(1) =
1

u(1)
√

1 + u′(1)2
.

Proof By Theorem 3 u satisfies (8) for all x ∈ [−1, 1]. Taking x = 1 in (8) and using that u(1) = u′(1)
we obtain

H(1)u(1)
√

1 + u′(1)2

(
1

u(1)
√

1 + u′(1)2
−H(1)

)
= 0 ,

from which the claim follows.

Corollary 6 Let α > α∗ and u : [−1, 1] → R be a smooth, positive, symmetric, convex solution of
the Dirichlet Willmore boundary value problem{

∆H + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, and u′(±1) = ±α.
(15)

Then u solves (5)-(6) and Γ (u) is not a minimal surface.

Proof Since u is convex we have u′′(x) ≥ 0 and hence

H(1) =
1

2

(
− u′′(1)

(1 + u′(1)2)3/2
+

1

u(1)
√

1 + u′(1)2

)
≤ 1

2u(1)
√

1 + u′(1)2
.

Theorem 5 then implies that H(1) = 0. Finally, if Γ (u) were a minimal surface, i.e. H ≡ 0, then
[8, Proposition 5.11] would imply that u is a catenary. This is impossible due to α > α∗ and the
boundary values of u and u′.
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In the following proposition we collect some further consequences of Theorem 3. We shall use
(16) to prove that H[u] < 0 in (−1, 1), while we have included (17) because we feel that such a result
is of independent interest.

Proposition 7 Let u : [−1, 1] → R be a smooth, positive, symmetric solution of (5). Then H[u]
satisfies

u2(x)H ′(x) + C
(
x+ u(x)u′(x)

)
= 0 . (16)

Furthermore, u is a solution of the second order differential equation

− u(x)2u′′(x)

(1 + u′(x)2)3/2
− u(x)√

1 + u′(x)2
+ C(u(x)2 + x2) = D, in [−1, 1]. (17)

Here C is as in (9) and D is a constant of integration.

Proof The differential equation (16) is obtained from Theorem 3 by observing that (8) can be
rewritten as(

−H
′(x)u(x)u′(x)

1 + u′(x)2
− u(x)H(x)2√

1 + u′(x)2
+

H(x)

1 + u′(x)2

)
(x+ u(x)u′(x)) +H ′(x)u(x)2 = 0 ,

and using (9). The second statement in the claim follows from the first using

d

dx

[
u(x)2H(x)

]
= u(x)2H ′(x) +

d

dx

u(x)√
1 + u′(x)2

together with the fact that x+ u(x)u′(x) = d
dx

(
1
2 (x2 + u(x)2)

)
, integrating once, and using (3).

3 Existence of a convex solution to (15)

In view of Corollary 6 we obtain a solution of (5)-(6) with H 6≡ 0 by constructing a convex solution of
the Dirichlet Willmore boundary value problem (15). For later purposes it is convenient to consider
the family of Dirichlet boundary value problems{

∆H + 2H(H2 −K) = 0 in (−1, 1),

u(±1) = α, and u′(±1) = ∓β,
(18)

for boundary slopes β ∈ [−α,− sinh(b1(α))). As in the introduction, we denote by b1 = b1(α), b2 =

b2(α) with 0 < b1(α) < b0 < b2(α) < ∞ the two solutions of the equation α = cosh(b)
b . Using the

properties of the function y 7→ cosh(y)
y one sees that

cosh(y)

y
< α ⇐⇒ y ∈ (b1(α), b2(α)). (19)

For β ∈ [−α,− sinh(b1(α))) we have

sinh(b1) < −β ≤ α =
cosh(b2)

b2
< sinh(b2), (20)

so that in the parameter range we consider the two catenaries ub1 , ub2 are not solutions of (18).
Next, let us introduce

αβ :=

√
1 + β2

arcsinh (−β)
.

Note that (20) implies that arcsinh (−β) ∈ (b1(α), b2(α)) so that (19) with y = arcsinh (−β) implies

α > αβ , β ∈ [−α,− sinh(b1(α))). (21)
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Existence of solutions to (18) for arbitrary α > 0 and β ∈ R has been obtained in [11] by
minimizing over suitable subsets of H2(−1, 1) the “hyperbolic Willmore functional”

Wh(u) =

∫ 1

−1

(
u(x)u′′(x)

(1 + u′(x)2)3/2
+

1√
1 + u′(x)2

)2√
1 + u′(x)2

u(x)
dx,

which is the elastic energy of the graph of u as a curve in the hyperbolic half-plane. Motivated by
the theory developed in [11, Section 4.2.3] we introduce the following set:

Ñα,β := {u ∈ Sα ∩ C1,1([−1, 1]) | u′(−1) = β, u′(x) ≤ α for all x ∈ [0, 1]}.

As we shall see later, the constraint on u′ will ensure the convexity of our solution. In addition we
have for all u ∈ Ñα,β

α− u(x) =

∫ 1

x

u′(x) dx ≤ α(1− x), x ∈ [0, 1].

and therefore
u(x) ≥ αx, x ∈ [0, 1]. (22)

In view of (21) and the fact that −β ≤ α, we see that the function

ū(x) :=
1

b
cosh(bx) + α− αβ , with b = arcsinh (−β)

belongs to Ñα,β , so that this set is not empty. Let

M̃α,β := inf
u∈Ñα,β

W(u).

As observed by Pinkall and Bryant-Griffiths [6,14], the Willmore functional and the hyperbolic
Willmore functional are related by the identity

W(u) =
π

2
Wh(u)− 2π

u′(x)√
1 + u′(x)2

∣∣∣∣∣
1

−1

so that in particular

W(u) =
π

2
Wh(u) + 4π

β√
1 + β2

, u ∈ Ñα,β . (23)

Hence, on Ñα,β minimising W is equivalent to minimising Wh. Furthermore, by Lemma 4.5 in [11],

in the minimisation process, we can restrict to functions u ∈ Ñα,β additionally satisfying

u′(x) > 0 and 1− 1√
1 + u′(x)2

cosh

(√
1 + u′(x)2

u(x)
x

)
≥ 0 for x ∈ (0, 1]. (24)

Remark 3 The inequalities in (24) imply

u(x)

x
≥

√
1 + u′(x)2

arcsinh (u′(x))
, x ∈ (0, 1]. (25)

Applying (19) with y = arcsinh (u′(x)), this gives

u′(x) ≥ sinh
(
b1(α(x))

)
, where α(x) =

u(x)

x
, x ∈ (0, 1]. (26)

Moreover, note that if the second inequality in (24) is strict, then so are the inequalities (25) and
(26).

Remark 4 The second inequality in (24) is strict for minimisers u ∈ Ñα,β , β ∈
[
−α,− sinh(b1(α))

)
that satisfy (5) (cf. [11, Proof of Proposition 4.18]). For the convenience of the reader we have
provided a proof of this statement in the Appendix.
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In what follows we shall make use of the following technical result:

Lemma 8 Let α > α∗ and β ∈ (−α,− sinh(b1(α))]. For each u ∈ Ñα,β satisfying (24) and for each
γ ∈ [αβ , α) there exists a symmetric, strictly positive v ∈ C1,1([−1, 1]) such that v satisfies (24),
v(±1) = γ, v′(−1) = β, α ≥ v′(x) > 0 for x ∈ (0, 1] and W(v) ≤ W(u). In addition, if u satisfies
u′ ≤ δ ≤ α in (0, 1] then also the function v satisfies v′ ≤ δ ≤ α in (0, 1].

Proof See Corollary 4.20 and its proof in [11]. That result is formulated using the hyperbolic Will-
more functional Wh which can be rewritten in terms of W in view of (23).

Theorem 9 For α > α∗ and β ∈ (−α,− sinh(b1(α))) there exists a convex function u ∈ Ñα,β
such that W(u) = infv∈Ñα,βW(v). The function u belongs to C∞([−1, 1]) and solves the Dirichlet

boundary value problem (18). Furthermore, u satisfies (24) as well as

u′(x) ≤ −β, x ∈ [0, 1]. (27)

Proof The existence and regularity of a minimizer u satisfying (18), (24) and (27) can be found in
[11, Section 4.2.3]. It remains to show that u is convex. Combining (27) with (22) we deduce that

d

dx

u(x)

x
=

1

x

(
u′(x)− u(x)

x

)
≤ 1

x
(−β − α) < 0, x ∈ (0, 1]. (28)

Next, we claim that u′ is injective on [0, 1]. If not, there would exist x1, x2 in (0, 1] such that x1 < x2
and u′(x1) = u′(x2). We can choose x1 such that u′(x) < u′(x1) for all x ∈ [0, x1). Let us consider

the function ũ : [−1, 1]→ R, ũ(x) = u(x1x)
x1

. Clearly ũ(±1) = u(x1)
x1

=: α̃ and ũ′(−1) = −u′(x1) =: β̃.
Recalling that u′(x) < u′(x1) for x ∈ [0, x1) and arguing similarly as in (28) we derive

ũ′(x) = u′(x1x) ≤ u′(x1) <
u(x1)

x1
= α̃, x ∈ [0, 1],

so that ũ ∈ Ñα̃,β̃ , and β̃ > −α̃. On the other hand, (26) computed for u at x1 yields β̃ ≤
− sinh(b1(α̃)), and so we have β̃ ∈ (−α̃,− sinh(b1(α̃))]. Evaluating (25) at x2 and taking into account
that u′(x1) = u′(x2) = −β̃ we find

u(x2)

x2
≥

√
1 + β̃2

arcsinh (−β̃)
= αβ̃ .

Combining this estimate with (28) we infer that

α̃ =
u(x1)

x1
>
u(x2)

x2
≥ αβ̃ .

Moreover since u satisfies (24), the same holds for ũ. Lemma 8 with α = α̃, β = β̃, γ = u(x2)
x2

, and

δ = u′(x1) implies that there exists a symmetric, strictly positive function ṽ ∈ C1,1([−1, 1]) satisfying

(24), ṽ(±1) = u(x2)
x2

, ṽ′(−1) = −u′(x1), ṽ′(x) ≤ u′(x1) ≤ α for x ∈ [0, 1] andW(ṽ) ≤ W(ũ). Recalling
that u′(x1) = u′(x2) we deduce that the function

v(x) :=

{
x2ṽ
( x
x2

)
for x ∈ [−x2, x2],

u(x) for x ∈ [−1,−x2) ∪ (x2, 1],

belongs to Ñα,β . Furthermore,

W(v) =W(ṽ) + 4π

∫ 1

x2

H(x)2u(x)
√

1 + u′(x)2 dx

≤ W(ũ) + 4π

∫ 1

x2

H(x)2u(x)
√

1 + u′(x)2 dx

=W(u)− 4π

∫ x2

x1

H(x)2u(x)
√

1 + u′(x)2 dx.
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Since u is a mimimum of W over Ñα,β we deduce that H ≡ 0 on [x1, x2]. It is well known that
then necessarily u|[x1,x2]

is a piece of a catenary (cf. [8, Proposition 5.11]). This however contradicts

the fact that u′(x1) = u′(x2). As a consequence, u′ must be injective on [0, 1], so that u′ is strictly
increasing as u′(0) < u′(1) and we finally infer that u is convex.

Next, we need a result concerning the monotonicity behaviour of β 7→ M̃α,β .

Lemma 10 Let α > α∗ and β, β′ ∈ [−α,− sinh(b1(α))) with β < β′.
Then M̃α,β′ < M̃α,β.

Proof See the Appendix.

Theorem 11 Let α > α∗. Then there exists a convex function u ∈ Ñα,−α such that W(u) =
infv∈Ñα,−αW(v). The function u belongs to C∞([−1, 1]) and solves the Dirichlet boundary value

problem (15).

Proof Let (βk)k∈N be a sequence in (−α,− sinh(b1(α))) with limk→∞ βk = −α. By Theorem 9, for
each k ∈ N there exists a convex function uk ∈ Ñα,βk such that W(uk) = infv∈Ñα,βk

W(v) and uk is

a solution of (18) with β = βk. Obviously we have the uniform bounds

uk(x) ≤ α, |u′k(x)| ≤ α, x ∈ [−1, 1], k ∈ N, (29)

while Lemma 10 implies that

W(uk) = M̃α,βk < M̃α,−α, k ∈ N. (30)

Furthermore we show in the Appendix that there exists a constant cα > 0 such that

uk(x) ≥ cα, x ∈ [−1, 1], k ∈ N. (31)

As a consequence, (uk)k∈N is uniformly bounded in H2(−1, 1) so that, after possibly extracting a
subsequence, there exists u ∈ H2(−1, 1) with

uk ⇀ u in H2(−1, 1) and uk → u in C1([−1, 1]) . (32)

Clearly, u is strictly positive, symmetric, convex and we have u(±1) = α, u′(−1) = −α. It is not
difficult to see that one can approximate u in H2(−1, 1) by a sequence of functions belonging to
Ñα,−α so that we infer

W(u) ≥ M̃α,−α.

On the other hand, the weak lower semicontinuity of W together with (30) yields

W(u) ≤ lim inf
k→∞

W(uk) ≤ lim sup
k→∞

W(uk) ≤ M̃α,−α ≤ W(u),

so that
lim
k→∞

W(uk) =W(u) = M̃α,−α. (33)

Next, a short calculation together with (32) and (33) shows that

π

2

∫ 1

−1

uk(x)

(1 + u′k(x)2)
5
2

(u′′k(x)− u′′(x))2 dx

=W(uk) + π

∫ 1

−1

u′′k(x)

(1 + u′k(x)2)
3
2

dx− π

2

∫ 1

−1

1

uk(x)
√

1 + u′k(x)2
dx

− π
∫ 1

−1

uk(x)u′′k(x)u′′(x)

(1 + u′k(x)2)
5
2

dx+
π

2

∫ 1

−1

uk(x)u′′(x)2

(1 + u′k(x)2)
5
2

dx

→W(u) + π

∫ 1

−1

u′′(x)

(1 + u′(x)2)
3
2

dx

− π

2

∫ 1

−1

1

u(x)
√

1 + u′(x)2
dx− π

2

∫ 1

−1

u(x)u′′(x)2

(1 + u′(x)2)
5
2

dx

= 0.



Unstable Willmore surfaces of revolution subject to natural boundary conditions 13

With the help of (29) and (31) we infer that u′′k → u′′ in L2(−1, 1) so that (uk)k∈N converges strongly
to u in H2(−1, 1). We can use this information in order to establish that u is a smooth solution of
(15). Indeed, since uk is a solution of (18) we have

〈W ′(uk), ϕ〉 = 0, ϕ ∈ H2
0 (−1, 1), k ∈ N,

where the first variation of W in direction ϕ ∈ H2
0 (−1, 1) is given by the formula (cf. (29), [12])

〈W ′(v), ϕ〉 = π

∫ 1

−1

v(x)v′′(x)ϕ′′(x)

(1 + v′(x)2)
5
2

dx− 5

2
π

∫ 1

−1

v(x)v′(x)v′′(x)2ϕ′(x)

(1 + v′(x)2)
7
2

dx

− π

2

∫ 1

−1

v′(x)ϕ′(x)

v(x)(1 + v′(x)2)3/2
dx

+
π

2

∫ 1

−1

( v′′(x)2ϕ(x)

(1 + v′(x)2)
5
2

− ϕ(x)

v(x)2(1 + v′(x)2)
1
2

)
dx.

Letting k →∞ we deduce that

〈W ′(u), ϕ〉 = 0, ϕ ∈ H2
0 (−1, 1),

and proceeding as in the proof of Theorem 4, Step 2 in [10] we find that u is a smooth solution of
(15).

Remark 5 Let us emphasize that the constraint u′ ≤ α in the definition of Ñα,β appears to be
crucial in order to construct convex solutions. This observation is based on the results of numerical
experiments conducted with the algorithm described in [11, Section 7], which calculates approximate
solutions of (18) via the L2-gradient flow ofW. The corresponding solutions are therefore in general
local minima of W in the class

Nα,β = {u ∈ Sα ∩ C1,1([−1, 1]) : u′(−1) = β} .

On the left hand side of Figure 2 we display two solutions for α = −β = 3, while the pictures on the
right hand side show their corresponding mean curvature H. We remark that the lower solution does
not belong to Ñ3,−3, and has energy W ' 0.4172 while the energy of the upper (convex) solution is
W ' 3.428. Note also that the values of H(±1) numerically confirm the statement of Theorem 5.

Proof (Proof of Theorem 2) Fix α > α∗. We already know that the two catenaries

x 7→ cosh(bi(α)x)

bi(α)
, i = 1, 2,

are solutions of (5)-(6). The existence of a third solution which is convex follows immediately by
combining Corollary 6 and Theorem 11. Furthermore, denoting by (uk)k∈N the sequence occuring in
the proof of Theorem 11 we infer with the help of (30) that W(uk) < W(u), k ∈ N. Since uk ∈ Sα
and uk → u, k →∞ in H2(−1, 1), the function u cannot be a local mimimum of W in Sα.

Proof of (i). We claim that the mean curvature H of u is either strictly positive or strictly negative
on (−1, 1). In view of the symmetry of H it is enough to prove the claim on [0, 1). Assume that
there exists an x0 ∈ [0, 1) such that H(x0) = 0. Then there would also exist an x1 ∈ (x0, 1) such
that H ′(x1) = 0, and hence by (16)

C
(
x1 + u(x1)u′(x1)

)
= 0.

As u′(x) > 0 in (0, 1] it follows that C = 0, which upon reinsertion in (16) gives that H is a constant
function and hence H ≡ 0, which contradicts Corollary 6. Therefore H is of fixed sign on (−1, 1).
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Fig. 2: Numerically computed solutions to (15) (left) and their mean curvature (right) in the case α = 3.

In order to determine the sign of H we now compute

2

∫ 1

0

H(x)(1 + u′(x)2)
(xu′(x)

u(x)
− 1
)
dx

=

∫ 1

0

d

dx

(
arccosh

(√
1 + u′(x)2

)
− x

√
1 + u′(x)2

u(x)

)
dx

= arccosh
(√

1 + α2
)
−
√

1 + α2

α

> arccosh
(√

1 + (α∗)2
)
−
√

1 + (α∗)2

α∗

= 0 (34)

since the function α 7→ arccosh
(√

1 + α2
)
−
√
1+α2

α is strictly increasing. As u ∈ Ñα,−α, we have
u′(x) ≤ α which together with (22) yields

xu′(x)

u(x)
≤ 1 for x ∈ [0, 1]. (35)

Assume that H > 0 on (−1, 1). Combining (34) and (35) shows

0 ≥ 2

∫ 1

0

H(x)(1 + u′(x)2)
(xu′(x)

u(x)
− 1
)
dx > 0,

which is impossible. Hence H(x) < 0 for all x ∈ (−1, 1), which proves (i).
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Proof of (ii). We are now in a position to show that u and H are strictly convex. Strict convexity
of u follows immediately by solving (3) for u′′ and using H(x) < 0:

u′′(x) = −2H(x)
(
1 + u′(x)2

) 3
2 +

1 + u′(x)2

u(x)
> 0, x ∈ [−1, 1].

In order to see that H is strictly convex, we first observe that evaluating (9) at the origin gives

C = −u(0)H(0)2 +H(0) < 0.

Differentiating (16) and using (35) (which, due to the symmetry of u, is valid in [−1, 1]) as well as
(i), it follows for all x ∈ (−1, 1) that

H ′′(x) = (−C)

(
1

u(x)2
− 2

xu′(x)

u(x)3
+
u′′(x)

u(x)
− u′(x)2

u(x)2

)
≥ (−C)

(
− 1 + u′(x)2

u(x)2
+
u′′(x)

u(x)

)

= (−C)

(
− 1 + u′(x)2

u(x)2
− 2H(x)

(
1 + u′(x)2

) 3
2

u(x)
+

1 + u′(x)2

u(x)2

)

= 2CH(x)

(
1 + u′(x)2

) 3
2

u(x)

> 0.

Proof of (iii). Let us first show that

u(x) > ub2(x) =
1

b2
cosh(b2x), x ∈ (−1, 1), (36)

where b2 = b2(α). Since

α√
1 + α2

− u(0) =

∫ 1

0

d

dx

[
u(x)√

1 + u′(x)2

]
dx = 2

∫ 1

0

u(x)u′(x)H(x) dx < 0

by (i), and as α < sinh(b2), this implies

u(0) >
α√

1 + α2
>

α

cosh(b2)
=

1

b2
= ub2(0),

so that (36) holds at the origin. Set x∗ = inf
{
x ∈ [0, 1] | u(x) = ub2(x)

}
. Since (36) holds at x = 0,

we have x∗ ∈ (0, 1]. Assume that x∗ < 1. Clearly

u′(x∗) ≤ u′b2(x∗). (37)

Since u(x∗) = ub2(x∗) we deduce with the help of (22)

cosh(b2x
∗)

b2x∗
=
u(x∗)

x∗
≥ α,

so that by (19) b2x
∗ ≤ b1 or b2x

∗ ≥ b2. Since x∗ < 1 and b1 < b0, this in particular implies b2x
∗ < b0.

By Theorem 11, u is a minimiser in Ñα,−α. Remark 4 followed by Remark 3 thus yields that

u′(x∗) > sinh

(
b1

(u(x∗)

x∗

))
= sinh

(
b1

(cosh(b2x
∗)

b2x∗

))
= sinh(b2x

∗) = u′b2(x∗)

by the definition of b1 and since b2x
∗ < b0. This contradicts (37) so that x∗ = 1, proving (36) on

[0, 1). The claim on (−1, 1) follows by the symmetry of u and ub2 .
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Let us finally show that

u(x) < ub1(x) =
1

b1
cosh(b1x), x ∈ (−1, 1), (38)

where b1 = b1(α). Set x∗ = sup
{
x ∈ [0, 1] | u′(x) = u′b1(x)

}
. Clearly x∗ < 1 and u′(x) > u′b1(x) for

x ∈ (x∗, 1]. Let us assume that x∗ > 0. We have u′(x∗) = u′b1(x∗) = sinh(b1x
∗) and

u(x∗)− ub1(x∗) =

∫ 1

x∗
(u′b1(x)− u′(x)) dx < 0.

Therefore,

u(x∗)

x∗
<
ub1(x∗)

x∗
=

cosh(b1x
∗)

b1x∗
=

√
1 + u′(x∗)2

arcsinh (u′(x∗))
.

On the other hand (25) computed in x∗ yields

u(x∗)

x∗
≥

√
1 + u′(x∗)2

arcsinh (u′(x∗))
,

a contradiction. Hence x∗ = 0 which implies that u′(x) > u′b1(x) for x ∈ (0, 1]. Integration yields
(38) on [0, 1), and the symmetry of u and ub1 gives (38) on (−1, 1).

This completes the proof of Theorem 2.

Appendix

Proof of Remark 4. If the second inequality in (24) were not strict, then there would exist an x1 ∈ (0, 1) such that

u(x1) =
u(x1)√

1 + u′(x1)2
cosh

(√
1 + u′(x1)2

u(x1)
x1

)
. (39)

Let

uγ(x) =
1

γ
cosh

(
γx
)
, where γ =

√
1 + u′(x1)2

u(x1)
.

Note that u(x1) = uγ(x1) and

u′γ(x1) = sinh(γx1) =
√

cosh2
(
γx1

)
− 1 = u′(x1),

where we used (39) for the last equality. Since u ∈ Ñα,β this implies u′γ(x) ≤ u′γ(x1) = u′(x1) ≤ α for x ∈ [0, x1]. As
a consequence the function

v(x) :=

{
uγ(x) for x ∈ [−x1, x1],
u(x) otherwise,

belongs to Ñα,β and W(v) ≤ W(u). Since u is a minimiser of W in Ñα,β we infer that W(v) = W(u) and hence
H[u] ≡ 0 on [−x1, x1]. It follows from [8, Proposition 5.11] and the boundary values that u ≡ uγ on [−x1, x1]. Since
both u and uγ solve (5) on (−1, 1) we obtain u ≡ uγ on [−1, 1] which is in contradiction with β ∈ [−α,− sinh(b1(α))).

Proof of Lemma 10. Here we essentially follow the argument of Lemma 3.11 in [2] with minor modifications. Let us
first prove that

M̃α,β′ < M̃α,β for all β, β′ ∈ (−α,− sinh(b1(α))) with β < β′. (40)

We observe that (21) implies α > αβ and α > αβ′ . By Theorem 9 there exists a convex function u ∈ Ñα,β satisfying
(24) such that W(u) = infv∈Ñα,β

W(v). Since u′(1) = −β > −β′ there is x∗ ∈ (0, 1) with u′(x∗) = −β′. The function

ũ : [−1, 1] → R, ũ(x) := 1
x∗ u(x∗x) then satisfies (24), ũ(±1) = 1

x∗ u(x∗) =: α̃ and ũ′(−1) = β′. In view of (22) we
have α̃ ≥ α. Furthermore, since u is convex we infer that

ũ′(x) = u′(x∗x) ≤ u′(x∗) ≤ α ≤ α̃ in [0, 1]

so that ũ ∈ Ñα̃,β′ . Evaluating (26) at x∗ implies β′ ≤ − sinh(b1(α̃)). Since β′ > −α ≥ −α̃, we therefore have
β′ ∈ (−α̃,− sinh(b1(α̃))]. As observed earlier, α > αβ′ and so α ∈ (αβ′ , α̃]. If α̃ > α, Lemma 8 yields the existence of
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a symmetric, strictly positive function v ∈ C1,1([−1, 1]) satisfying v(±1) = α, v′(−1) = β′, v′ ≤ α in [0, 1], (24) and
W(v) ≤ W(ũ). If α̃ = α we simply choose v = ũ. In any case we have v ∈ Ñα,β′ and

W(u) = 4π

∫ x∗

0
H(x)2u(x)

√
1 + u′(x)2 dx+ 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

=W(ũ) + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

≥ W(v) + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx

≥ M̃α,β′ + 4π

∫ 1

x∗
H(x)2u(x)

√
1 + u′(x)2 dx.

We observe that H 6≡ 0 on [x∗, 1], for otherwise u|[x∗,1] would have to be a catenary, contradicting the fact that

u(1) = α, u′(1) = −β and (20). Recalling that W(u) = M̃α,β we infer (40).
In order to complete the proof of Lemma 10 it is in view of (40) sufficient to show that

M̃α,β ≤ M̃α,−α for all β ∈ (−α,− sinh(b1(α))). (41)

Fix β ∈ (−α,− sinh(b1(α))) and let u ∈ Ñα,−α be an arbitrary function satisfying (24). Note that (21) implies α > αβ .
Since u′(1) = α > −β there is an x∗ ∈ (0, 1) such that u′(x∗) = −β and 0 < u′(x) < u′(x∗), x ∈ (0, x∗). The function

ũ(x) =
u(x∗x)
x∗ then satisfies (24), ũ(±1) =

u(x∗)
x∗ =: α̃ and ũ′(−1) = β. In view of (22) we have α̃ ≥ α and therefore

ũ′(x) ≤ u′(x∗) = −β < α ≤ α̃ for x ∈ [0, 1], so that ũ ∈ Ñα̃,β . Similarly as above we deduce from (21), (25), (26) that
β ∈ (−α̃,− sinh(b1(α̃))] as well as α̃ ≥ α > αβ . Choosing v = ũ if α = α̃, and v according to Lemma 8 if α̃ > α, we
obtain a symmetric, strictly positive function v ∈ C1,1([−1, 1]) satisfying v(±1) = α, v′(−1) = β, v′ ≤ α in [0, 1], (24)
and W(v) ≤ W(ũ). As a result

W(u) ≥ W(ũ) ≥ W(v) ≥ M̃α,β ,

from which we deduce (41). This finishes the proof of Lemma 10.

Proof of (31). We use the argument from the proof of Lemma 4.9 in [11]. For the convenience of the reader we
reproduce the relevant calculations and adapt them to our particular situation. To begin,

W(uk) = π

∫ 1

0

(
−

u′′k(x)

(1 + u′k(x)2)
3
2

+
1

uk(x)
√

1 + u′k(x)2

)2

uk(x)
√

1 + u′k(x)2 dx

≥ π
∫ 1

0

1

uk(x)
√

1 + u′k(x)2
dx− 2π

∫ 1

0

u′′k(x)

(1 + u′k(x)2)
3
2

dx

= π

∫ 1

0

1

uk(x)
√

1 + u′k(x)2
dx+ 2π

βk√
1 + β2

k

.

Since u′k ≤ α in [0, 1] we have uk(x) ≤ uk(0) + αx, x ∈ [0, 1] and therefore

π
√

1 + α2

∫ 1

0

1

uk(0) + αx
dx ≤ W(uk) + 2π

|βk|√
1 + β2

k

≤ M̃α,−α + 2π
α

√
1 + α2

,

as |βk| ≤ α. Solving this inequality for uk(0) and recalling that uk is convex we infer

inf
x∈[0,1]

uk(x) = uk(0) ≥
α

exp
(α√1+α2

π
M̃α,−α + 2α2

)
− 1

,

which proves (31).
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