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Abstract. Higher-rank graphs (or k-graphs) were introduced by Kumjian and Pask to
provide combinatorial models for the higher-rank Cuntz–Krieger C∗-algebras of Robertson
and Steger. Here we consider a family of finite 2-graphs whose path spaces are dynamical
systems of algebraic origin, as studied by Schmidt and others. We analyse the C∗-algebras
of these 2-graphs, find criteria under which they are simple and purely infinite, and
compute their K -theory. We find examples whose C∗-algebras satisfy the hypotheses of the
classification theorem of Kirchberg and Phillips, but are not isomorphic to the C∗-algebras
of ordinary directed graphs.

1. Introduction
Higher-rank graphs (or k-graphs) were introduced by Kumjian and Pask [9] to provide
combinatorial models for the higher-rank Cuntz–Krieger C∗-algebras of Robertson and
Steger [23]. They have since provided a fertile source of examples in non-commutative
geometry [16, 17, 19], and many important operator algebras can be realized as the
C∗-algebras of higher-rank graphs [2, 8, 15]. There has therefore been continuing interest
in finding new families of k-graphs and analysing the structure of their C∗-algebras.

Every shift of finite type is equivalent to the backward shift σ on the two-sided infinite
path space of a finite directed graph [12, Theorem 2.3.2]. The two-sided infinite path space
31 of a finite k-graph 3 introduced in [10] carries a set of k commuting shifts σi , and
these are examples of the higher-dimensional shifts of finite type studied by dynamicists.
In this paper we consider a family of finite 2-graphs 3 for which the path spaces (31, σi )

are dynamical systems of algebraic origin, as studied by Schmidt and others [26]. (A
particular motivating example for us was the system introduced by Ledrappier in [11].)
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We analyse the C∗-algebras of these 2-graphs, find criteria under which they are simple
and purely infinite, and compute their K -theory.

Each of our graphs 3 is associated to a tile, which is a finite hereditary subset T of
N2 containing the origin. We picture T as a collection of boxes into which we can put
elements of the commutative ring Z/qZ, which we think of as an alphabet: for example,
we picture the sock T := {0, e1, e2} as

.

The vertices in3 are copies of T in which each box is filled with elements of Z/qZ which
together satisfy a fixed equation in Z/qZ; for example, the vertices in the Ledrappier graph
underlying Ledrappier’s system are copies of the sock filled with 0s and 1s such that sum
of the entries is 0 (mod 2). Paths in 3∗ are diagrams covered by translates of T , filled in
so that each translate of T is a valid vertex. Thus for example,

0 0 1 1
1 1 1 0 1
0 1 0 1 1
0 0 1 1 0

(1.1)

represents a path λ of degree (3, 2) in the Ledrappier graph

from s(λ)=
1
0 1 (the top RH one) to r(λ)=

0
0 0 (the bottom LH one).

The infinite path space 31 consists of similar diagrams covering the entire plane, and the
shifts σ1 and σ2 simply move the diagram one row left and one column down respectively.
So it is easy to construct paths in these graphs, and thereby determine properties of their
C∗-algebras.

We begin with a short section in which we recall the basic properties of 2-graphs and
their C∗-algebras. In §3, we fix a set of ‘basic data’, which consists of a tile T , an
integer q determining the alphabet, another integer t and a function w : T → Z/qZ which
determines the equation relating the entries. We describe the vertices and paths in our
2-graph as functions from T and translates of T into Z/qZ, and then we have to prove
that they form the objects and morphisms in a category satisfying the axioms of a 2-graph
3=3(T, q, t, w) (see Theorem 3.4). In §4, we show that the two-sided infinite path
space of 3(T, q, t, w) is the underlying space for a higher-dimensional shift of the sort
studied in dynamical systems (Theorem 4.1).

In §5, we show that, provided certain key values of the function w are invertible,
the 2-graph 3(T, q, t, w) is aperiodic in the sense of Kumjian and Pask, so that the
Cuntz–Krieger uniqueness theorem applies. We prove this using the recent formulation
of Robertson and Sims [22], and as an intermediate step in the proof we show that
3(T, q, t, w) is always strongly connected in the sense that there are paths joining any
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two vertices. In §6, we show that, under the same invertibility hypothesis on w, the
C∗-algebra C∗(3(T, q, 0, w)) is nuclear, simple and purely infinite. After our work in §5,
this follows quickly from general results in [22] and [27] about the structure of k-graph
algebras. The main result, Theorem 6.1, implies that C∗(3(T, q, 0, w)) is a Kirchberg
algebra, and hence by the theorem of Kirchberg and Phillips is classifiable by its K -groups.

In §7, we compute the K -theory of C∗(3(T, q, t, w)), using the techniques developed
by Robertson and Steger [24] and Evans [4], which identify K0(C∗(3(T, q, t, w))) and
K1(C∗(3(T, q, t, w))) in terms of the kernels and cokernels of certain integer matrices.
Our 2-graphs are finite but large, so we have used the computational algebra system
Magma [1] to compute these kernels and cokernels. We have presented some of these
results in Table 1. These results have led us to make some general conjectures about
the K -theory of our 2-graphs, and in §8 we prove two of these conjectures. Perhaps the
most surprising result is that, under mild hypotheses, K0 and K1 have the same finite
cardinality—though our proof of this is indirect, and gives us no hint of whether the groups
are actually isomorphic.

1.1. Visualization convention. We visualize a subset S of N2 as the union of the unit
squares whose bottom left-hand corners belong to S, and a function f : S→ Z as a diagram
in which the number f (i) is placed in the square with bottom left-hand corner i . Thus the
sock T = {0, e1, e2} is visualized as

,

and the function f : T → Z defined by f (0)= 3, f (e1)= 6 and f (e2)= 5 as

5
3 6 .

1.2. Notation. Let N= {0, 1, 2, 3, . . .} denote the monoid of natural numbers under
addition and let Z be the group of integers. For k ≥ 1, we view Nk as the set of morphisms
in a category with one object and composition given by addition. We write ni for the i th
coordinate of n ∈ Zk , and {ei } for the usual basis of Zk . For m, n ∈ Zk we say m ≤ n
if mi ≤ ni for each i , and write m ∨ n and m ∧ n for the coordinate-wise maximum and
minimum.

2. 2-graphs
Let k be a positive integer. A graph of rank k or k-graph is a pair (3, d) consisting
of a countable category 3 and a functor d :3→ Nk , called the degree map, satisfying
the factorization property: for every λ ∈3 and m, n ∈ Nk with d(λ)= m + n, there exist
unique elements µ, ν ∈3 such that d(µ)= m, d(ν)= n and λ= µν. In practice, we drop
the degree map from the notation.

We refer to the morphisms in 3 as paths and the objects as vertices. If λ ∈3 satisfies
d(λ)= n we say λ has degree n; we write 3n

:= {λ ∈3 | d(λ)= n}. All k-graphs in this
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p

q

FIGURE 1. A path of degree (3,2).

paper are finite in the sense that each 3n is a finite set, and have no sources in the sense
that for each vertex v and each n ∈ Nk , there is at least one λ ∈3n with r(λ)= v.

The factorization property has several consequences. First, it implies that for each
vertex v the identity morphism ιv is the only morphism of degree 0 from v to v, so that we
can identify Obj(3) with 30. We then write v3, for example, to mean the set of paths λ
with r(λ)= v. Second, it implies that for every triple m, n, p ∈ Nk satisfying 0≤ m ≤ n ≤
p and λ ∈3p with d(λ)= p, there are unique segments λ(0, m) ∈3m , λ(m, n) ∈3n−m ,
λ(n, p) ∈3p−n such that λ= λ(0, m)λ(m, n)λ(n, p). The paths λ(m, m) have degree 0,
and hence are vertices; in the literature it is common to write λ(m) := λ(m, m), but we will
refrain from doing this as λ(m) will have another more natural meaning.

In this paper we are primarily interested in 2-graphs, so k is usually 2. We visualize
a 2-graph as a directed bicoloured graph with vertex set 30 in which the elements β of
3e1 are represented by blue edges from s(β) ∈30 to r(β) ∈30, and elements of 3e2 as
red edges. (In print we use black curves to represent blue edges and dashed curves for red
edges.) This bicoloured graph is called the skeleton of 3. Applying the factorization
property to (1, 1)= e1 + e2 = e2 + e1 gives a bijection between the blue-red paths of
length 2 and the red-blue paths of length 2. We then visualize a path of degree (1, 1)
as a square

•

e
���
�
� •

foo

h
���
�
�

• •
g

oo

(2.1)

in which the bijection matches up the blue-red path gh with the red-blue path e f , so that
gh = e f are the two factorizations of the path of degree (1, 1). It turns out (though we shall
not rely on this fact in this paper) that a 2-graph is completely determined by a collection
C of squares (2.1) in which each blue-red and each red-blue path occur exactly once. The
paths of degree (3, 2) from w to v, for example, then consist of copies of the rectangle in
Figure 1 pasted round the blue-red graph, so that q lands on w, p lands on v, and each
constituent square is one of the given collection C . Composition of paths involves taking
the convex hull: if d(λ)= (1, 1) and d(µ)= (1, 2), for example, then λµ is obtained by
filling in the corners of the diagram in Figure 2 with squares from C , which can be done
in exactly one way (there is only one square fitting e f , for example, so this has to be the
square in the top left corner).
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f

h j
g

e

FIGURE 2. Composing paths.

If 3 is a finite k-graph with no sources, then a Cuntz–Krieger 3-family is a collection
of partial isometries {Sλ | λ ∈3} (either operators in a Hilbert space or elements of an
abstract C∗-algebra) satisfying the following Cuntz–Krieger relations:
(1) {Sv | v ∈30

} is a family of mutually orthogonal projections;
(2) Sλµ = SλSµ for all λ, µ ∈3 such that s(λ)= r(µ);
(3) S∗λSλ = Ss(λ) for all λ ∈3;
(4) Sv =

∑
λ∈v3n SλS∗λ for all v ∈30 and n ∈ Nk .

The C∗-algebra of 3 is the C∗-algebra C∗(3) generated by a universal Cuntz–Krieger
3-family {sλ | λ ∈3}. The basic facts about these C∗-algebras are discussed in [9, 21]
and [20, Ch. 10], for example.

3. Tiles and 2-graphs
There are four variables in our main construction of 2-graphs. Recall that a subset T of N2

is hereditary if j ∈ T and 0≤ i ≤ j imply i ∈ T . The variables are:
• a tile T , which is a hereditary subset of N2 with finite cardinality |T |;
• an alphabet {0, 1, . . . , q − 1}, where q ≥ 2 is an integer (we view the alphabet as a

commutative ring by identifying it with Z/qZ in the obvious way);
• an element t of the alphabet, called the trace; and
• a function w : T → {0, 1, . . . , q − 1} called the rule.
For the rest of the section, we fix the basic data (T, q, t, w).

Example 3.1. For the 2-graph underlying the Ledrappier system, the basic data consists of
the sock tile T = {0, e1, e2}, q = 2, t = 0 and the constant function w ≡ 1.

The vertex set in our 2-graph will be

30
=

{
v : T → Z/qZ

∣∣∣∣ ∑
i∈T

w(i)v(i)= t (mod q)

}
.

The Ledrappier graph, for example, has four vertices a, b, c, d visualized as

0
0 0

1
0 1

1
1 0

0
1 1 . (3.1)

To describe the paths, we need some notation. Let (c1, c2) :=
∨
{i | i ∈ T }, so that the

longest row in T (the bottom one) has c1 + 1 boxes and the highest column in T (the left-
hand one) has c2 + 1 boxes. For S ⊂ Z2 and n ∈ Z2, we let S + n = {i + n | i ∈ S} denote
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the translate of S by n, and we set T (n) :=
⋃

0≤m≤n T + m. When we visualize T (n) using
our convention, it looks like a (c1 + 1+ n1)× (c2 + 1+ n2) rectangle of boxes with a bite
taken out of the top right-hand corner. If f : S→ Z/qZ is a function defined on a subset
S of N2 containing T + n, then we define f |T+n : T → Z/qZ by

f |T+n(i)= f (i + n) for i ∈ T . (3.2)

A path of degree n is a function λ : T (n)→ Z/qZ such that λ|T+m is a vertex for
0≤ m ≤ n; then λ has source s(λ)= λ|T+n and range r(λ)= λ|T . Thus, for example,
the diagram (1.1) is the visualization of a path of degree (3, 2) in the Ledrappier graph
based on the sock tile.

Notice that the function f |T+n defined in (3.2) is not a simple restriction: because
our tiles all have their bottom left-hand corner at the origin, we need to translate by n on
the right-hand side. We need to use a similar convention when we define the segments
appearing in the factorizations of paths. For λ ∈3p and 0≤ m ≤ n ≤ p, the segment
λ(m, n) is the path of degree n − m defined by

λ(m, n)(i)= λ(m + i) for i ∈ T (n − m).

In particular, λ(m, m) is the vertex λ|T+m .
We want 3∗ :=

⋃
n∈N2 3n to be the morphisms in a category, and so we have to define

composition. To make this work, we need to make an assumption on the rule w. We say
that the rule w has invertible corners if w(c1e1) and w(c2e2) are invertible elements of
the ring Z/qZ. The next proposition tells us that there is exactly one candidate for the
composition of two paths.

PROPOSITION 3.2. Suppose we have basic data (T, q, t, w) and the rule w has invertible
corners. Suppose µ ∈3m and ν ∈3n satisfy s(µ)= r(ν). Then there is a unique path
λ ∈3m+n such that

λ(0, m)= µ and λ(m, m + n)= ν. (3.3)

Notice that equation (3.3) defines λ uniquely on T (m) ∪ (T (n)+ m), so our
problem is to show that there is a unique function λ′ : T (m + n)→ Z/qZ such that
λ′|T (m)∪(T (n)+m) = λ and λ′|T+k belongs to 30 for every k such that 0≤ k ≤ m + n; since
µ and ν are paths and λ′ extends λ, we already know this for k such that T + k ⊂ T (m)
∪ (T (n)+ m).

Our strategy is to extend λ from T (m) ∪ (T (n)+ m) to T (m + n) by adding one point
at a time in such a way that there is only one possible value for λ at the new point. The
next lemma tells us how to do this. It depends crucially on the assumption that the rule has
invertible corners (see Remark 3.7), and it fails spectacularly for tiles in Nk when k > 2
(see Remark 3.8).

LEMMA 3.3. Suppose that l ∈ N2 and S is a subset of N2 containing T + l − e2 and
T + l + e1, and λ : S→ Z/qZ is a function such that λ|T+k belongs to30 for every k ∈ N2

such that T + k ⊂ S. Then there is a unique function

λ′ : S′ := S ∪ {l + e1 − e2 + c1e1} → Z/qZ

such that λ′|S = λ and λ′|T+k belongs to 30 for every k ∈ N2 such that T + k ⊂ S′.
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Proof. If l + e1 − e2 + c1e1 belongs to S, there is nothing to do. So we suppose
l + e1 − e2 + c1e1 is not in S. Let i ∈ T \{c1e1}. Then either i2 = 0 and i1 < c1, in which
case i + e1 belongs to T and l + e1 − e2 + i belongs to T + l − e2, or i2 > 0, in which
case i − e2 ∈ T and l + e1 − e2 + i belongs to T + l + e1. So (T \{c1e1})+ l + e1 − e2 is
contained in the domain S of λ, and l + e1 − e2 + c1e1 is the only point of T + l + e1 − e2

which is not in S. Thus we can define λ′|S = λ and

λ′(l + e1 − e2 + c1e1) := w(c1e1)
−1
(

t −
∑

i∈T \{c1e1}

w(i)λ(l + e1 − e2 + i)

)
. (3.4)

If T + k ⊂ S′, then either T + k ⊂ S, in which case λ′|T+k = λ|T+k ∈3
0, or k = l + e1 −

e2, in which case (3.4) implies λ′|T+k ∈3
0. No other value of λ′(l + e1 − e2 + c1e1)

would give λ′|T+l+e1−e2 ∈3
0, so this function λ′ is the only one with the required

property. 2

Proof of Proposition 3.2. The region T (m + n) is obtained from T (m) ∪ (T (n)+ m) by
adding two rectangles

B R := { j ∈ N2
| c1 + m1 < j1 ≤ c1 + m1 + n1, 0≤ j2 < m2}, and

U L := { j ∈ N2
| 0≤ j1 < m1, c2 + m2 < j2 ≤ c2 + m2 + n2}.

We order the bottom right rectangle B R lexicographically, first going down the column
j1 = c1 + m1 + 1, then down the column j1 = c1 + m1 + 2, and so on. We then apply
Lemma 3.3 to each j in order: when we come to define λ( j), we have already defined
λ(i) for every i above and to the left of j , and with l := j − e1 + e2 − c1e1, λ is defined
on both T + l − e2 and T + l + e1. Since there is only one possible value of λ( j) at each
stage, there is only one way to extend λ to T (m) ∪ (T (n)+ m) ∪ B R.

To see that λ extends uniquely to U L , we can either run the mirror image of this
argument in the rectangle U L , or reflect everything in the line n1 = n2 and apply what
we have just proved. 2

THEOREM 3.4. Suppose we have basic data (T, q, t, w) and the rule w has invertible
corners. Say that µ ∈3m and ν ∈3n are composable if s(µ)= r(ν), and define the
composition µν to be the unique path λ satisfying (3.3). Define d :3→ N2 by d(λ)= n
for λ ∈3n . Then, with 30, 3∗, r and s defined at the beginning of the section,
3(T, q, t, w) := ((30, 3∗, r, s), d) is a 2-graph.

Proof. We can view a vertex v ∈30 as a path of degree 0; then λ has the property (3.3)
which characterizes r(λ)λ and λs(λ), so v has the properties required of the identity
morphism at v. For µ ∈3m , ν ∈3n with s(µ)= r(ν), (3.3) implies that r(µν)
= (µν)|T = µ|T = r(µ) and

s(µν)= (µν)|T+m+n = (µν)(m, m + n)|T+n = ν|T+n = s(ν).

To prove that 3 is a category, it remains to show that composition is associative.
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Suppose µ ∈3m , ν ∈3n and ρ ∈3p satisfy s(µ)= r(ν) and s(ν)= r(ρ). For i ∈
T (n), we have

((µν)ρ)(m, m + n + p)(i) = ((µν)ρ)(i + m)= ((µν)ρ)(0, m + n)(i + m)

= (µν)(i + m)= (µν)(m, m + n)(i)= ν(i),

and for i ∈ T (p) we have

((µν)ρ)(m, m + n + p)(i + n) = ((µν)ρ)(i + m + n)

= ((µν)ρ)(m + n, m + n + p)(i)= ρ(i).

Thus
((µν)ρ)(m, m + n + p)(0, n)= ν

and
((µν)ρ)(m, m + n + p)(n, n + p)= ρ,

and hence
((µν)ρ)(m, m + n + p)= νρ.

On the other hand, for i ∈ T (m), we have

((µν)ρ)(0, m)(i) = ((µν)ρ)(i)= ((µν)ρ)(0, m + n)(i)

= (µν)(i)= (µν)(0, m)(i)= µ(i),

so ((µν)ρ)(0, m)= µ. Thus (µν)ρ has the property which characterizes µ(νρ), and we
have (µν)ρ = µ(νρ).

We have now shown that 3 is a category, and it is countable because each 3n is finite.
The map d :3→ N2 satisfies d(µν)= d(µ)+ d(ν) and hence is a functor, so it remains
to verify that d has the factorization property. But this is easy: given λ ∈3m+n , the paths
µ := λ(0, m) and ν := λ(m, m + n) are the only ones which can satisfy λ= µν. 2

To visualize the 2-graph 3(T, q, t, w), we draw its skeleton. This skeleton has a few
special properties.

PROPOSITION 3.5. Suppose we have basic data (T, q, t, w) and the rule w has invertible
corners. Then 3=3(T, q, t, w) satisfies
(a) |30

| = q |T |−1;
(b) for v, u ∈30, v3ei u is non-empty if and only if

v(m)= u(m − ei ) for every m ∈ T ∩ (T + ei ), (3.5)

in which case |v3ei u| = 1;
(c) |v3e1 | = |3e1v| = qc2 and |v3e2 | = |3e2v| = qc1 for every v ∈30.

Proof. There are q |T |−1 functions v : T \{c1e1} → Z/qZ, and each defines a unique vertex
v by setting

v(c1e1)= w(c1e1)
−1
(

t −
∑

i∈T \{c1e1}

w(i)v(i)

)
.
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This gives (a). For (b), note that if β ∈ v3ei u and m ∈ T ∩ (T + ei ), then

v(m)= β|T (m)= β|T+ei (m − ei )= u(m − ei ).

Conversely, if u, v satisfy (3.5), then we can define β : T (ei )→ Z/qZ by

β(m)=

{
v(m) for m ∈ T ,

u(m − ei ) for m ∈ (T + ei )\T ,

and (3.5) says that β|T+ei = u. The constraints β|T = v and β|T+ei = u completely
determine β, so |v3ei u| = 1.

To see (c), note that an edge β ∈3e1v has β|T+e1 determined by v. The remainder
T (e1) \ (T + e1) is the first column of T (e1), which has c2 + 1 entries. There are qc2

ways of filling in the bottom c2 squares, and then the top entry is determined by

β(c2e2)= w(c2e2)
−1
(

t −
∑

i∈T \{c2e2}

w(i)β(i)

)
.

Thus |3e1v| = qc2 . On the other hand, an edge β ∈ v3e1 has β|T = v, and T (e1)\T also
has c2 + 1 squares. We can fill in all the squares except c1e1 + e1 arbitrarily in qc2 ways,
and then β(c1e1 + e1) is determined by

β(c1e1 + e1)= w(c1e1)
−1
(

t −
∑

i∈T \{c1e1}

w(i)β(i + e1)

)
.

The facts about the red edges follow by symmetry. 2

Example 3.6. The Ledrappier graph L( ) is the 2-graph constructed from the basic data
consisting of the sock tile T , q = 2, t = 0 and w ≡ 1. It has four vertices a, b, c, d listed
in (3.1). Examples of a blue edge (with range b and source d) and a red edge (with range
a and source b) are visualized by

1 0
0 1 1

and

1
0 1
0 0 .

The skeleton of L( ) is the 2-coloured graph in Figure 3.

Remark 3.7. If we start with a rule which does not have invertible corners, then we can still
draw a bicoloured graph, which may or may not be the skeleton of a 2-graph. For example,
suppose T is the sock, w(0)= w(e1)= 1 and w(e2)= 0. Then there is exactly one blue-
red path between each pair of vertices, but there are sometimes two and sometimes no
red-blue paths, so the bicoloured graph cannot be the skeleton of a 2-graph. On the other
hand, if we use the zero rule w ≡ 0 on the sock, then there are two blue-red paths and two
red-blue paths between each pair of vertices, so there are bijections between the sets of
blue-red and red-blue paths, each of which determines a potentially different 2-graph. This
is reminiscent of the 2-graphs F+θ studied in [2], which have a single vertex, and are thus
completely determined by a permutation θ of a finite set {1, . . . , m} × {1, . . . , n}.

We will observe in Remark 4.4 that when we have to make choices to define a
factorization property, the correspondence between 2-graphs and shifts breaks down.
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a

b

c

d

FIGURE 3. The skeleton of the Ledrappier graph.

Remark 3.8. When we start with a tile T which is a finite hereditary subset of N3, we can
construct a tricoloured graph, but this will not completely determine a 3-graph because
Lemma 3.3 fails. The crux of the proof of Lemma 3.3 (when l = e2) is that the set
T (e1 + e2)\(T (e2) ∪ (T (e1)+ e2)), consists of the single point (c1 + 1)e1. When we
consider the tile T = {0, e1, e2, e3}, which is a natural 3-dimensional analogue of the sock,
we have

T (e1 + e2)\(T (e2) ∪ (T (e1)+ e2))= {2e1, e1 + e3}.

If we use a single rule w with invertible corners to define our vertices and paths, then there
is still more than one way to fill in the two empty cubes. So one would have to impose more
than one rule to get a uniquely defined red-blue factorization of a blue-red path. However,
the number of empty cubes to be filled depends on the dimensions of the original tile, so
just one extra rule is not enough in general.

4. Connections with shift spaces
To make contact with the dynamics literature, we consider basic data (T, q, 0, w). We
denote by Rq

2 = Z/qZ[u±1
1 , u±1

2 ] the commutative ring of Laurent polynomials in u1, u2

over the ring Z/qZ, and define g = gT,w ∈ Rq
2 by

gT,w =
∑
m∈T

w(m)um .

The shift space �=�Rq
2 /(g) is defined in [7, p. 719] as

� =

{
f = ( f (n)) ∈ (Z/qZ)Z

2
∣∣∣∣ ∑

i∈T

w(i) f (i + n)= 0 (mod q) for n ∈ Z2
}

=

{
f : Z2

→ Z/qZ
∣∣∣∣ ∑

i∈T

w(i) f |T+n(i)= 0 (mod q) for n ∈ Z2
}
. (4.1)

This is a compact subspace of (Z/qZ)Z2
in the product topology, and carries an action of

Z2 defined by (αp f )(n)= f (n + p).
The two-sided path space of a k-graph 3 was introduced in [10, §3]; here we consider

the case where 3 is a finite 2-graph. Let

1= {(m, n) | m, n ∈ Z2, m ≤ n};
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with r(m, n)= m, s(m, n)= n and d(m, n)= n − m, (1, d) becomes a 2-graph. The
two-sided infinite path space of 3 is

31 = {x :1→3 | x is a degree-preserving functor}.

It is shown in [10] that 31 has a locally compact (metric) topology with basic open sets

Z(λ, n)= {x ∈31 | x(n, n + d(λ))= λ},

for λ ∈3 and n ∈ Z2. Since we are assuming that 3 is finite, 31 is compact.
Now for each p ∈ Z2 we define σp :3

1
→31 by

σp(x)(m, n)= x(m + p, n + p).

Observe that for all n, p ∈ Z2 and λ ∈3 we have σp(Z(λ, n))= Z(λ, n + p), so σp is a
homeomorphism for every p ∈ Z2, and σ is an action of Z2 on 31.

THEOREM 4.1. Suppose we have basic data (T, q, 0, w) and w has invertible corners,
let 3 :=3(T, q, 0, w) be the associated 2-graph, and define � as in (4.1). Then there is
a homeomorphism h :31→� such that αp ◦ h = h ◦ σp.

Proof. Define h :31→ (Z/qZ)Z2
by

h(x)(i)= x(i, i)(0) for x ∈31, i ∈ Z2.

Let j ∈ T . Since x(i − j, i) is a path in 3, it is a well-defined function on T ( j) and

x(i, i)(0)= x(i − j, i)|T+ j (0)= x(i − j, i)( j + 0)= x(i − j, i − j)( j). (4.2)

Then h(x) ∈� since for all j ∈ Z2, (4.2) gives∑
i∈T

w(i)h(x)|T+ j (i) =
∑
i∈T

w(i)h(x)(i + j)

=

∑
i∈T

w(i)x(i + j, i + j)(0)

=

∑
i∈T

w(i)x( j, j)(i),

which is 0 (mod q) since x ∈31.
To see that h :31→� is a homeomorphism it suffices to show h is a continuous

bijection. For f ∈� define a function k( f ) :1→3 by

k( f )(m, n)= f |T (n−m)+m for m ≤ n.

Condition (4.1) implies that k( f )(m, n) is a path in 3 of degree n − m, so k is degree
preserving. An application of Proposition 3.2 says that k( f )(m, p)= f |T (p−m)+m factors
as

f |T (p−m)+m = f |T (n−m)+m f |T (p−n)+n,

which gives
k( f )(m, p)= k( f )(m, n)k( f )(n, p),

so k( f ) is a functor.
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We claim that k :�→31 is the inverse of h. We have h(k( f ))= f since for i ∈ Z2

h(k( f ))(i)= k( f )(i, i)(0)= f |T (0)+i (0)= f (i + 0)= f (i).

Now we must show k(h(x))= x . Let i ∈ T (n − m). Then i = j + l for some j ∈ T and
0≤ l ≤ n − m. We have

(k(h(x))(m, n))(i) = h(x)|T (n−m)+m(i)

= h(x)(i + m)

= h(x)( j + l + m)

= x( j + l + m, j + l + m)(0)

= x(l + m, l + m)( j) by (4.2)

= x(m, n)|T+l( j)

= x(m, n)( j + l)

= x(m, n)(i),

so k(h(x))= x .

To see that h is continuous, suppose xγ → x in 31. Since � has the product topology,
it suffices to prove that h(xγ )(i)→ h(x)(i) for all i ∈ Z2. Let i ∈ Z2. Then Z(x(i, i), 0) is
an open neighbourhood of x in31, so for large γ , xγ ∈ Z(x(i, i), 0). But then for large γ
we have h(xγ )(i)= xγ (i, i)(0)= x(i, i)(0)= h(x)(i), so certainly h(xγ (i))→ h(x)(i).

For the last part we have h(σp(x))= αp(h(x)) since

h(σp(x))(i)= (σpx)(i, i)(0)= x(i + p, i + p)(0)= h(x)(i + p)= αp(h(x))(i). 2

Remark 4.2. Theorem 4.1 implies in particular that the shift space � associated to the
Ledrappier graph L( ) is the 2-dimensional Markov system known as Ledrappier’s
example (see [13, Examples 1.8, 2.4] and [11]).

Remark 4.3. There is a one-sided version of Theorem 4.1. The space

�+ :=

{
f : N2

→ Z/qZ
∣∣∣∣ ∑

i∈T

w(i) f |T+n(i)= 0 (mod q) for all n ∈ N2
}

has a natural action of N2, and the Z2 action on 31 restricts to an N2 action on the one-
sided infinite path space 3∞. Then the argument of Theorem 4.1 gives a homeomorphism
of 3∞ onto �+ which commutes with the actions of N2.

Remark 4.4. We saw in Remarks 3.7 and 3.8 that relaxing our hypotheses on the rule or
using higher-dimensional tiles would lead to situations where we have to nominate blue-red
to red-blue factorizations to define a k-graph 3. In the two-dimensional case, this would
mean that if d(λ)= e1 + e2 then λ((c2 + 1)e2) will depend on the choice of λ((c1 + 1)e1)

as well as the values of λ on T ∪ (T + e1 + e2). So the homeomorphism of Remark 4.3
will carry the infinite path space of 3 onto a proper subspace of the shift space �+.
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5. Aperiodicity
Aperiodicity is the property of a k-graph 3 which ensures that 3 has a Cuntz–Krieger
uniqueness theorem which says that all Cuntz–Krieger 3-families generate isomorphic
C∗-algebras. We will use a formulation of aperiodicity due to Robertson and Sims: 3 is
aperiodic if for every v ∈30 and m, n ∈ N2 with m 6= n, there is a path λ ∈3 satisfying
r(λ)= v, d(λ)≥ m ∨ n and

λ(m, m + d(λ)− (m ∨ n)) 6= λ(n, n + d(λ)− (m ∨ n)). (5.1)

It is shown in [22, Lemma 3.2] that this is equivalent to the aperiodicity hypotheses used
in [9] and [21] (which phrase aperiodicity as properties of the shifts on the one-sided path
space 3∞).

To prove aperiodicity of our 2-graphs we need to make another restriction on the rulew.
We say that w has three invertible corners if w(0), w(c1e1) and w(c2e2) are all invertible
in Z/qZ (implicitly demanding that c1 ≥ 1 and c2 ≥ 1). We show in Example 5.1 that
aperiodicity may fail if w(0) is not invertible. We will also simplify things by assuming
that the trace t is zero, and we will discuss this hypothesis after the proof of Theorem 5.2.

Example 5.1. Consider the data consisting of the sock tile T = {0, e1, e2}, q = 2, t = 0
and rule defined by w(0)= 0, w(e1)= w(e2)= 1. The vertices are:

0
0 0

0
1 0

1
0 1

1
1 1 .

Since every vertex v has v(e1)= v(e2), every path is constant along the short diagonals
n1 + n2 = c. In other words, for every path λ and every n, we have λ(n)= λ(n + e1 − e2)

whenever n and n + e1 − e2 lie in the domain of λ. This implies in particular that for every
path λ with d(λ)≥ (1, 1), we have

λ(e2, d(λ)− e1)= λ(e1, d(λ)− e2),

so (5.1) fails for every v with m = e2 and n = e1.

THEOREM 5.2. If the rule w in the basic data (T, q, 0, w) has c1 ≥ 1, c2 ≥ 1 and three
invertible corners, then the associated 2-graph 3 is aperiodic.

For the proof of the theorem we need to know that 3 is strongly connected in the sense
that every v3∗u is non-empty.

PROPOSITION 5.3. Suppose that k ∈ N satisfies (k − 1)(e1 + e2) ∈ T and k(e1 + e2)

/∈ T . Then for every v, u ∈30 there exists λ ∈3k(e1+e2) such that r(λ)= v and s(λ)= u.

The proof of Proposition 5.3 depends on the following variant of Proposition 3.5(b).

LEMMA 5.4. If v, u ∈30 satisfy

v( j)= u( j − e1 − e2) for j ∈ T ∩ (T + e1 + e2), (5.2)

then there is a unique path µ ∈3e1+e2 such that r(µ)= v and s(µ)= u.
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Proof. We define

µ( j)=

{
v( j) if j ∈ T

u( j − (e1 + e2)) if j ∈ (T + e1 + e2)\T ;

then we obviously have µ|T = v, and (5.2) says that µ|T+e1+e2 = u. Now we observe that
because the corners w(ci ei ) are invertible, there are unique values of µ((ci + 1)ei ) such
that µ|T+ei belongs to 30. So there is exactly one path µ with the required property. 2

Proof of Proposition 5.3. We will prove by induction on p that for 0≤ p ≤ k, there exists
µp
∈3p(e1+e2) such that r(µp)= v and

s(µp)( j)= u( j − (k − p)(e1 + e2)) for j ∈ T ∩ (T + (k − p)(e1 + e2)). (5.3)

Then µ := µk is the required path.
For p = 0, we take µ0

:= v. Suppose that 0≤ p < k and we have µp with the required
properties. Now we define

v p+1(i)=

{
s(µp)(i + e1 + e2) for i ∈ T ∩ (T − e1 − e2)

u(i − (k − p − 1)(e1 + e2)) for i ∈ T ∩ (T + (k − p − 1)(e1 + e2));
(5.4)

if j belongs to both sets on the right-hand side, then we can apply (5.3) with j =
i + e1 + e2 and deduce that the two possible values for v p+1(i) coincide. We now define
v p+1(i) arbitrarily for other points i in T \{c1e1}, and set

v p+1(c1e1) := w(c1e1)
−1
( ∑

i∈T \{c1e1}

w(i)v p+1(i)

)
,

so that v p+1
∈30. The first option in (5.4) implies that the pair s(µp) and v p+1

satisfy (5.2), and hence by Lemma 5.4 there exists a path ν ∈3e1+e2 with r(ν)= s(µp)

and s(ν)= v p+1. Now we take µp+1 to be the composition µpν, and the second option
in (5.4) implies that s(µp+1) satisfies (5.3). 2

Proof of Theorem 5.2. We fix v ∈30 and m, n ∈ N2 with m 6= n. We choose a path µ with
r(µ)= v and d(µ)= m ∨ n. We aim to extend µ to a path λ satisfying (5.1). If the vertices
µ|T+m and µ|T+n are different, then λ := µ will do. So we suppose that µ|T+m = µ|T+n .
We deal separately with the cases where m and n are comparable in the sense that either
m ≤ n or n ≤ m, and where they are not comparable.

Suppose first that m and n are comparable, say m ≤ n. Since m 6= n, there exists i such
that m + ei ≤ n, and then we have

r(µ(m, m + ei ))= µ|T+m = µ|T+n = s(µ).

Since ci ≥ 1, Proposition 3.5(c) implies that |s(µ)3ei |> 1 and so there exists ν ∈ s(µ)3ei

such that ν 6= µ(m, m + ei ). Then λ := µν has the required properties:

λ(m, m + d(λ)− (m ∨ n))= λ(m, m + ei )= µ(m, m + ei )
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is not equal to
λ(n, n + d(λ)− (m ∨ n))= λ(n, n + ei )= ν.

Now suppose that m and n are not comparable, say m1 > n1 and m2 < n2. This
is where we use the extra hypotheses on the rule w and the trace t . Since t = 0, the
identically zero function v0 : T → Z/qZ defines a vertex v0, and the identically zero
function x : N2

→ Z/qZ defines an infinite path x ∈3∞ (via the homeomorphism of
Remark 4.3). Since3e1v0 has more than one element, and there is just one blue edge from
v0 to v0 (see Proposition 3.5), there must be a blue edge β with s(β)= v0 and r(β) 6= v0.
By Proposition 5.3, there is a path α with r(α)= s(µ) and s(α)= r(β). We claim that

λ := µαβx(0, (m ∨ n)− (m ∧ n)− e1)= µαν, say,

satisfies (5.1); indeed, we claim that the two paths in (5.1) have different sources. Since
d(λ)= d(µα)+ (m ∨ n)− (m ∧ n) and

λ|T+m+d(λ)−(m∨n) = λ|T+m+d(µα)−(m∧n)

= ν|T+m−(m∧n)

= x |T+(m1−n1−1)e1

= v0,

it suffices to show that

λ|T+n+d(λ)−(m∨n) = ν|T+n−(m∧n) = ν|T+(n2−m2)e2

is not equal to v0.
We suppose that there exists p ∈ N such that ν|T+pe2 = v0, and look for a contradiction.

Then there is a smallest such p, and since ν|T = r(β) 6= v0, we then have p > 0. Now
ν|T+(p−1)e2 ∈3

0 implies

w(0)ν((p − 1)e2)=−
∑

i∈T \{0}

w(i)ν(i + (p − 1)e2); (5.5)

since we have ν(l)= x(l)= 0 whenever l1 > 0, (5.5) implies that

w(0)ν((p − 1)e2)=−

c2∑
j=1

w( je2)ν(( j + p − 1)e2), (5.6)

which is 0 because ν((k + p)e2)= ν|T+pe2(ke2)= v0(ke2)= 0 for k ≥ 0. Since w(0) is
invertible, this implies that ν((p − 1)e2)= 0. Thus we have ν|T+(p−1)e2 = v0, and this
contradicts the choice of p. Thus for every p, ν|T+pe2 is not equal to v0, and in particular
ν|T+(n2−m2)e2 is not equal to v0, as required. 2

Remark 5.5. The preceding proof also works when t 6= 0 provided there is a vertex v0

which is constant, say v0(m)= c for all m ∈ T . There is such a vertex if and only if there
exists c ∈ Z/qZ such that

c

(∑
i∈T

w(i)

)
= t (mod q). (5.7)
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However, we do not obtain any new 2-graphs this way: if there is such a c, then
3(T, q, t, w) is isomorphic to 3(T, q, 0, w). To see this, note that for every path λ in
3(T, q, 0, w), λt : i 7→ λ(i)+ c (mod q) is a path in 3(T, q, t, w), and the map λ 7→ λt

is an isomorphism of 3(T, q, 0, w) onto 3(T, q, t, w).
It is easy to find examples where (5.7) has no solution c. For example, if |T | is even,

q = 2, t = 1 and w ≡ 1, we have
∑
w(i)= |T | and c|T | = 1 (mod 2) has no solutions.

We do not have general criteria for aperiodicity when (5.7) has no solution.

6. The C∗-algebras
We now summarize the properties of the C∗-algebras of the 2-graphs 3(T, q, 0, w).

THEOREM 6.1. Suppose (T, q, 0, w) is basic data with c1 ≥ 1 and c2 ≥ 1, and the rule w
has three invertible corners. Then C∗(3(T, q, 0, w)) is unital, nuclear, simple and purely
infinite, and belongs to the bootstrap class N .

Proof. We write3 for3(T, q, 0, w). We begin by observing that C∗(3) is unital because
30 is finite, and is nuclear and belongs to the bootstrap class by [9, Theorem 5.5]. It
follows easily from Proposition 5.3 that3 is cofinal: if x ∈3∞ and v ∈30, then there is a
path from r(x) to v. Since we know from Theorem 5.2 that3 is aperiodic (that is, satisfies
property (iv) of [22, Lemma 3.2]), it follows from [22, Theorem 3.1 and Lemma 3.2] that
C∗(3) is simple.

To see that 3 is purely infinite, we need to check that every vertex v can be reached
from a ‘loop with an entrance’ (see [27, Proposition 8.8]). But we know that v receives
at least two blue edges α, β, and then Proposition 5.3 implies that there is a path ν from
v to s(α), so there is a path µ= αν with d(µ) 6= 0 such that r(µ)= s(µ)= v. Since β is
an entrance to µ, we have verified the hypothesis of [27, Proposition 8.8], and can deduce
that C∗(3) is purely infinite. 2

Remark 6.2. We have appealed to [27, Proposition 8.8] rather than [9, Proposition 4.9]
because the latter is not correct as it stands. For example, the 2-graphs in [15,
Figures 3 and 4] satisfy the hypothesis of [9, Proposition 4.9], but their C∗-algebras are
AT-algebras and hence are not purely infinite.

7. K-theory
Theorem 6.1 implies that, when the rule has three invertible corners, the C∗-algebra falls
into the class which is classified by the celebrated theorem of Kirchberg and Phillips, which
says that C∗(3) is determined up to isomorphism by its K -theory [6, 18, 25]. So we want
to compute the K -groups of C∗(3).

Suppose we have basic data satisfying the hypotheses of Proposition 3.5, so that in
particular the associated 2-graph 3 is finite with no sources, and the methods of [4] apply.
Let B and R be the vertex matrices of 3, defined for u, v ∈30 by

B(u, v) = #{λ ∈3e1 | r(λ)= u, s(λ)= v}

R(u, v) = #{λ ∈3e2 | r(λ)= u, s(λ)= v};
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the matrices B and R are the vertex matrices of the blue graph B3 := (30, 3e1 , r, s)
and the red graph R3 := (30, 3e2 , r, s). The entries B R(u, v) in the product B R are
the numbers of blue-red paths from v to u, which the factorization property implies are
the same as the entries RB(u, v) in RB; in other words, B R = RB. Let δ1 : Z3

0
⊕ Z30

→ Z30
and δ2 : Z3

0
→ Z30

⊕ Z30
be the maps with matrices

δ1 =
(
1− Bt 1− Rt

)
and δ2 =

(
Rt
− 1

1− Bt

)
.

Then [4, Proposition 3.16] says that the K -groups are given by

K0(C
∗(3)) ∼= coker δ1 ⊕ ker δ2

K1(C
∗(3)) ∼= ker δ1/img δ2.

We were able to calculate the size of the K -groups for a large number of examples
by implementing the following procedure in the Magma computational algebra system.
Magma recognizes that we are dealing with integer matrices and so it performs calculations
over the integers; for example, on being asked to find a basis for the column space of an
integer matrix it returns an integer basis. When calculating |K0(C∗(3))|, we noticed that
ker δ2 = 0 in every example. To calculate |coker δ1|, we find a basis matrix M whose
columns are an integer basis for the column space of the matrix of δ1. Then

|K0(C
∗(3))| = |coker δ1| = |det M |.

To calculate |K1(C∗(3))|, first we find a basis matrix H for ker δ1. Since the columns
of H are linearly independent, for each column vector z of the matrix of δ2 the equation
Hw = z has a unique solution w. Form the matrix whose columns are the solutions w;
then the i th column of W contains the coordinates of the basis vector z with respect to the
basis for ker δ1. Thus

|K1(C
∗(3))| = |ker δ1/img δ2| = |det W |.

We give details of these calculations for the Ledrappier graph.

Example 7.1. Consider the sock tile with q = 2, t = 0 and rule w ≡ 1. Vertex matrices
for the 2-graph 3 are

B =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 and R =


1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

 .
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The matrices δ1 : Z8
→ Z4 and δ2 : Z4

→ Z8 are

δ1 =


0 0 −1 0 0 0 0 −1
−1 1 −1 0 −1 1 0 1

0 −1 1 −1 0 −1 0 0
0 −1 0 0 0 −1 −1 1

 and

δ2 =



0 0 0 1
1 −1 0 1
0 1 0 0
0 1 1 −1
0 0 −1 0
−1 1 −1 0

0 −1 1 −1
0 −1 0 0


.

Here, δ1 is onto so we can choose a basis for img δ1 such that M is the 4× 4 identity
matrix; hence |det M | = 1, and K0(C∗(3))= 0. Magma gives us the matrices H and W
below, which satisfy H W = δ2:

H =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 1 −1

0 −1 1 −1
0 0 −2 1
0 0 −1 0


and W =


0 0 0 1
1 −1 0 1
0 1 0 0
0 1 1 −1

 .

Then since |det W | = 1, we have K1(C∗(3))= 0.

Some of the results of our calculations are listed in Table 1. We begin with some
explanatory comments.
• A tile T can be uniquely described by the lengths of its rows from longest to shortest.

For example, in the table we write [2, 1] for the sock.
• The tile obtained by reflecting T about the line y = x is called the conjugate tile of

T . For example, the conjugate of the tile [3, 1] is [2, 1, 1] and the sock tile is its own
conjugate. A tile and its conjugate give C∗-algebras with the same K -theory since
this amounts to swapping the roles of B and R in the K -theory formulas. So in the
table we list only one out of each pair of conjugate tiles.

• The results in the table refer to basic data with t = 0 and w ≡ 1. We also performed
calculations for other rules and traces, but we obtained the same values of |K0| and
|K1|. A partial explanation for this is in Remark 5.5.

• Blank spaces in the table would require calculations beyond sensible computation
time. We were able to do more calculations when q = 2, but the results did not
reveal any interesting new phenomena.

A more detailed look at the results of our calculations suggests the following.
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TABLE 1. Table of K -theory calculations.

Size Tile q = 2 q = 3 q = 4 q = 5
|K0| |K1| |K0| |K1| |K0| |K1| |K0| |K1|

3 [3] 3 3 8 8 15 15 24 24
[2, 1] 1 1 2 2 3 3 4 4

4 [4] 7 7 26 26 63 63 124 124
[3, 1] 1 1 2 2 3 3 4 4
[2, 2] 1 1 2 2 3 3 4 4

5 [5] 15 15 80 80 255 255 624 624
[4, 1] 1 1 2 2 3 3 4 4
[3, 2] 1 1 2 2 3 3 4 4
[3, 1, 1] 3 3 8 8 15 15 24 24

6 [6] 31 31 242 242 1023 1023
[5, 1] 1 1 2 2 3 3
[4, 2] 1 1 2 2 3 3
[4, 1,1] 1 1 2 2 3 3
[3, 3] 1 1 2 2 3 3
[3, 2, 1] 3 3 8 8 15 15

7 [7] 63 63 728 728
[6, 1] 1 1 2 2
[5, 2] 1 1 2 2
[5, 1, 1] 3 3 8 8
[4, 3] 1 1 2 2
[4, 2, 1] 1 1 2 2
[4, 1, 1, 1] 7 7 26 26
[3, 3, 1] 3 3 8 8

Conjectures.
(1) ker δ2 = 0.
(2) |K0(C∗(3))| = |K1(C∗(3))|.
(3) |Ki (C∗(3))| always has the form qn

− 1. Our calculations are consistent with the
formula |Ki (C∗(3))| = (qc2 − 1, qc1 − 1).

We prove Conjectures (1) and (2) in Theorems 8.1 and 8.9 below. We do not know whether
K0(C∗(3)) is isomorphic to K1(C∗(3)) in general, though calculations in Magma confirm
that Ki (C∗(3)) is cyclic in all the examples listed in Table 1, and hence K0 is isomorphic to
K1 for all these examples. However, this is automatically true in most cases because there
is only one group of the given order, so the number of examples we have considered where
there is something to prove (that is, the ones where |Ki | = 4 or 8) is fairly small. Certainly
we have not yet identified a potential reason for the existence of such an isomorphism,
and our proof of Conjecture (2) does not help. We have only numerical evidence for
Conjecture (3).

7.1. Implications for the classification. The graphs whose K -theory is computed in
Table 1 are of two types. For tiles with c2 = 0, the blue graph consists of disjoint cycles,
and the aperiodicity condition of [22] fails, so the C∗-algebras of these graphs are not
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simple. (Their structure is nevertheless quite intricate and will be discussed in a future
paper.) For all other graphs, the basic data satisfies the hypotheses of Theorem 6.1,
and hence the C∗-algebras are simple and satisfy the hypotheses of the Kirchberg–
Phillips theorem. The Kirchberg–Phillips theorem (as stated in [25, Theorem 8.4.1(iv)],
for example) says that two suitable unital C∗-algebras A and B are isomorphic if and
only if K1(A)∼= K1(B) and there is an isomorphism of K0(A) onto K0(B) which
takes the class [1A] of the identity to [1B]. When |K0(C∗(3))| = |K1(C∗(3))| = 1,
the last condition is trivially satisfied and C∗(3) is isomorphic to the Cuntz algebra
O2. (Somewhat disappointingly, the Ledrappier graph is one of these graphs.) When
|Ki |> 1, we computed the class of [1] =

∑
v∈30 [pv] in K0(C∗(3))= coker δ1 (see [4,

Corollory 5.1]), and found that it is always a generator for K0(C∗(3)). So in all our
examples, K0(C∗(3)) is cyclic. We do not know whether this is always true. To sum up:
if 31 and 32 are any graphs in the table with c2 ≥ 1, and if K0(C∗(31))= K0(C∗(32)),
then C∗(31)∼= C∗(32).

None of the C∗-algebras of graphs in Table 1 with non-zero K -theory can be isomorphic
to the C∗-algebra of an ordinary directed graph E , because K1(C∗(E)) is always free
(being a subgroup of the free group ZE0

).

8. K -theory results
Let T be a tile, and again write (c1, c2)=

∨
{ j | j ∈ T }. For 0≤ i ≤ c1, we let hi denote

the second coordinate of the top box (i, hi ) in each column of T ; for 0≤ i ≤ c2, wi is the
first coordinate of the right-hand box (wi , i) in each row.

In this section we prove Conjectures (1) and (2) about K∗(C∗(3(T, q, t, w))), under
some mild hypotheses on the shape of the tile.

THEOREM 8.1. Suppose we have basic data (T, q, t, w) in which w has invertible
corners and c1, c2 ≥ 1. Suppose further that either h0 > h1 or w0 >w1. If B and R
are the vertex matrices associated to 3=3(T, q, t, w), then the map

δ2 =

(
Rt
− 1

1− Bt

)
: Z3

0
→ Z3

0
⊕ Z3

0

has trivial kernel and K0(C∗(3))= coker δ1.

Reference [4, Proposition 3.16] says that the bijection of coker δ1 onto K0(C∗(3))
carries the generator δv of Z30

to [pv], and therefore Theorem 8.1 says that these generate
K0(C∗(3)). The image of δ1 is then generated by the images of the elements (1− Bt )δv

and (1− Rt )δv . Thus Theorem 8.1 says that, for one of our 2-graphs 3, K0(C∗(3)) is
generated by {[pv] | v ∈30

} modulo the relations

[pv] =
∑

r(e)=v,d(e)=e1

[ps(e)], [pv] =
∑

r(e)=v,d(e)=e2

[ps(e)]

imposed by the blue and red Cuntz–Krieger relations.
Theorem 8.1 will follow immediately from the following proposition. For the rest of

the section, we fix a set of basic data (T, q, t, w) in which w has invertible corners and
c1, c2 ≥ 1.
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PROPOSITION 8.2. Let B and R be the vertex matrices of 3=3(T, q, t, w).
(1) If h0 > h1 then the map 1− Bt

: Z30
→ Z30

has trivial kernel.
(2) If w0 >w1 then the map 1− Rt

: Z30
→ Z30

has trivial kernel.

To prove this we use the special structure of the vertex matrices of 3. By symmetry it
suffices to prove part (1). From Proposition 3.5 we know that B is a {0, 1}-matrix; that
the number of 1s in each row/column is qc2 ; and that any two rows/columns are either
equal or orthogonal. The crucial observation is that the matrices with these properties are
the ones which arise as the vertex matrices of dual graphs. Recall from [20, p. 17], for
example, that the dual graph of a directed graph E is the directed graph Ê with Ê0

:= E1,
Ê1
:= {(e, f ) ∈ E1

× E1
| r( f )= s(e)}, and range and source maps given by r(e, f )= e

and s(e, f )= f .
To describe the graphs whose duals arise we need some notation. Let S be the tile

S := T ∩ (T − e1) and let S+ be the tile S+ := S ∪ {(h1 + 1)e2}. In the visual model, S is
the tile obtained from T by deleting the first column and shifting one unit to the left, and
S+ is obtained from S by adding one box to the top of its first column. For a directed graph
F and an integer n ≥ 1, the directed graph nF has vertex set (nF)0 = F0, edge set

(nF)1 = F1
× {1, . . . , n} = {( f, i) | f ∈ F1, 1≤ i ≤ n}

and range and source maps given by r( f, i)= r( f ) and s( f, i)= s( f ). Then the vertex
matrix of nF is n times the vertex matrix of F . (Note if n = 1 then 1F ∼= F .)

PROPOSITION 8.3. Suppose that h0 > h1. Set rB = qh0−h1−1, and let B3(S+, q, 0, 1)
be the blue graph of the tile S+ with alphabet q, trace 0 and rule which is identically 1.
Then the blue graph B3 of3(T, q, t, w) is isomorphic to the dual of rB B3(S+, q, 0, 1).

To prove this we need the following lemma.

LEMMA 8.4. Let v1, v2 ∈3
0. Then the set

{u ∈30
: u|S+e1 = v2|S and u|S = v1|S} (8.1)

contains rB = qh0−h1−1 vertices if v1, v2 satisfy

v1(i)= v2(i − e1) for i ∈ S ∩ (S + e1), (8.2)

and is empty otherwise.

Proof. If (8.2) holds, then define a function u : T → Z/qZ by u|S+e1 = v2|S and u|S =
v1|S . Since |T \ (S ∪ (S + e1))| = h0 − h1 > 0, there are rB such functions u which define
vertices in 30. 2

Define a relation ∼ on 30 by

v1 ∼ v2⇐⇒ v1|S = v2|S .

It is straightforward to check that ∼ is an equivalence relation. Let [v] denote the
equivalence class of v ∈30 under ∼. By definition of ∼ the set in Lemma 8.4 does
not change if we replace v1 and v2 by other elements of [v1] and [v2]. So for v1, v2

satisfying (8.2), we can list the vertices in the set (8.1) as ui ([v1], [v2]) for 1≤ i ≤ rB .
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Proof of Proposition 8.3. Let F be the directed graph with vertices F0
=30/∼ and edges

F1
= {([v1], [v2]) ∈ F0

× F0
| v1, v2 satisfy (8.2)}.

We prove first that B3 is isomorphic to the dual of the directed graph rB F , and then that
F is isomorphic to B3(S+, q, 0, 1).

By definition, rB F has vertices F0 and edges

(rB F)1 = {([v1], [v2], i) | ([v1], [v2]) ∈ F1, 1≤ i ≤ rB}.

So the dual r̂B F has vertices (r̂B F)0 = (rB F)1 and there is an edge from ([v3], [v4], j) to
([v1], [v2], i) if and only if [v2] = [v3].

Define a map φ0
: (r̂B F)0→30 by φ0([v1], [v2], i)= ui ([v1], [v2]). Then φ0 is a

bijection since ui ([v1], [v2]) is uniquely determined by ([v1], [v2]) and i , and every v ∈30

belongs to a set in (8.1) for some v1 and v2 (for example, take v1 = v and v2 to be any vertex
adjacent to v).

Suppose there is an edge in r̂B F from ([v3], [v4], j) to ([v1], [v2], i)—that is,
suppose [v2] = [v3]. Then Proposition 3.5 says there is a unique edge in B3 from
φ([v3], [v4], j)= u j ([v3], [v4]) to φ([v1], [v2], i)= ui ([v1], [v2]) since

ui ([v1], [v2])|S+e1 = v2|S = v3|S = u j ([v3], [v4])|S .

Define the map φ1
: (r̂B F)1→3e1 by taking φ1(([v1], [v2], i), ([v3], [v4], j)) to be the

unique edge in B3 with source u j ([v3], [v4]) and range ui ([v1], [v2]). Then φ1 is a
bijection since φ0 is. We have r ◦ φ1

= φ0
◦ r since

r(φ(([v1], [v2], i), ([v3], [v4], j))) = ui ([v1], [v2])

= φ0([v1], [v2], i)

= φ0(r(([v1], [v2], i), ([v3], [v4], j))),

and similarly s ◦ φ1
= φ0

◦ s. Thus φ = (φ0, φ1) is a graph isomorphism from r̂B F to
B3.

It remains to show that F is isomorphic to B3(S+, q, 0, 1). Let [v] ∈ F0. Define
v+ : S+→ Z/qZ by

v+|S = v|S and v+(0, h1 + 1)=−
∑
j∈S

v( j)(mod q).

This is well-defined since S+ \ S = {(0, h1 + 1)} and each element in [v] takes the same
values on S. We also have that v+ is uniquely determined by [v], and v+ is clearly a
vertex in B3(S+, q, 0, 1). Define ψ0

: F0
→ B3(S+, q, 0, 1)0 by ψ0([v])= v+. Then

we claim that ψ0 is a bijection. It is one-to-one because v+ is uniquely determined by
[v]. To see that ψ0 is onto, let u be a vertex in B3(S+, q, 0, 1) and suppose u− ∈30

with u−|S+ = u. Then (u−)+|S = u−|S = u|S which implies (u−)+|S+ = u|S+ ; this says
that ψ([u−])= (u−)+ = u, so ψ is onto.

Suppose ([v1], [v2]) ∈ F1. Then (8.2) and S+ ∩ (S+ + e1)= S ∩ (S + e1) imply

v+1 (i)= v
+

2 (i − e1) for i ∈ S+ ∩ (S+ + e1).
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Now Proposition 3.5 implies that there is a unique edge in B3(S+, q, 0, 1) from
ψ0([v2])= v

+

2 to ψ0([v1])= v
+

1 . Define a map ψ1 from F1 to the edge set of
B3(S+, q, 0, 1) by taking ψ1(([v1], [v2])) to be the unique edge in B3(S+, q, 0, 1) with
source v+2 and range v+1 . Then ψ1 is a bijection since ψ0 is. We have r ◦ ψ1

= ψ0
◦ r

since
r(ψ([v1], [v2]))= ψ

0([v1])= ψ
0(r([v1], [v2]))

and similarly s ◦ ψ1
= ψ0

◦ s. Thus ψ = (ψ0, ψ1) is a graph isomorphism from F to
B3(S+, q, 0, 1). 2

So the blue graph of T is related to the blue graph of S+, which is a tile with one fewer
column than T . In fact we can repeatedly apply Proposition 8.3 since the new tile S+

satisfies the hypotheses of that proposition. The tile S+i in the next corollary is obtained
from T by deleting the first i columns, shifting to the origin and adding one box to the new
first column.

COROLLARY 8.5. Suppose that h0 > h1. For 1≤ i ≤ c1, let S+i be the tile

S+i = (S
+

i−1 ∩ (S
+

i−1 − e1)) ∪ {(hi + 1)e2},

define rBi by

rBi =

{
qh0−h1−1 if i = 1,

qhi−1−hi if i > 1,

and let Hi be the directed graph B3(S+i , q, 0, 1). Then B3(T, q, t, w)∼= ̂(rB1 H1) and

Hi ∼= ̂(rBi+1 Hi+1) for 1≤ i ≤ c1 − 1.

Proof. Applying Proposition 8.3 to B3(T, q, t, w) gives the result for i = 1. Let 1≤ i ≤
c1 − 1. Each tile S+i has columns hi + 1, hi+1, . . . , hc1 . Since T is hereditary, hi ≥ hi+1.
Then S+i satisfies (hi + 1)− hi+1 > 0 and so we can apply Proposition 8.3 to Hi to get
the result for i > 1. 2

Example 8.6. (1) Suppose T is the tile with c1 = c2 = 3 and columns h0 = 3, h1 = h2 = 1,
h3 = 0. Let q = 2, t ∈ Z/2Z and w is a rule with invertible corners. The tiles in
Corollary 8.5 are

T = S+1 = S+2 = S+3 =

and the constants are rB1 = 2, rB2 = 1, rB3 = 2.
(2) Suppose T has columns h0, . . . , hc1 satisfying h0 = h1 + 1 and h1 = h2 = · · · =

hc1 . Since S+c1
is the tile with one column with hc1 + 1 boxes, we have Sc1 ∩ (Sc1 + e1)

= ∅. So in Hc1 there is a directed edge between every pair of vertices, that is, Hc1 is the
complete graph Kqhc1 with qhc1 vertices. Corollary 8.5 implies that rB1 = rB2 = · · · =

rBc1
= 1 and so B3(T, q, t, w) is obtained by c1 times taking the dual of Kqhc1 . For

example, the sock tile has c1 = 1 and columns h0 = 1 and h1 = 0, and so the blue graph of
the Ledrappier graph is isomorphic to K̂2.

We need two more lemmas for the proof of Proposition 8.2.
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LEMMA 8.7. If n ∈ Z with n > 1 and B is an integer matrix, then

ker(1− nB)= {0}.

Proof. Suppose v ∈ ker(1− nB), that is, nBv = v. We claim that n p
|v for all p ≥ 1. To

see this, in the p = 1 case we have v = nBv and so v is n times some vector Bv ∈ Z30
.

For the inductive step suppose n p
|v. Then there exists u ∈ Z30

such that v = n pu. Then

v = nBv = nB(n pu)= n p+1 Bu

and so n p+1
|v. Hence n p

|v for all p ≥ 1, which is only possible if v = 0. 2

LEMMA 8.8. Let n > 1 be an integer. If K is the n × n matrix of all 1s, then

ker(1− K t )= {0}.

Proof. The matrix 1− K t is the circulant matrix† Circ(v) with v = (0, 1, . . . , 1) ∈ Zn . If
ω is a primitive nth root of unity then using the formula for determinant of a circulant given
in [5] we have

det(1− K t ) = det Circ(v)=
n−1∏
j=0

n−1∑
i=0

ωi jvi =

n−1∏
j=0

n−1∑
i=1

ωi j

=

n−1∏
j=1

n−1∑
i=1

ωi j
×

n−1∑
i=1

ωi0
=

n−1∏
j=1

(−1)×
n−1∑
i=1

1

= (−1)n−1(n − 1).

In particular det(1− K t ) 6= 0, so we have ker(1− K t )= {0}. 2

Proof of Proposition 8.2. We can deduce (2) by applying part (1) to the conjugate tile, so
it suffices to prove (1). Choose rB1 , . . . , rBc1

and B3, H1, . . . , Hc1 as in Corollary 8.5.
Let B, B1, . . . , Bc1 be the vertex matrices of B3, H1, . . . , Hc1 . Since the vertex matrix
of a dual graph Ê is the edge matrix of E , [14, Proposition 4.1] gives isomorphisms

ker(1− Bt )∼= ker(1− rB1 Bt
1) and ker(1− Bt

i )
∼= ker(1− rBi+1 Bt

i+1), (8.3)

for 1≤ i ≤ c1 − 1. If rBi = 1 for all i , then since the tile S+c1
has only one column,

Proposition 3.5(b) implies that every entry in the matrix Bc1 is 1, ker(1− Bt
c1
)= {0} by

Lemma 8.8, and all the kernels in (8.3) are trivial. If there exists rB j which is bigger
than 1, then there is a first such j ; then Lemma 8.7 implies ker(1− rB j Bt

j )= {0}, and
ker(1− Bt

i )= {0} for i < j . Hence ker(1− Bt )= {0}. 2

This completes the proof of Theorem 8.1, and hence settles Conjecture (1). The next
theorem settles Conjecture (2).

† A circulant matrix is a square matrix in which each row vector is obtained from the previous row vector by
rotating one element to the right. Then an n × n circulant matrix Circ(v) can be fully specified by the first row
vector v = (v0, v1, . . . , vn−1) ∈ Zn . (See [3]).
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THEOREM 8.9. Suppose we have basic data (T, q, t, w) in which w has invertible
corners and c1, c2 ≥ 1. Suppose further that either h0 > h1 and w0 >w1. Then the
C∗-algebra of the 2-graph 3=3(T, q, t, w) has

|K0(C
∗(3))| = |K1(C

∗(3))|.

Proof. Since h0 > h1 and w0 >w1 we know from Proposition 8.2 that ker(1− Bt ) and
ker(1− Rt ) are trivial. Hence 1− Bt and 1− Rt are invertible over Q, and both K0 and
K1 are finite. Let C := 1− Bt and D := 1− Rt . Then C and D commute because B and
R do, and

δ1 =
(
C D

)
: Z3

0
⊕ Z3

0
→ Z3

0
and δ2 =

(
−D
C

)
: Z3

0
→ Z3

0
⊕ Z3

0
.

By Theorem 8.1 we have ker δ2 = {0} and K0(C∗(3))= coker δ1, that is,

K0(C
∗(3))= Z3

0
/(CZ3

0
+ DZ3

0
).

On the other hand we have

K1(C
∗(3)) = ker δ1/img δ2

= {(u, v) | u, v ∈ Z3
0
, Cu + Dv = 0}/{(−Dw, Cw) | w ∈ Z3

0
}.

The map CZ30
∩ DZ30

→ ker δ1 defined byw 7→ (−C−1w, D−1w) carries C DZ30
onto

img δ2. This induces an isomorphism of (CZ30
∩ DZ30

)/C DZ30
onto ker δ1/img δ2,

hence
K1(C

∗(3))= (CZ3
0
∩ DZ3

0
)/C DZ3

0
.

We have

CZ3
0
≤ (CZ3

0
+ DZ3

0
)≤ Z3

0
and C(DZ3

0
)≤ (CZ3

0
∩ DZ3

0
)≤ DZ3

0
.

Since D is an isomorphism of Z30
onto DZ30

which carries CZ30
onto C DZ30

, we have
|DZ30

: C DZ30
| = |Z30

: CZ30
|. Then

|DZ3
0
: CZ3

0
∩ DZ3

0
| |CZ3

0
∩ DZ3

0
: C DZ3

0
|

= |DZ3
0
: C DZ3

0
|

= |Z3
0
: CZ3

0
|

= |Z3
0
: (CZ3

0
+ DZ3

0
)| |(CZ3

0
+ DZ3

0
) : CZ3

0
|. (8.4)

The inclusion of DZ30
in CZ30

+ DZ30
induces an isomorphism of DZ30

/(CZ30
∩

DZ30
) onto (CZ30

+ DZ30
)/CZ30

, and hence

|DZ3
0
: CZ3

0
∩ DZ3

0
| = |(CZ3

0
+ DZ3

0
) : CZ3

0
|. (8.5)

Equation (8.5) allows us to cancel in (8.4) and obtain

|CZ3
0
∩ DZ3

0
: C DZ3

0
| = |Z3

0
: (CZ3

0
+ DZ3

0
)|,

which gives the result. 2

Remark 8.10. Notice that our proof does not give an explicit isomorphism between
CZ30

∩ DZ30
/C DZ30

and Z30
/(CZ30

+ DZ30
), so we cannot deduce that K0 ∼= K1,

only that they have the same number of elements.
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