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Some Diagnostics for Markov Random Fields

Noel CRESSIE and Prasenjit KAPAT

The development of diagnostics to check the fit of a proposed Markov random field
(MRF) to data is a very important problem in spatial statistics. In this article, the con-
sequences of fitting a given MRF to spatial data are visualized using diagnostic plots.
The Gaussian MRF known as the conditional autoregressive model is featured. Vari-
ous types of departures of the data from the fitted MRF model are calculated, allowing
locally influential observations to be highlighted using the MRF-Neighborhoods plot.
Through a global summary statistic and the Model-Comparison plot, we compare MRF
models that differ both in terms of the neighborhood structure and the parameterization
of spatial dependence.

Key Words: CAR model; Irregular lattice; Maximum likelihood estimation; Model-
Comparison plot; MRF-Neighborhoods plot; Neighborhood structure; Regular lattice.

1. INTRODUCTION

Diagnostics are helpful in choosing and comparing models. They are also very useful
in detecting outliers. One open challenge in the field of spatial statistics is to be able to
evaluate a proposed Markov random field (MRF) with informative diagnostics.

When analyzing spatial lattice data, one often starts with the assumption that the data
come from a given class of MRFs, defined according to a particular neighborhood struc-
ture and a finite number of parameters (e.g., Besag 1974; Cressie 1993, chap. 6; Banerjee,
Carlin, and Gelfand 2004, sec. 3.3; Waller and Gotway 2004, sec. 9.5.3). Most MRF mod-
els are based on nearest neighbors (i.e., regions sharing a common boundary) or second
nearest neighbors (i.e., nearest neighbors and their nearest neighbors); see Section 3.4 and
Cressie (1993, p. 285). There have also been attempts to model the spatial dependencies us-
ing distance-based neighborhood models where parametric functions of distances between
regions are used. Cressie and Chan (1989), Conlon and Waller (2000), and Hrafnkelsson
and Cressie (2003) modeled regression coefficients in the conditional-mean structure as a
decreasing function of distance between regions.

Noel Cressie is Professor of Statistics and Distinguished Professor of Mathematical and Physical Sciences,
The Ohio State University, Columbus, OH 43210-1247 (E-mail: ncressie@stat.osu.edu). Prasenjit Kapat is
a Ph.D. student, Department of Statistics, The Ohio State University, Columbus, OH 43210-1247 (E-mail:
pkapat@stat.osu.edu).
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 727

Much effort has been put into constructing, checking, and validating linear models
in a spatial setting (e.g., Cressie 1993; Banerjee et al. 2004), but when the spatial error
term is a MRF, the neighborhood structure is typically assumed known. In this article,
we develop a diagnostic tool for validating and comparing neighborhood structures based
on the idea of local diagnostics, which can be found inter alia in Getis and Ord (1992),
Anselin (1995), and Cressie and Collins (2001). We feature classes of MRFs known as
conditional autoregressive (CAR) models, which are MRFs that have well defined joint
Gaussian distributions. In specifying the conditional distribution of these CAR models, we
use a multiplicative spatial-dependence parameter in the conditional expectation, defined
so that all eigenvalues of the precision matrix are positive (i.e. the “propriety parameter”
from Carlin and Banerjee 2003). That is, all CAR models considered in this article have a
nonsingular variance matrix.

In Section 2, we give a general result that serves as the basis of our new diagnostics for
MRFs. In Section 3, we describe the CAR models, which are based on conditional (and
hence joint) Gaussian assumptions. We also derive properties of the CAR models that are
most pertinent to our MRF diagnostics; details of the derivations are given in the Appendix.
In Sections 4 and 5, we apply the diagnostics to two datasets, an archeological dataset of
phosphate concentrations on a regular lattice in R2 (Buck, Cavanagh, and Litton 1988) and
a dataset of doctors’ prescription amounts on an irregular lattice in R2 (Cressie, Perrin, and
Thomas-Agnan 2005, 2006). Finally, in Section 6, we present discussion and conclusions.

2. GENERAL RESULT

We first establish some notation. The conditional density (or probability mass function)
of random variable (r.v.) X given r.v. Y , assuming it exists, is denoted by p[x |y]. Let S ≡
{1, . . . , n} be the site indices whose spatial relationships are defined by a set of neighbors
{Ni : i = 1, . . . , n}, where Ni ⊂ S is the neighborhood of site i and, by convention,
i /∈ Ni . The data defined on a subset A ⊂ S are denoted by Z(A) ≡ (Z(a) : a ∈ A)′. Let
Z(i) ≡ Z({i}) denote the datum at site i . For a set A, let A denote the complement of A.
Define Mi ≡ Ni ∪ {i}, so that Mi ∪ Ni ∪{i} = S. In what follows, Z(i), Z(Ni ), and Z(Mi )

are featured, along with realized values z(i), z(Ni ), and z(Mi ), respectively.
A MRF on S is defined by its neighborhoods {Ni : i = 1, . . . , n}, as follows. Assuming

p[z(S)] exists, then the conditional probabilities of a MRF satisfy

p [z(i)|z(S\{i})] = p [z(i)|z(Ni )] ; i = 1, . . . , n. (2.1)

Consequently,

p [z(i), z(Mi )|z(Ni )] = p [z(i)|z(Mi ), z(Ni )] p [z(Mi )|z(Ni )]

= p [z(i)|z(Ni )] p [z(Mi )|z(Ni )] .

That is, given Z(Ni ), Z(i) and Z(Mi ) are conditionally independent. This allows us to
prove the following proposition, which we shall see provides a tool to develop local diag-
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728 N. CRESSIE AND P. KAPAT

nostics relevant to each site.

Proposition 1. For any function g that satisfies E(|g(Z(i))|) < ∞, for all i ∈ S,

∫
g(z(i)) p [z(i)|z(Mi )] dz(i) =

∫
m(z(Ni )) p[z(Ni )|z(Mi )]dz(Ni ),

where

m(z(Ni )) ≡ E
(
g(Z(i))|z(Ni )

)
=
∫

g(z(i)) p [z(i)|z(Ni )] dz(i). (2.2)

Proof: Because E(|g(Z(i))|) < ∞, we can use Fubini’s theorem, and the condi-
tional independence allows us to write

∫
g(z(i)) p [z(i)|z(Mi )] dz(i)

=
∫

g(z(i))
{∫

p[z(i)|z(Ni )] p[z(Ni )|z(Mi )]dz(Ni )

}
dz(i)

=
∫ {∫

g(z(i)) p[z(i)|z(Ni )]dz(i)
}

p[z(Ni )|z(Mi )]dz(Ni )

=
∫

m(z(Ni )) p[z(Ni )|z(Mi )]dz(Ni ).

Thus, we see that for a suitable function g, and assuming the MRF to be correctly spec-
ified, g(Z(i)) and m(Z(Ni )) have the same conditional (on Z(Mi )) expectation. The MRF
diagnostics that we propose compare these two quantities empirically, site-by-site, looking
for departures of the relationship established in the proposition. A departure indicates that
the neighborhood-based conditional independence assumed in the proof of the proposition
does not hold. More generally, it is an indicator of lack of fit of a candidate MRF; we see
in Section 3 how this can be diagnosed locally and globally. In our research, we have con-
sidered several “test functions” g, including g(x) = x , g(x) = x2, and g(x) = ex , the
latter exhibiting greatest diagnostic sensitivity. We apply our diagnostics to the conditional
autoregressive (CAR) models, described in the next section.

3. CONDITIONAL AUTOREGRESSIVE (CAR) MODELS

When the conditional distributions in (2.1) are assumed to be Gaussian distributions,
then it can be shown that, under symmetry and positive-definiteness conditions, the joint
distribution is Gaussian (Besag 1974). The resulting MRFs are known as CAR models.
Specifically, we assume that

Z(i)|z(Ni ) ∼ Gau
(
μi +

n∑

j=1

ci j (z( j) − μ j ), τ 2
i

)
; i = 1, . . . , n, (3.1)

where the {ci j } satisfy ci j = 0, j /∈ Ni , cii = 0, and ci jτ
2
j = c jiτ

2
i ; i, j = 1, . . . , n.

Also, μi ∈ R and τ 2
i > 0, for all i ∈ S. The choice of neighborhoods {Ni } and spatial-
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 729

dependence parameters {ci j } creates various classes of CAR models.
Using standard notation, define M ≡ diag (τ 2

1 , . . . , τ 2
n )n×n , C ≡ (ci j )n×n , and μμμ ≡

(μ1, . . . , μn)′. Further, assume that μμμ = Xβββ, for covariates Xn×p and regression param-
eters βββ p×1. Although the diagnostics given here hold for any class of MRF models, in
this article we develop them for CAR models and, in particular, for CAR models where
M = 8τ 2 and C = γ H , for known 8 ≡ diag (φ1, . . . , φn)n×n and known H ≡ (hi j )n×n .
Clearly, γ is the spatial-dependence parameter.

Specifying the conditional distributions (3.1) does not necessarily imply the existence
of a joint distribution. However, provided 8−1(I −γ H) is symmetric and positive-definite,
there is a valid joint distribution given by

Z ∼ Gau
(

Xβββ, (I − γ H)−18τ 2
)

, (3.2)

which depends on unknown parameters βββ, τ 2, and γ ; see Besag (1974) and Cressie (1993,
sec. 6.6).

3.1 THREE CLASSES OF CAR MODELS

From (3.2), the variance matrix of a CAR model is given by (I − γ H)−18τ 2. In this
article, we consider three specific types of CAR models. In each one, we make use of the
adjacency matrix A = (ai j )n×n , where ai j = a ji = 1 if and only if i and j are neighbors.
Note that because i /∈ Ni , aii = 0 for all i = 1, . . . , n.

(i) Homogeneous CAR (HCAR) model: This is the simplest model we shall consider
with 8 = In×n and H = A.

(ii) Weighted (heterogeneous) CAR (WCAR) model: Following Besag, York, and Mollié
(1991), we let

8 = diag
(
|N1|

−1, . . . , |Nn|−1
)

,

where |Ni | ≡
∑n

k=1 aik is the number of neighbors of site i and H = (hi j )n×n is
defined by hi j ≡ ai j/|Ni |; i, j = 1, . . . , n.

(iii) Autocorrelation (heterogeneous) CAR (ACAR) model: This is an adaptation of the
spatial-rates model (Cressie and Chan 1989; Cressie et al. 2005) that has the same
autocorrelation for any two neighboring sites. In this case, 8 is the same as in (ii),
the WCAR model, and H = (hi j ) is defined by hi j ≡ ai j |N j |1/2

/
|Ni |1/2. Then,

it is straightforward to show that corr (Z(i), Z( j)|z(S\{i, j})) = γ , and hence the
parameter space of γ is a subset of the open interval (−1, 1).

Notice that for γ = 0, Z is made up of independent components, but for the WCAR
and ACAR models they are not identically distributed. In particular, their variances depend
on the number of neighbors.

3.2 THE GENERAL RESULT APPLIED TO CAR MODELS

Recall from (3.2) that, provided 8−1(I − γ H) is symmetric and positive-definite,
Z ∼ Gau

(
Xβββ, (I − γ H)−18τ 2

)
. Our diagnostic procedure substitutes maximum likeli-
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730 N. CRESSIE AND P. KAPAT

hood estimates β̂ββ and τ̂ 2 for nuisance parameters βββ and τ 2, and γ takes several possible
values including the maximum likelihood estimator γ̂ . In practice, the maximum likelihood
estimator of γ is obtained via the profile-likelihood method (Cressie 1993, pp. 465–467).

In what follows, we develop diagnostics for CAR model types (i), (ii), and (iii) and test
function g(x) = ex , based on the proposition in Section 2. From (2.2), we have

m(Z(Ni )) = E
(

eZ(i)|Z(Ni )
)

= exp
{
μi + γ

∑

j∈Ni

hi j (Z( j) − μ j ) +
1

2
φiτ

2
}
, (3.3)

where the latter equality is established in Result 1 of the Appendix. Define

W ∗
i ≡

eZ(i)

m(Z(Ni ))
, (3.4)

for m(Z(Ni )) given by (3.3); i = 1, . . . , n. From Result 2 of the Appendix, E(W ∗
i |Z(Mi )) =

1, and hence E(W ∗
i ) = 1; consequently, we base our diagnostics on deviations of {W ∗

i }
from a target value of 1. Define W∗ ≡ (W ∗

1 , . . . , W ∗
n )′ and 6∗ ≡ var(W∗). From Result 3

of the Appendix,
6∗ = eB − J,

where B ≡ (I − γ H)8τ 2, eB is defined elementwise as (eB)i j ≡ eBi j , and J is the n × n
matrix whose entries are all unity. Our proposed diagnostics actually use a standardized
set of residuals:

W ≡ (6∗)−1/2(W∗ − 1), (3.5)

and in the following paragraphs we develop diagnostics based on this W ≡ (W1, . . . , Wn)′.
Using the estimates β̂ββ and τ̂ 2 plugged into the distribution of Z, we take a parametric-

bootstrap approach (e.g., Casella and Berger 2002, p. 480) and simulate m(= 1000) ran-
dom vectors Z(1), . . . , Z(m) from the distribution, Gau (X β̂ββ, (I − γ0 H)−18τ̂ 2), where γ0

is some plug-in value, such as γ̂ . For each choice of H , we have the following restriction
on the possible values of γ (see Cressie 1993, p. 559):

γmin ≡ (min{λi })
−1 < γ < (max{λi })

−1 ≡ γmax, (3.6)

where {λi } are the eigenvalues of 8−1/2 H81/2. It should be noted here that 8−1/2 H81/2

is symmetric, whereas H need not be so, and hence {λi } are real. An easy calculation shows
that 8−1/2 H81/2 is the same (and hence γmin and γmax are the same) for the HCAR and
ACAR models.

Four different spatial-dependence-parameter values are compared using our diagnostic
approach: γ0 = γmin+ε, γ0 = 0, γ0 = γ̂ , and γ0 = γmax−ε, where ε was arbitrarily chosen
as 10−4 to avoid a singular variance matrix in (3.2). From the discussion in Besag and
Kooperberg (1995), we expect to see that γ0 = γ̂ and γ0 = γmax − ε result in diagnostics
that behave similarly.
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 731

3.3 DIAGNOSTICS FOR CAR MODELS

The first diagnostic plot, which we call the MRF-Neighborhoods plot, is constructed as
follows. The standardized residuals, {W1, . . . , Wn}, are depicted on a spatial lattice using
bubbles. (The area of each bubble was chosen proportional to the absolute value of the
residual at that site.) Filled and empty bubbles are used to distinguish positive and negative
values of the residuals, respectively. The sites where observations are missing are denoted
with an “×.”

Recall that we perform a parametric boostrap. For each simulated Z( j)
n×1, we obtain

W( j)
n×1 from (3.5); j = 1, . . . , m. We also calculate the lower 2.5 and upper 97.5 per-

centiles based on {W (1)
i , . . . , W (m)

i }, for each site i . If Wi , the residual at site i , is outside
the interval defined by these percentiles, then it is marked as an “outlier” by a “dot” inside
its bubble on the plot. This dot is white in a filled bubble if Wi is above the 97.5 percentile,
and it is black in an empty bubble if Wi is below the 2.5 percentile. Figure 1 (regular lattice)
and Figure 8 (irregular lattice) are examples of this diagnostic plot.

While the MRF-Neighborhoods plot contains a lot of information about individual sites
and local departures from the model, it is useful to have a single diagnostic statistic that
is an overall measure of how well a model fits. To this end, we propose the mean squared
error (MSE) based on {Wi } for each model, defined as

MSEW =
1

n

n∑

i=1

W 2
i . (3.7)

We could compare MSEW -values to decide which model we prefer. In what follows,
we develop a diagnostic plot for choosing between a pair of models, which we call the
Model-Comparison plot. The difference between the mean squared errors of two models,
A and B, is given by,

MSE(A)
W − MSE(B)

W =
1

n

n∑

i=1

(W (A)2
i − W (B)2

i )

=
1

n

n∑

i=1

(|W (A)
i | + |W (B)

i |)(|W (A)
i | − |W (B)

i |).

Now consider a rectangle with vertical side |W (A)
i | − |W (B)

i | and horizontal side |W (A)
i | +

|W (B)
i |, contributing either a positive area or a negative area. If we sort these rectangles

according to
W (A)2

i1
− W (B)2

i1
< ∙ ∙ ∙ < W (A)2

in
− W (B)2

in
,

and plot

|W (A)
i j

| − |W (B)
i j

| against
1

n

j∑

k=1

(|W (A)
ik

| + |W (B)
ik

|), (3.8)

for j = 1, . . . , n, we obtain the Model-Comparison plot. A rectangle formed above the
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732 N. CRESSIE AND P. KAPAT

horizontal axis adds positive area in favor of Model B, while a rectangle below the hori-
zontal axis adds negative area in favor of Model A. Finally, if there is more positive total
area than negative total area, MSE(B)

W < MSE(A)
W , which means that Model B is preferred

to Model A. Figure 3 is an example of this diagnostic plot.

3.4 MODELS APPLIED TO A REGULAR LATTICE IN R2

In Sections 3.1 and 3.2, we have developed diagnostics for a CAR model on a spatial
lattice, regular or irregular, in Rd , with a specified neighborhood structure {Ni }. We can
also compare CAR models, and we are particularly interested in comparing those with
different neighborhood structures.

Consider the nearest-neighbor (NN) and the second-nearest-neighbor (2NN) structures
over a regular lattice of n = k ∙ l sites, as described in the following. We assume that
the regular lattice is defined on {(x, y) : x = 1, . . . , k, y = 1, . . . , l} in R2. These two
neighborhood structures reflect spatial dependence at shorter and longer spatial scales,
respectively.

Ignoring for the moment the lattice-boundary constraints, the NN structure is defined
by the neighborhood,

N (1)(x, y) ≡ {(x − 1, y), (x, y − 1), (x + 1, y), (x, y + 1)}, (3.9)

and the 2NN structure is defined by the neighborhood,

N (2)(x, y) ≡ N (1)(x, y)

∪ {(x − 1, y − 1), (x + 1, y − 1), (x + 1, y + 1), (x − 1, y + 1)}

∪ {(x − 2, y), (x, y − 2), (x + 2, y), (x, y + 2)}, (3.10)

of (x, y), for x = 1, . . . , k and y = 1, . . . , l. Clearly, N (1)(x, y) ⊂ N (2)(x, y). Boundary
constraints are introduced by removing any location (x∗, y∗) from a neighborhood if it
falls outside the lattice {(x, y) : x = 1, . . . , k, y = 1, . . . , l}.

For brevity, we denote CAR models applied to a regular lattice using the ordered triple:
(CAR model type, neighborhood structure, γ0). For example, (ACAR, 2NN, γ̂ ) represents
the ACAR model with 2NN structure and γ0 = γ̂ .

3.5 MODELS APPLIED TO AN IRREGULAR LATTICE IN R2

For an irregular lattice, we consider distance-based neighborhoods. Recall that S =
{1, . . . , n} is the set of all site indices. Suppose ξi j is the distance between sites i and j ,
based on well defined geographical co-ordinates for each of the n sites. For a given d > 0,
we construct neighborhoods as follows:

N (d)
i = { j ∈ S : 0 < ξi j < d}; i = 1, . . . , n. (3.11)

Then, for any d1 < d2, N (d1)
i ⊂ N (d2)

i , for all i = 1, . . . , n, thereby creating nested
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 733

neighborhoods analogous to the NN and 2NN structures of the regular lattices given in
Section 3.4. A benefit of our analysis on these types of neighborhood structures is that we
can do a comparison of the model fit for different values of d. Just as for the NN and 2NN
structures, we now have a way to determine a preferred spatial scale of association from
the data, rather than fixing it a priori.

For brevity, we denote CAR models applied to an irregular lattice using the ordered
triple: (CAR model type, neighborhood structure, γ0). For example, (WCAR, N (30), 0)

represents the WCAR model with neighborhood structure N (30) ≡ {N (30)
i } and γ0 = 0.

4. ARCHEOLOGICAL DATASET OF PHOSPHATE
CONCENTRATIONS

These spatial data are on a regular lattice in R2.

4.1 DESCRIPTION OF THE DATA

Between 1983 and 1989, a joint team from the British School in Athens, Greece, and
the Universities of Amsterdam and Nottingham carried out an intensive survey of a 70 sq
km area of Laconia across the Evrotas (ancient Eurotas) river, east from the ancient site of
Sparta, Greece. These data consist of raw phosphate concentration readings (in mg P/100
g of soil) taken 10 m apart, from the site LS 165 of the Laconia Survey; the observations
are distributed over a regular 16×16 grid (Buck et al. 1988). We denote these raw data
by D(x, y), where (x, y) represents a location of a datum on the grid; x, y = 1, . . . , 16.
Based on exploratory data analysis, we symmetrized the histogram using the fourth-root
transformation; that is, Z(x, y) ≡ [D(x, y)]0.25. The raw data are given in Table 1; we see
that data are unavailable at the following sites:

(5, 11), (5, 12), (5, 15), (6, 11), (6, 12), (6, 15), (12, 4), (16, 13), (16, 14),

which is denoted by a “×” in the table.

4.2 DIAGNOSTICS APPLIED TO THE DATA

In this section, we apply the diagnostic methodology developed in Section 3 to the
archeological data {Z(x, y) : x, y = 1, . . . , 16}. For the mean structure of the linear
model, we use

E(Z(x, y)) = (1, x, y)βββ,

where βββ = (β0, β1, β2)
′. We obtain parameter estimates for every combination of models

(the three CAR models described in Section 3.1) and neighborhood structures (the NN and
2NN structures described in Section 3.4). Table 2 gives γ̂ , the bounds γmin, γmax for γ as
obtained from (3.6), and the values γmin + ε, γmax − ε, where ε = 10−4, for each of the six
model combinations. We observe that, for most of the model-neighborhood combinations,
the estimated value γ̂ of γ was close to the maximum possible value, γmax, for that model.
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734 N. CRESSIE AND P. KAPAT

Table 1. Archeological dataset: Phosphate concentrations at locations {(x, y) : x, y = 1, . . . , 16} in Laconia,
Greece. Missing values are indicated by “×.”

y

16 121 112 108 91 68 59 294 50 101 27 71 48 36 71 66 83
15 108 101 75 83 × × 52 55 50 41 30 47 47 55 75 108
14 62 80 50 88 77 77 73 50 50 59 57 55 57 38 71 ×
13 17 52 60 91 166 68 60 32 47 45 34 57 60 64 68 ×
12 32 48 27 88 × × 116 66 34 62 77 41 23 38 68 68
11 73 33 60 66 × × 62 143 60 62 80 59 75 57 27 57
10 55 53 80 80 62 91 71 68 77 104 75 41 33 131 41 37

9 64 45 62 21 60 38 47 77 73 62 27 44 53 53 52 36
8 64 28 44 45 60 62 34 47 75 83 71 77 83 73 77 59
7 59 38 32 55 60 30 41 59 57 71 66 83 85 85 77 83
6 45 47 48 68 80 44 64 64 68 68 88 116 108 85 91 73
5 37 41 38 36 19 57 47 131 80 83 80 88 73 73 97 62
4 31 45 34 66 71 85 80 121 91 136 108 × 108 80 80 73
3 55 34 62 41 80 75 101 50 71 91 94 94 91 75 68 59
2 57 55 66 40 57 68 73 80 71 125 83 66 77 71 47 55
1 77 59 45 55 59 60 48 68 71 57 60 55 53 57 62 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x

(See Besag and Kooperberg 1995, for an explanation of why this might be expected.)
Hence, we expect that the diagnostics we obtain should be similar when we plug in γ0 = γ̂

or γ0 = γmax − ε, and we expect dissimilarities between the models with γ0 = γ̂ and
γ0 = γmin + ε.

In what follows, we use diagnostics based on g(x) = ex . Figure 1 shows a MRF-
Neighborhoods plot, which was described in Section 3.2; this plot is for the model
(ACAR, 2NN, γ̂ ), a model that fitted the data comparatively well. We see both positive and
negative outliers, with a few noticeably high residuals. Apart from these spatial outliers,
we do not observe any obvious indications of model misfit. On the other hand, in Figure
2, which shows the MRF-Neighborhoods plot for the the model (ACAR, 2NN, γmin + ε),

Table 2. Smallest (γmin) and largest (γmax) possible values for γ for the various CAR-model combinations.
The parameter space for γ is (γmin, γmax); the values of γ0 used near the end points of the parameter
space, γmin + ε and γmax − ε, were obtained by choosing ε = 10−4. Also shown are the maximum
likelihood estimates γ̂ for the archeological dataset.

γ0

Models γmin γmax γmin + ε γ̂ γmax − ε

HCAR NN −0.2565 0.2565 −0.2564 0.2321 0.2564
2NN −0.2453 0.0880 −0.2452 0.0866 0.0879

WCAR NN −1.0000 1.0000 −0.9999 0.8222 0.9999
2NN −2.4290 1.0000 −2.4289 0.9359 0.9999

ACAR NN −0.2565 0.2565 −0.2564 0.2320 0.2564
2NN −0.2453 0.0880 −0.2452 0.0863 0.0879

NOTE: From Section 3.2, γmin and γmax are the same for the HCAR and ACAR models. All the values shown
are rounded to the fourth decimal place.
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-2.252 -0.51 -0.051 0.424 8.781

Figure 1. MRF-Neighborhoods plot based on (ACAR, 2NN, γ̂ = 0.0863), for the archeological dataset. Solid
black bubbles represent positive residuals, and empty white bubbles represent negative residuals. A white dot
inside a solid black bubble flags that site as being above the 97.5 percentile of the simulated residual distribution,
and a black dot inside an empty white bubble flags that site as being below the 2.5 percentile. A scale showing the
size of the bubbles for the five quantiles of the residuals is shown at the top. Sites with missing data are marked
by “×.”

we observe quite obvious nonrandom patterns in the residuals; the positive residuals seem
to be clustered in two distinct groups. Moreover, all the outliers are positive. This plot
indicates a model that does not fit the data nearly as well as the model that yields Figure 1.

Next, we give the diagnostic statistic MSEW defined by (3.7), which recall represents
the global behavior of different models. Table 3 shows MSEW for different CAR model
types and for different choices of γ0. From this table, we observe that for all types of CAR
models (except where γ0 = γmin + ε) considered, the NN structures give higher MSEW -
values (i.e., fit less well) than the 2NN structures. Furthermore, for both neighborhood
structures, the ACAR model appears to do better than the others. So, if we were to choose
one model for these data from those presented, the model (ACAR, 2NN, γ̂ ) is the one
suggested by the diagnostic statistic MSEW . Another interesting observation is that for the
NN structure and γ0 = 0, the values of MSEW are all smaller than the respective values
of MSEW for the NN structure and the three other values of γ0. This indicates that the
choice of neighborhood structure can play an important role in comparing models with
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-1.299 -0.666 -0.215 0.598 8.401

Figure 2. MRF-Neighborhoods plot based on (ACAR, 2NN, γmin + ε = −0.2452), for the archeological
dataset. The caption for Figure 1 explains the symbols used in the figure.

and without spatial dependence. For this archeological dataset, the NN structure has to be
augmented to a 2NN structure in order for the fitted CAR model to take spatial variability
out from the mean and put it into the spatial dependence.

Figure 3 shows the Model-Comparison plot, which was described in Section 3.3. The
two models compared here are Model A: (ACAR, NN, γ̂ ), and Model B: (ACAR, 2NN, γ̂ ).
The dotted horizontal line represents the difference in the mean squared errors for the two
models, namely, MSE(A)

W −MSE(B)
W . The plot in Figure 3 is targeted at a comparison of the

NN and the 2NN structures. Clearly, there is one site where Model A performs poorly as
compared to Model B. The site in question is (7, 16) in Table 1. We looked at many other
such Model-Comparison plots and found that the NN structure was generally not able to
capture the “influential” nature of this site as well as the 2NN structure. Returning to Fig-
ure 1, the MRF-Neighborhoods plot also shows that site (7, 16) is unusual. Therefore, in
Section 4.3, we removed the datum at (7, 16) and did a full reanalysis.

For the complete data, using our notation of representing the CAR models by an or-
dered triple, we see from Table 3 that the best (smallest) four values of MSEW yield the
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 737

Table 3. Values of MSEW for the various CAR-model combinations, fitted to the archeological dataset. (The
smallest MSEW -value is shown in bold.)

γ0

Models γmin + ε 0 γ̂ γmax − ε

HCAR NN 1.3318 1.2891 1.4681 1.5236
2NN 1.7186 1.2891 1.2725 1.2714

WCAR NN 1.3501 1.2565 1.5082 1.9086
2NN 1.7805 1.2128 1.2523 1.2816

ACAR NN 1.3269 1.2565 1.3915 1.4304
2NN 1.7178 1.2128 1.1936 1.1943

NOTE: The values shown are rounded to the fourth decimal place.

following MSEW -inequalities:

(ACAR, 2NN, γ̂ ) < (ACAR, 2NN, γmax − ε) < (ACAR, 2NN, 0)

< (WCAR, 2NN, γ̂ ).

Of course, with γ0 = 0, the ACAR and WCAR models are the same.

4.3 MODIFIED ARCHEOLOGICAL DATASET

We removed the datum at site (7, 16) (see Table 1) that had an unusually high response,
and we repeated the analyses given in Section 4.2. Table 4 gives analogous values of γ0

obtained from the modified archeological dataset, and Figure 4 shows the analogous MRF-
Neighborhoods plot for the model (ACAR, 2NN, γ̂ ). Comparing Figure 4 with Figure 1,
we can see that the general pattern of positive and negative residuals is the same in both
cases.

The values of MSEW for all the refitted models are provided in Table 5. Again, for
all choices of γ0, except γmin + ε, the 2NN structure is preferred over the corresponding
NN structure. We see from Table 5 that the best (smallest) four values of MSEW yield the
following MSEW -inequalities

(HCAR, 2NN, γ̂ ) < (HCAR, 2NN, γmax − ε) < (ACAR, 2NN, γ̂ )

< (ACAR, 2NN, γmax − ε).

The model (HCAR, 2NN, γ̂ ) has the lowest MSEW -value, but it is not that much
smaller than that for (ACAR, 2NN, γ̂ ). Figure 5 shows the Model-Comparison plot be-
tween the two models. Notice that while HCAR is barely better overall, there are a few
sites where the areas are large and positive and hence HCAR does not fit as well as
ACAR at these sites. Figure 6 shows the Model-Comparison plot between the models
(ACAR, NN, γ̂ ) and (ACAR, 2NN, γ̂ ); clearly, the 2NN structure gives a better model,
but not because of the presence of any unusual site, in contrast to Figure 3. The model
(ACAR, 2NN, γ̂ ) performed well whether site (7, 16) was included or not, and hence we
conclude from our diagnostics that this would be a good model choice.
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Figure 3. Model-Comparison plot based on Model A: (ACAR, NN, γ̂ = 0.232) and Model B:
(ACAR, 2NN, γ̂ = 0.0863), for the archeological dataset. The plot is described in Section 3.3. The horizon-

tal dotted line represents MSE(A)
W − MSE(B)

W .

5. DATASET OF DOCTORS’ PRESCRIPTION AMOUNTS

These spatial data are on an irregular lattice in R2, where the sites are in fact small
areas (cantons) in the southwest of France.

5.1 DESCRIPTION OF THE DATA

The data consist of average prescription amounts per doctor consultation, during the
period January 1, 1999–December 31, 1999, in the region in southwest France known as the
Midi-Pyrénées, and they have been analyzed previously by Cressie, Perrin, and Thomas-
Agnan (2005, 2006). The Midi-Pyrénées is made up of contiguous cantons, for which
we have data for 268 of them. Each canton, identified by the X and Y coordinates of
its centroid (in meters), provides one record. The dataset also provides the percentage of
patients 70 or older, the per-capita income, and the number of consultations during 1999
for each canton. The general idea is to look at the spatial dependence of patients’ average
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Figure 4. MRF-Neighborhoods plot based on (ACAR, 2NN, γ̂ = 0.0863), refitted to the modified archeologi-
cal dataset after removing site (7, 16). The caption for Figure 1 explains the symbols used in the figure.

prescription amounts per doctor consultation. Figure 1 in Cressie, Perrin, and Thomas-
Agnan (2005) shows the Lambert projection of the cantons.

Let Di denote the average prescription amount for the i th canton; i = 1, . . . , 268.
Based on some initial exploratory data analyses, it was decided to take logs of the data,
which was not done in the analyses of Cressie, Perrin, and Thomas-Agnan (2005, 2006).
We chose Zi = k ∙log10 Di , where k is an undisclosed constant meant to preserve confiden-
tiality of the original data. Our analysis also differs from theirs in the type of CAR models
chosen. In this article, the average prescription amounts are used to illustrate our diagnos-
tics for the HCAR, WCAR, and ACAR models (Section 3.1) fitted to irregular lattice data.
Cressie, Perrin, and Thomas-Agnan’s analyses effectively weight the untransformed data
according to the square roots of the number of consultations in each of the 268 cantons.
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740 N. CRESSIE AND P. KAPAT

Table 4. Values of γ0 used in the refitted CAR models for the modified archeological dataset after removing site
(7, 16).

γ0

Models γmin γmax γmin + ε γ̂ γmax − ε

HCAR NN −0.2565 0.2565 −0.2564 0.2403 0.2564
2NN −0.2454 0.0880 −0.2453 0.0866 0.0879

WCAR NN −1.0000 1.0000 −0.9999 0.8634 0.9999
2NN −2.2836 1.0000 −2.2835 0.9423 0.9999

ACAR NN −0.2565 0.2565 −0.2564 0.2391 0.2564
2NN −0.2454 0.0880 −0.2453 0.0863 0.0879

NOTE: The caption for Table 2 gives the necessary explanations for table entries. The values shown are rounded

to the fourth decimal place.

5.2 DIAGNOSTICS APPLIED TO THE DATA

In this section, we apply the diagnostic methodology developed earlier, to the prescrip-
tion data {Zi : i = 1, . . . , 268}. For the mean structure of the linear model, we use

E(Zi ) = (1, ui )βββ,

where ui is the percentage of patients over the age of 70 in the i th canton and βββ = (β0, β1)
′.

Like Cressie, Perrin, and Thomas-Agnan (2005, 2006), we found that {ui } captures a lot
of the variability in {Zi }. The distance between two cantons is obtained by calculating
the Euclidean distance between their centroids (distances are small enough to ignore the
Earth’s curvature). As described in Section 3.5, we constructed the neighborhood structure
for these data using different values of d ∈ {20, 30, 40, . . . , 180} (in units of km). For each
choice of d, (3.11) provides a neighborhood structure N (d) = {N (d)

i : i = 1, . . . , 268},
which is used to fit the three types of CAR models given in Section 3.1. As for the archeo-
logical dataset, we use four different choices for γ0, namely, γmin − ε, 0, γ̂ , and, γmax + ε,
where ε = 10−4.

As mentioned in Section 3.5, one strength of our diagnostic methodology is being able

Table 5. Values of MSEW for the various CAR-model combinations, fitted to the modified archeological dataset
after removing site (7, 16). (The smallest MSEW -value is shown in bold.)

γ0

Models γmin + ε 0 γ̂ γmax − ε

HCAR NN 1.1797 1.0164 1.0022 1.0361
2NN 1.5885 1.0164 0.9769 0.9789

WCAR NN 1.2216 1.0131 1.0102 1.1029
2NN 1.6200 1.0099 0.9905 1.0042

ACAR NN 1.1852 1.0131 1.0020 1.0465
2NN 1.6152 1.0099 0.9826 0.9875

NOTE: The values shown are rounded to the fourth decimal place.
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Figure 5. Model-Comparison plot based on Model A: (HCAR, 2NN, γ̂ = 0.0866) and Model B:
(ACAR, 2NN, γ̂ = 0.0863), refitted to the modified archeological dataset after removing site (7, 16). The hori-

zontal dotted line represents MSE(A)
W − MSE(B)

W .

to visualize the effect on the spatial model of changing the neighborhood structure. Figure 7
illustrates how the MSEW , given by (3.7), changes with d for all combinations of model
types and γ0 = γ̂ and γmax − ε. The plot based on the maximum likelihood estimator,
γ0 = γ̂ , deserves particular attention. Clearly, d = 60 km provides the best neighborhood
structure for most of the models. It is interesting to note that for large d, MSEW -values
increase; that is, there is an inherent penalization for overly complex neighborhood struc-
tures.

To make model comparisons, we use two neighborhood structures, N (30) and N (60);
Cressie, Perrin, and Thomas-Agnan (2005, 2006) used N (30). Table 6 gives the values of
γ̂ , γmin, γmax, from which the values of γ0 used in the model comparisons are obtained.
As for the archeological dataset, γ̂ here is close to γmax, and hence we expect similar
performances for the three CAR models with γ0 = γ̂ and γ0 = γmax − ε.

Figure 8 shows the MRF-Neighborhoods plot for the model (WCAR, N (60), γ̂ ), as
described in Section 3.2. This model seems to fit very well with only a few positive
and negative outliers. On the other hand, the MRF-Neighborhoods plot for the model
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Figure 6. Model-Comparison plot based on Model A: (ACAR, NN, γ̂ = 0.2391) and Model B:
(ACAR, 2NN, γ̂ = 0.0863), refitted to the modified archeological dataset after removing site (7, 16). The hori-

zontal dotted line represents MSE(A)
W − MSE(B)

W .

(WCAR, N (60), γmin+ε) given in Figure 9 shows spatial clustering of positive and negative
residuals. Such a plot indicates that the model does not fit the data very well.

Next, we look at the diagnostic statistic, MSEW , defined by (3.7). Table 7 shows MSEW

for different models and for different choices of γ0. We observe that for the three types
of CAR models (except where γ0 = γmin + ε) considered, the neighborhood structure
N (30) gives higher MSEW -values (i.e., fits less well) than the corresponding neighborhood
structure N (60). Furthermore, for N (60) (again, except where γ0 = γmin + ε), WCAR
models and ACAR models perform comparably.

In Figure 10, we give a Model-Comparison plot between two models that have large
MSEW differences, in an attempt to see if there are any unusual sites. We compare Model
A: (WCAR, N (60), γmin+ε), and Model B: (WCAR, N (60), γ̂ ); clearly, Figure 10 does not
show any unusual areas contributing to the difference. We conclude that Model B, based
on γ0 = γ̂ , performs consistently better than Model A, based on γ0 = γmin + ε.

Based on the tables and figures given, we see that for the dataset of doctors’ prescription
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=γ0 γmax − ε

HCAR WCAR ACAR

Figure 7. Plot of MSEW -values vs. d (in km), for the dataset of doctors’ prescription amounts. The three types
of CAR models, grouped by γ0, are shown: ‘4’ joined by a dashed line (– – –) represents the HCAR models;
“+” joined by dotted a line (∙ ∙ ∙ ) represents the WCAR models; and ‘◦’ joined by solid a line (—) represents the
ACAR models. The choice of γ0 is specified at the top of each panel.

amounts, ACAR models and WCAR models perform very similarly for most of the model
combinations and are superior to the HCAR models. The neighborhood structure N (60)

outperforms the neighborhood structure N (30) for γ0 = γ̂ and γ0 = γmax − ε. We see
from Table 7 that the best (smallest) four values of MSEW yield the following MSEW -
inequalities:

(WCAR, N (60), γ̂ ) < (WCAR, N (60), γmax − ε) < (ACAR, N (60), γ̂ )

< (ACAR, N (60), γmax − ε).

Table 6. Values of γ0 used in the fitted CAR models for the dataset of doctors’ prescription amounts.

γ0

Models γmin γmax γmin + ε γ̂ γmax − ε

HCAR N (30) −0.2130 0.0552 −0.2129 0.0474 0.0551
N (60) −0.0920 0.0166 −0.0919 0.0153 0.0165

WCAR N (30) −2.6562 1.0000 −2.6561 0.7442 0.9999
N (60) −5.4895 1.0000 −5.4894 0.8976 0.9999

ACAR N (30) −0.2130 0.0552 −0.2129 0.0461 0.0551
N (60) −0.0920 0.0166 −0.0919 0.0158 0.0165

NOTE: The caption for Table 2 gives the necessary explanations for table entries. The values shown are rounded
to the fourth decimal place.
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Figure 8. MRF-Neighborhoods plot based on (WCAR, N (60), γ̂ = 0.8976), for the dataset of doctors’ pre-
scription amounts. The caption for Figure 1 explains the symbols used in the figure.

6. DISCUSSION AND CONCLUSIONS

In this article, we prove a general result (not just for CAR models but for any MRF)
that depends on an assumed neighborhood structure, and we use it to define diagnostics for
departures from the assumed structure. The result also encompasses the generality of the
choice of a test function; for the examples considered, we use g(x) = ex for its sensitivity
in detecting local departures. We use two examples, one on a regular lattice and one on an
irregular lattice, to illustrate our diagnostic methodology for CAR models. Based on local
residuals W∗ and their standardized version W, we develop the MRF-Neighborhoods plot
and the Model-Comparison plot, along with the diagnostic statistic MSEW . In the second
example, we show graphically the effect of increasing neighborhood complexity on how
well the CAR models fit. Typically, one expects such behavior but was hitherto unable
to explore it, and we see this as an important contribution of our article. In summary,
our diagnostics show that the neighborhood structure plays a crucial role in determining
whether a given MRF model is appropriate or not.

From the MRF-Neighborhood plot (e.g., Figures 1, 2, 4, 8, and 9), we are able to
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Figure 9. MRF-Neighborhoods plot based on (WCAR, N (60), γmin +ε = −5.4894), for the dataset of doctors’
prescription amounts. The caption for Figure 1 explains the symbols used in the figure.

determine departures from an imposed neighborhood structure, locally, site-by-site. We
are also able to identify unusual sites where there are spatial “outliers.” Next, through
the global diagnostic statistic, MSEW , we can compare directly all plausible models (e.g.,
Tables 3, 5, and 7). Once the class of plausible models is reduced, we can use the Model-
Comparison plots (e.g., Figures 3, 5, 6, and 10) to compare competing models in a local
manner.

Suggestions for future work include extending our methodology to the Intrinsic Au-
toregressive (IAR) processes, developing a global model-selection statistic based on W
that includes a penalty for the number of model parameters (see the AIC and BIC model-
selection criteria), and studying the effect of using conditional variances (from Result 2) at
the sites to standardize the components of W∗ (rather than using the joint variance matrix).

APPENDIX: RESULTS WITH PROOFS

Before establishing our results, some notation and a few basic properties are needed.
The results presented here are for general choices of μμμ, M , and C in Gau

(
μμμ, (I − C)−1 M

)
,
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746 N. CRESSIE AND P. KAPAT

Table 7. Values of MSEW for the various CAR-model combinations, fitted to the dataset of doctors’ prescription
amounts. (The smallest MSEW -value is shown in bold.)

γ0

Models γmin + ε 0 γ̂ γmax − ε

HCAR N (30) 1.1037 1.0241 1.0228 1.0258
N (60) 1.1216 1.0241 1.0177 1.0174

WCAR N (30) 1.0535 1.0122 1.0112 1.0263
N (60) 1.1446 1.0090 1.0026 1.0028

ACAR N (30) 1.1017 1.0122 1.0120 1.0364
N (60) 1.1092 1.0090 1.0038 1.0070

NOTE: The values shown are rounded to the fourth decimal place.

where M−1(I − C) is symmetric and positive-definite for M = diag(τ 2
1 , . . . , τ 2

n ) and
C = (ci j )n×n .

(a) A Gaussian random variable X is denoted as: X ∼ Gau(ν, σ 2). Its moment gener-
ating function is given by E

(
et X

)
= exp

{
νt + σ 2t2/2

}
, which implies that

E
(

eX
)

= exp{ν + σ 2/2}.

(b) In the CAR model (3.1), notate I − C = [δδδ1, . . . , δδδn]′; that is, the i th row of I − C
is δδδ′

i ≡ (δi1, . . . , δin). Then,

δi i = 1 − cii = 1, δi j = −ci j for i 6= j.

Note that C need not be symmetric, but M−1/2C M1/2 must be.

(c) Define ei ≡ (0, . . . , 0, 1, 0, . . . , 0)′n×1, an n-dimensional vector with 1 in the i th
position and zeros elsewhere.

Then using (b) we obtain,

δδδ′
i (I − C)−1 Mδδδi = e′

i Mδδδi = τ 2
i e′

iδδδi = τ 2
i δi i = τ 2

i ; i = 1, . . . , n,

and for i 6= j ∈ {1, . . . , n},

δδδ′
i (I − C)−1 Mδδδ j = e′

i Mδδδ j = τ 2
i e′

iδδδ j = τ 2
i δ j i = −τ 2

i c ji .

Result 1. For g(x) = ex in (2.2), the CAR model (3.1) implies that

m(Z(Ni )) = exp
{
μi +

∑

j∈Ni

ci j (Z( j) − μ j ) +
1

2
τ 2

i

}
; i = 1, . . . , n.
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Figure 10. Model-Comparison plot based on Model A: (WCAR, N (60), γmin + ε = −5.4894) and Model
B: (WCAR, N (60), γ̂ = 0.8976), for the dataset of doctors’ prescription amounts. The horizontal dotted line

represents MSE(A)
W − MSE(B)

W .

Proof: The result follows trivially from (a) above by noting that

Z(i)|Z(Ni ) ∼ Gau
(
μi +

∑

j∈Ni

ci j (Z( j) − μ j ), τ
2
i

)
; i = 1, . . . , n.

Result 2. For W ∗
i defined in (3.4), E(W ∗

i |Z(Mi )) = 1, where recall from Section 2
that Mi ≡ Ni ∪ {i}; i = 1, . . . , n. Furthermore, for the CAR model (3.1), var(W ∗

i |Z(Mi )) =
exp{τ 2

i } − 1; i = 1, . . . , n.
Proof: From (2.1) and (2.2),

E
(
W ∗

i |Z(Mi )
)

= E
(
E
(
W ∗

i |Z(Ni ), Z(Mi )
))

= E
(
E
(

exp{Z(i)}|Z(Ni ), Z(Mi )
)
/m(Z(Ni ))

)

= 1.
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748 N. CRESSIE AND P. KAPAT

For the conditional variance, consider the following equality from Result 1:

E
(

exp{2 Z(i)}|Z(Ni )
)

= exp
{

2 μi + 2
∑

j∈Ni

ci j (Z( j) − μ j ) + 2 τ 2
i

}

= exp{τ 2
i } m(Z(Ni ))

2.

Hence,

var
(
W ∗

i |Z(Mi )
)

= E
(
W ∗2

i |Z(Mi )
)
− 1

= E
(
E
(

exp{2 Z(i)}|Z(Ni ), Z(Mi )
)
/m(Z(Ni ))

2)− 1

= exp{τ 2
i } − 1.

Result 3. From (3.4), var(W∗) ≡ 6∗ = eB − J , where B = (I − C)M.
Proof: From Result 2,

var(W ∗
i ) = E

(
var
(
W ∗

i |Z(Mi )
))

+ var
(
E
(
W ∗

i |Z(Mi )
))

= exp{τ 2
i } − 1 = exp{Bii } − 1.

Fix i 6= j ∈ {1, . . . , n}.

W ∗
i = exp

{
Z(i) − μi −

∑

j∈Ni

ci j (Z( j) − μ j ) − τ 2
i /2

}

= exp{δδδ′
i (Z − μμμ) − τ 2

i /2};

cov(W ∗
i , W ∗

j )= E
(
(W ∗

i − 1)(W ∗
j − 1)

)
= E(W ∗

i W ∗
j ) − 1

= E
(

exp{δδδ′
i (Z − μμμ) − τ 2

i /2} exp{δδδ′
j (Z − μμμ) − τ 2

j /2}
)
− 1

=exp{−(τ 2
i + τ 2

j )/2}E
(

exp{(δδδi + δδδ j )
′(Z − μμμ)}

)
− 1.

From (3.2), we have,
Z − μμμ ∼ Gau(0, (I − C)−1 M).

Thus,
(δδδi + δδδ j )

′(Z − μμμ) ∼ Gau(0, (δδδi + δδδ j )
′(I − C)−1 M(δδδi + δδδ j )).

Using (c), the variance simplifies to:

(δδδi + δδδ j )
′(I − C)−1 M(δδδi + δδδ j ) = τ 2

i − τ 2
i c ji − τ 2

j ci j + τ 2
j .

Hence,

cov(W ∗
i , W ∗

j ) = exp{−(τ 2
i + τ 2

j )/2} exp{(τ 2
i − τ 2

i c ji − τ 2
j ci j + τ 2

j )/2} − 1

= exp{−(τ 2
i c ji + τ 2

j ci j )/2} − 1.
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SOME DIAGNOSTICS FOR MARKOV RANDOM FIELDS 749

Because τ 2
i c ji = τ 2

j ci j (e.g., Cressie 1993, p. 407), B is symmetric. Hence,

cov(W ∗
i , W ∗

j ) = exp{Bi j } − 1,

where Bi j , i 6= j , is an off-diagonal element of B.
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