University of Wollongong

Research Online

Faculty of Science, Medicine and Health - Papers: part A

Faculty of Science, Medicine and Health

1-1-2014

Dynamics and chaperone function in the small heat-shock protein $\boldsymbol{\alpha}$ b-crystallin

Georg K. A Hochberg University of Oxford

Heath Ecroyd University of Wollongong, heathe@uow.edu.au

Dezerae Cox University of Wollongong, dcc356@uowmail.edu.au

Michael Sawaya University of California - Los Angeles

Cong Liu University of California - Los Angeles

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Hochberg, Georg K. A; Ecroyd, Heath; Cox, Dezerae; Sawaya, Michael; Liu, Cong; Cascio, Duilio; Collier, Miranda; Stroud, James; Carver, John A.; Baldwin, Andrew; Robinson, Carol; Eisenberg, David; Benesch, Justin; and Laganowsky, Arthur, "Dynamics and chaperone function in the small heat-shock protein αbcrystallin" (2014). *Faculty of Science, Medicine and Health - Papers: part A*. 2253. https://ro.uow.edu.au/smhpapers/2253

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Dynamics and chaperone function in the small heat-shock protein α b-crystallin

Abstract

Abstract of poster that was presented at The 29th Annual Symposium of The Protein Society, San Diego, USA, 27-30 July, 2014.

Disciplines

Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Hochberg, G., Ecroyd, H., Cox, D., Sawaya, M., Liu, C., Cascio, D., Collier, M., Stroud, J., Carver, J., Baldwin, A., Robinson, C., Eisenberg, D., Benesch, J. & Laganowsky, A. (2014). Dynamics and chaperone function in the small heat-shock protein αb-crystallin. Protein Science, 23 (S1), 114-115.

Authors

Georg K. A Hochberg, Heath Ecroyd, Dezerae Cox, Michael Sawaya, Cong Liu, Duilio Cascio, Miranda Collier, James Stroud, John A. Carver, Andrew Baldwin, Carol Robinson, David Eisenberg, Justin Benesch, and Arthur Laganowsky

POST 11-132

Dynamics And Chaperone Function In The Small Heat-Shock Protein α B-Crystallin

<u>Georg Hochberg</u>¹, Heath Ecroyd², Dezerea Cox², Michael Sawaya³, Cong Liu³, Duilio Cascio³, Miranda Collier¹, James Stroud³, John Carver⁴, Andrew Baldwin¹, Carol Robinson¹, David Eisenberg³, Justin Benesch¹, Arthur Laganowsky¹

¹Chemistry Research Laboratory, Oxford University, Oxford, United Kingdom, ²University of Wollongong, Wollongong, New South Wales, Australia, ³University of California, Los Angeles, Los Angeles, California, US, ⁴The Australian National University, Canberra, Australian Capital Territory, Australia

Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, preventing their aggregation into either amorphous deposits or amyloid fibrils. How sHSPs carry out their important function is unknown, but it is generally believed to depend on their complex quaternary dynamics, including the formation of large and heterogeneous oligomers, their inter-conversion via subunit exchange, and the presence of disordered terminal domains. Although these dynamics can now be accurately measured using native mass spectrometry and nuclear magnetic resonance (1), the heterogeneity inherent in this system makes it difficult to test conclusively

POSTER ABSTRACTS

which aspects of sHSP assemblies are required for chaperone function. To overcome these challenges, we engineered truncated constructs of the two most abundant sHSPs in human tissue, αB-crystallin and HSP27 in a manner allowing us to carefully control their quaternary dynamics and solve their structures by X-ray crystallography (2). We quantified the quaternary dynamics of these domains using native mass spectrometry, and used engineered cysteines to drive their equilibrium stoichiometries from rapidly interconverting monomers and dimers to conformationally restricted dimers that cannot exchange Remarkably, we find that the α B-crystallin core domain alone has chaperone activity subunits. comparable to that of the full-length protein, despite its inability to form large oligomers and lack of disordered terminal domains and regardless of whether the α B-crystallin core domain is locked into a dimer or predominantly monomeric. Furthermore, it is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid- β peptide to cells. Our experiments therefore identify a novel, small and highly structured 'functional unit' of the heterogeneous sHSP oligomeric enabling ensemble, potentially more rational design of amyloid inhibitors. 1. Hochberg G & Benesch J (2014) Dynamical structure of aB-crystallin. Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2014.03.003. 2. Hochberg G, et al. (2014) The structured core domain of aB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc. Natl. Acad. Sci. USA 111(16):E1562-E1570.