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Review

Host Responses to Group A Streptococcus: Cell Death
and Inflammation
James A. Tsatsaronis1, Mark J. Walker2, Martina L. Sanderson-Smith1*

1 Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia, 2 Australian

Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia

Abstract: Infections caused by group A Streptococcus
(GAS) are characterized by robust inflammatory responses
and can rapidly lead to life-threatening disease manifes-
tations. However, host mechanisms that respond to GAS,
which may influence disease pathology, are understudied.
Recent works indicate that GAS infection is recognized by
multiple extracellular and intracellular receptors and
activates cell signalling via discrete pathways. Host
leukocyte receptor binding to GAS-derived products
mediates release of inflammatory mediators associated
with severe GAS disease. GAS induces divergent
phagocyte programmed cell death responses and has
inflammatory implications. Epithelial cell apoptotic and
autophagic components are mobilized by GAS infection,
but can be subverted to ensure bacterial survival.
Examination of host interactions with GAS and conse-
quences of GAS infection in the context of cellular
receptors responsible for GAS recognition, inflammatory
mediator responses, and cell death mechanisms, high-
lights potential avenues for diagnostic and therapeutic
intervention. Understanding the molecular and cellular
basis of host symptoms during severe GAS disease will
assist the development of improved treatment regimens
for this formidable pathogen.

Introduction

Group A Streptococcus (GAS; Streptococcus pyogenes) is a

clinically important bacterial pathogen responsible for many

severe human diseases. Whilst GAS is a frequent agent of self-

limited pharyngitis and uncomplicated impetigous infections,

penetration of GAS into deeper tissues, trauma, or adverse

progression of superficial tissue infections can result in devastating

invasive infections, such as the ‘‘flesh-eating’’ syndrome, necrotis-

ing fasciitis (NF), or more rarely, myonecrosis [1,2]. Systemic

manifestations of GAS disease, sepsis, or streptococcal toxic shock

syndrome (STSS), when accompanying invasive cutaneous infec-

tions, strongly contribute to poor patient prognosis [3]. Conser-

vative estimates of the global burden of severe GAS diseases

account for 663,000 cases, with 32% of NF cases resulting in

patient mortality within seven days in developed countries, rising

to a 50% case mortality rate in NF episodes with associated STSS

[4,5]. The destructive nature, rapid onset, and high mortality rate

of severe GAS diseases, such as NF and STSS, despite prompt

medical care and antimicrobial therapy, necessitates an improved

understanding of the mechanisms underlying these pathologies.

Whilst mechanisms by which GAS evades elements of the innate

immune response have been the focus of intense investigation [6],

comparatively less attention has been given to the host processes

underlying the pathophysiology of GAS infections. Notably, the

roles of cellular host mediators in the context of GAS infection are

poorly understood. Here, we integrate recent works describing

cellular recognition of GAS infection, signalling pathways leading

to inflammatory mediator release and consequent programmed

cell death mechanisms. A holistic perspective, incorporating the

role of host factors in GAS diseases, should enable the

development of more efficacious and tailored treatment options.

Leukocyte Recognition of GAS and Signalling
Pathways

Toll-like receptor recognition
Cellular surveillance and recognition of foreign agents by the

innate immune system is an essential prerequisite to effector

recruitment and induction of appropriate responses. One class of

cell receptors involved in recognition of highly conserved

microbial components are the Toll-like receptors (TLRs). There

are currently more than 10 known TLRs, which recognize

multiple pathogen-associated molecular patterns (PAMPs), includ-

ing lipoteichoic acid (LTA), peptidoglycan (TLR2), lipopolysac-

charide (TLR4), and unmethylated bacterial CpG DNA (TLR9)

[7]. Studies investigating receptors involved in recognition of GAS

infection have shown that TLR signalling, particularly through the

MyD88 adapter molecule, plays a vital role in induction of host

defences and inflammation (Figure 1) [8,9]. Given that TLR2

recognises multiple gram-positive bacterial ligands, it is likely this

TLR plays a major role in GAS recognition and responses.

Indeed, induction of streptococcal cell wall extract–induced joint

inflammation is dependent on TLR2/MyD88 signalling [10].

Leukocyte signaling events
Macrophages and dendritic cells (DCs) are commonly viewed as

central coordinators of immune responses. This view has been

supported by studies showing that macrophages and DCs are both

essential for control of GAS infection [11,12], likely through

secretion of multiple pro-inflammatory cytokines such as interleukin
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(IL)-1b, IL-6, tumour necrosis factor (TNF)-a, and IL-12 [9,13].

Macrophage and DC recognition of GAS is partially mediated

by TLRs, and interaction with multiple bacterial factors by

different TLRs appears to provide immune redundancy in

inducing cytokine responses. This redundancy is exemplified by

the activation of macrophages via TLR4 signalling from

nonstructural bacterial elements, such as GAS cytolysin strep-

tolysin O (SLO), and the inability of singular TLR1, TLR2,

TLR4, or TLR9 deficiencies to prevent stimulation of DC

cytokine production [12,14]. However, downstream MyD88

signalling is critical for coordinated immune responses, an aspect

prominent in clinical studies of patients lacking MyD88, who

are highly predisposed to pyogenic infections [15]. MyD88

participates in macrophage and DC TLR-stimulated TNF-a
production and type-1 interferon (IFN) responses [8,9,16,17].

GAS induction of IFN-b is nucleic acid–dependent and requires

interferon regulator factor (IRF) 3, IRF5, stimulator of

interferon genes (STING), and TANK-binding kinase (TBK) 1

signalling via as-yet-undescribed receptors [16,17]. Although

GAS is typically considered an extracellular pathogen [1], recent

studies indicate intracellular receptors, such as TLR9, are

important for cytokine responses via hypoxia-inducible factor 1-

alpha (HIF-1a) signalling, and also contribute to macrophage

GAS killing and reactive oxygen species (ROS) production [18].

Non-TLR recognition of GAS
Other non-TLR receptors have been shown to respond to GAS

infection. Secretion of SLO mediates activation of the intracellular

NOD-like receptor (NLRP) inflammasome component NLRP3

and promotes macrophage caspase-1 mediated IL-1b secretion

independently of both TLR and MyD88 signalling [19]. A recent

report describes secondary modulation of macrophage cytokine

responses by the triggering receptor expressed on myeloid cells

(TREM)-1, which, when inhibited, has a therapeutic effect in

murine models of GAS sepsis [20]. The recent work of Baruch et

al. demonstrates SLO-mediated host signalling via induction of

endoplasmic reticulum stress [21]. Adherence of sil-expressing

GAS to epithelial cells and macrophages increases host asparagine

Figure 1. Cellular receptors and signalling pathways involved in GAS recognition and inflammatory mediator release. Inflammatory
mediators are released from multiple leukocyte types during GAS infection; including PMNs, monocytes, macrophages, and dendritic cells [12,13].
GAS and GAS-derived LTA, SLO, and soluble M1 protein (sM1), activate cellular responses to infection [14,26]. Receptors involved in recognition of
GAS include TLRs, TREM-1, complement receptors (CR), immunoglobulin receptors (FcR), Mac-1, and NLRP3 [9,19,20,27]. Ligand binding to these
receptors leads to downstream signalling via MyD88, HIF-1a, STING, IFR3, IRF5, and TBK1 [8,16–18]. Recognition of GAS triggers release of
interleukins, TNF-a, IFN-b, HBP, resistin, and LL-37 [16,25].
doi:10.1371/journal.ppat.1004266.g001
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synthetase expression and asparagine production, driving GAS

proliferation and virulence [21].

Excessive Host Responses Contributing to GAS
Disease Pathology

Superantigenic stimulation of T-cell responses
Sufficient excitation of host defences is necessary to mount an

adequate response to combat GAS infection. A large body of

evidence suggests, however, that excessive and misdirected host

responses underlie damaging pathologies of severe GAS infection

[22]. GAS may produce one or more of a large variety of

superantigens that increase host propensity to excessive immune

activation. Superantigens circumvent conventional antigen pre-

sentation by binding simultaneously to both the major histocom-

patibility complex (MHC) class II and T-cell receptors outside of

the peptide-binding area [23]. The resulting ‘‘cytokine storm’’,

driven by activated T-cells and antigen presenting cells, may

underlie host hyperinflammatory responses [22]. While GAS

superantigens play an important role in dictating immune

responses, exhaustive discussion of these protein toxins is beyond

the scope of this article, and the reader is directed to recent

comprehensive reviews [22–24].

M1-mediated heparin binding protein release
Interactions of polymorphonuclear leukocytes (PMNs) and the

classic GAS virulence factor, M protein, have been recently

implicated in mediating excessive inflammatory responses [25]. As

the major effector cell type of the innate immune system,

activation of PMNs and the release of cytotoxic granules has

implications for development of severe GAS diseases pathologies.

Serotype M1 protein released from the GAS cell surface forms

complexes with fibrinogen that bind to PMN Mac-1 receptor, both

activating PMNs and triggering release of heparin binding protein

(HBP) (Figure 1) [26]. HBP is a potent inducer of vascular

permeability, and release of this protein elicits pulmonary lesion

formation and vascular leakage [26]. PMN-mediated HBP release

synergistically enhances inflammatory cytokine responses from M1

protein–stimulated peripheral blood monocytes during necrotizing

infections [27]. Individuals with IgG antibodies directed towards

the central region of the M1 protein elicit higher HBP release and

are subsequently more susceptible to suffering a pathologically

excessive inflammatory response to M1 protein–fibrinogen–IgG

complexes [28]. Direct injection of purified M1 protein is sufficient

to trigger PMN granule-mediated severe lung damage, which is

markedly reduced in neutropenic mice [29]. The M1 protein

structure plays an important role in triggering HBP-mediated lung

injury, as mutated nonfibrinogen-binding M1 protein exhibits

diminished ability to cause pulmonary haemorrhage [30]. The

precise organisation of fibrinogen molecules into a supramolecu-

lar, cross-like network by M1 protein is essential for PMN

activation and is conformationally distinct from normal fibrin clots

[31]. A novel marker of septic shock severity, resistin, has also been

found to predominately originate from M1 protein–activated

PMNs during both systemic and localised severe GAS infection

and contributes to local tissue damage [32].

SLO-mediated inflammatory reactions
Other GAS virulence factors, particularly streptolysin O (SLO),

have been found to modulate PMN responses and contribute to

inflammation and tissue damage. Oligomerization of SLO in

eukaryotic cell membranes forms large (,25–30 nm) pores and

has been shown to disrupt membrane integrity in multiple cell

types, including PMNs, macrophages, and epithelial cells [33,34].

SLO induces toxic PMN platelet aggregates during cutaneous

infection that mediate progression of microvascular thrombosis

and ischemic tissue necrosis [35]. SLO binding by PMNs has also

been shown to mediate HBP, human cathelicidin (LL-37), alpha-

defensin, and elastase release [36]. Multiple accounts indicate that

SLO secretion also facilitates delivery of other GAS virulence

factors. SLO-induced epithelial damage enhanced the penetration

of the GAS SpeA superantigen in a vaginal mucosa model ex vivo

[37]. SLO production also mediates translocation of GAS NAD-

glycohydrolase into host keratinocytes, leading to intracellular

signalling [38].

Host genetic predisposition to excessive immune
responses

The role of host genetic factors contributing to GAS disease has

been investigated and found to play a decisive role in dictating host

susceptibility to severe sepsis and STSS. Goldmann et al. utilised

differential susceptibilities of distinct mouse strains to severe GAS

infection to demonstrate that failure to control infection and

excessive evocation of inflammatory responses by susceptible mice

result in extensive tissue destruction [39]. This finding has been

refined in studies ascribing differences in severity of STSS to host

polymorphism in the human leukocyte antigen complex [13], [40].

Human MHC class II haplotype DRB*1501/DQB1*0602 is less

commonly associated with STSS in the presence of NF, while

DRB1*07/DQB1*0201 predisposes towards such disease mani-

festations [40]. A complementary systems genetics approach was

recently utilized to identify a panel of host genes bestowing

predisposition towards severe GAS sepsis [41]. Pathological levels

of the product of one of these genes, Prostaglandin E, directly

influences the severity of GAS infection [42].

Host Leukocyte Cell Death Responses

Programmed cell death plays a decisive role in determining the

outcome of microbial infections and inflammation. A variety of

regulated cell death mechanisms have been described in response

to infection, which have distinct morphological and molecular

signatures (Box 1).

Apoptotic PMN cell death responses
Apoptosis limits the potential of damaged PMNs to ignite

inflammatory responses [43]. Coordinated PMN apoptotic shut-

down initiates a state of cellular torpor, and administration of

apoptotic PMNs actively promotes anti-inflammatory responses

[44]. Conversely, necrosis triggers a proinflammatory phenotype

resulting in release of damage-associated molecular patterns

(DAMPs) and prompts rapid immune responses [45]. In a landmark

study by Kobayashi et al., phagocytosis-induced PMN transcrip-

tional responses were analysed for a variety of bacterial pathogens,

including GAS [46]. This study provided strong evidence of a

common apoptotic program following bacterial uptake and ROS

production. PMN apoptotic responses are accelerated in GAS and

lead to rapid DNA fragmentation [46]. Although GAS-induced

PMN apoptosis was associated with enhanced virulence potential,

the virulence determinant(s) responsible for this activity were not

elucidated. Later work by the same group indicated PMN apoptosis

induced by phagocytosis of latex beads, as opposed to live bacteria,

is associated with nullified inflammatory capacity and expedites

resolution of inflammation [47].

GAS cytolysin-induced cell death
Several reports emphasize the dominant role of GAS cytolysins

and, to a lesser extent, hyaluronic acid capsule in shaping host cell
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death. Early studies of SLO and streptolysin S (SLS) function

indicate both are capable of inducing plasma membrane

permeabilisation, leading to host epithelial cell lysis [33,48].

GAS strains expressing high and low amounts of SLS were utilised

to demonstrate that SLS expression is associated with caspase-7–

dependent apoptosis of thioglycolate-induced murine PMNs [49].

However, the strains used in this study also differed significantly in

capsule expression, a GAS virulence factor known to influence

PMN phagocytosis. Capsule-deficient, GAS-expressing SLO are

also more readily phagocytosed by DCs, preventing DC matura-

tion by promoting caspase-dependent apoptosis [50]. Proinflam-

matory macrophage cell death consistent with regulated necrosis

(Box 1) was reported by Goldmann et al. [34]. Macrophage

necrosis was attributable to both SLO and SLS activities leading to

glycine sensitive pore formation, loss of mitochondrial outer

membrane potential (ym), ROS production, ATP depletion, and

calpain activation [34]. Conversely, the work of Timmer et al. [51]

found that phagocytosed GAS cytolysin expression also depolarises

ym; however, this leads to DNA fragmentation, cytochrome C

redistribution and caspase-3 and -7 dependent apoptotic cell

death. Macrophages are principally responsible for the clearance

of apoptotic PMNs, and either apoptotic or necrotic depletion of

macrophages may exacerbate damage resulting from GAS-

induced PMN cell death [52]. Apoptotic PMNs not phagocytosed

by macrophages proceed to secondary necrosis and elicitation of

inflammatory responses [53]. These data support an emerging

theme in bacterial pathogenesis [43], and we propose manipula-

tion of phagocyte cell death responses has inflammatory implica-

tions for GAS disease.

GAS interaction with NETs and NETosis
PMNs are able to release extracellular traps (NETs) composed

of DNA, histones, and granule components that ensnare and kill

bacteria [54]. GAS and other bacterial pathogens have evolved

specialized means of evading this host defence mechanism via

secretion of extracellular DNases, which degrade NETs and

enable bacterial survival [55]. In vitro studies have indicated

PMNs undergo a distinct form of cell death following NET release,

dubbed NETosis; however, the relevance of this process to host

defence and bacterial pathogenesis has remained contentious

[56,57]. Recent in vivo evidence obtained using intravital

microscopy indicates that GAS and other gram-positive pathogens

are ensnared by NETosing PMNs; however, these cells, in fact,

remain viable and retain bactericidal capacity [58].

Epithelial Cell Apoptotic Responses

Epithelial cells mediate the first interactions between host and

bacteria. Adherence of GAS to epithelial receptors frequently

precedes intracellular invasion of this bacterium [59], and multiple

Box 1. Modes of Host Regulated Cell Death

Multiple pathways leading to host cell death have been
described and exhibit characteristic morphological, molecu-
lar, and immunological features. Here we briefly summarize
key aspects of host regulated cell death mechanisms
(reviewed in detail in [78,79]).
Apoptosis: Also known as Type-I cell death, apoptosis is a
non-inflammatory cell death mechanism. Apoptosis may be
triggered via multiple external (extrinsic) or internal (intrinsic)
stimuli. Extrinsic apoptosis follows extracellular signalling via
ligands such as Fas/CD95 ligand, TNF-a, and TNF-related
apoptosis inducing ligand (TRAIL) to specific death receptors.
Intrinsic apoptosis can be induced by various intracellular
stresses, including DNA damage and oxidative stress.
Morphologically, apoptotic cells undergo cellular shrinkage,
nuclear condensation, and blebbing. However, more strin-
gent molecular identification of apoptosis considers depen-
dency upon activation of distinct caspases (typically cas-
pases-3, -6, and -7 for extrinsic apoptosis, and caspases-9 and
-3 for intrinsic apoptosis), and the presence of biochemical
features such as mitochondrial membrane depolarization,
oligonucleosomal DNA fragmentation, ROS generation,
exposure of phosphatidylserine, and cellular redistribution
of factors such as cytochrome C and Bax. Apoptotic cells are
generally phagocytosed by macrophages via efferocytosis;
however, if this does not occur, cells may undergo secondary
necrosis, whereby intact apoptotic cells lose plasma mem-
brane integrity and undergo autolysis, triggering immune
responses.
Necrosis: Originally designated ‘‘accidental cell death’’,
necrosis is a proinflammatory cell death mode. While
historically regarded as unintentional cell demise in response
to overwhelming stress, recent works indicate necrosis may
proceed in a regulated fashion (also known as necroptosis or
oncosis). Necrosis is exhibited morphologically via cell and
organelle swelling, cytoplasmic vacuolization, eventual loss
of plasma membrane integrity, and escape of cytoplasmic

content, leading to enhanced immune responses. In some
instances, regulated necrosis has been linked to necrostatin-
inhibitable RIP1-RIP3 activation and/or calpain-cathepsin
activation. Most studies investigating programmed necrosis
have been conducted using non-infectious disease models
(e.g., ischemia-reperfusion); however, a mounting body of
evidence suggests a role for this process in infectious disease
pathogenesis [80,81], and warrants further study.
Autophagic cell death: Also known as Type-II cell death,
autophagic cell death is a non-inflammatory cell death
response. Cellular autophagy can be triggered by cells under
specific stresses, including endoplasmic reticulum stress or
starvation, and are distinguished via the formation of
cytoplasmic double-membraned vesicles known as autopha-
gosomes. Autophagosomes typically contain damaged
organelles or cytoplasmic material, are labelled with LC3,
and eventually fuse with lysosomes (acquiring the LAMP-1
marker), leading to degradation of autophagosomal con-
tents. Autophagic responses that accompany cell death have
been associated with a distinct programmed cell death
routine; however, an increasing body of evidence supports
the supposition that autophagy primarily exerts a protective
response against cell demise in vivo.
Pyroptosis: Pyroptosis describes a specific form of pro-
inflammatory cell death sharing characteristics of both
apoptosis and necrosis. Pyroptotic activation of macrophag-
es and other cell types by microbial and nonmicrobial agents
is dependent on activation of caspase-1, which proteolyti-
cally drives maturation and release of IL-1b and IL-18.
Caspase-1 activation is associated with the formation of large
multiprotein complexes, either the inflammasome or pyr-
optosome, which involves signalling via NLRPs and the ASC
adaptor protein. These events culminate in cytoplasmic
swelling and osmotic lysis of pyroptotic cells, which
combined with increased IL-1b and IL-18 release, enhances
immune reactions.
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pathways of epithelial cell death have been reported following

GAS infection (Figure 2A). GAS infection of A549 and HEp-2

cells was found to elicit morphological changes consistent with

apoptosis, attributable to the activity of GAS cysteine protease

SpeB [60]. The apoptotic Fas receptor (FasR) and avb3 integrins

are able to bind SpeB, leading to downstream caspase-8 activation

and translocation of truncated-Bid (tBid) and Bax to mitochondria

[61,62]. Binding of SpeB to host receptors also up-regulates

caspase-8 and Bax via JAK-STAT, p38, and p53 signalling

[63,64]. Internalization-dependent epithelial cell apoptosis in

response to GAS infection has also been reported, whereby

fibronectin-mediated binding of GAS to host integrins triggers

actin rearrangement and Rac1 activation [65,66]. Rac1 activation

is hypothesized to mediate epithelial cell ROS production, leading

to downstream apoptotic responses [65–66]. A third pathway

trigged by extracellular GAS also elicits epithelial apoptosis via an

SLO-dependent mechanism [67]. Secretion of SLO by encapsu-

lated GAS triggers calcium flux into the cytosol of infected cells,

leading to vacuolization of the endoplasmic reticulum and cell

apoptosis [67]. Central to these pathways is the role of the

mitochondria, as cytochrome c release and ym depolarisation are

described as key events, and that overexpression of the anti-

apoptotic factor Bcl-2 can inhibit mitochondrial dysfunction. In

many studies, both capase-9 and caspase-3 are reported to mediate

the final apoptotic cascade. Transcriptional analyses of epithelial

cells also indicate overall apoptotic responses to GAS infection,

and that GAS elicits up-regulation of caspases and calcium

regulators [68,69]. It is important to note that different GAS

Figure 2. Epithelial cellular responses to GAS infection. A GAS-induced apoptosis of epithelial cells is triggered via intrinsic and extrinsic
pathways. SpeB binding to epithelial avb3 integrins or the Fas receptor (FasR) triggers upregulation of caspase-8 (casp-8) via JAK2, p38, p53, and
STAT1 signalling [62–64]. Procaspase-8 (pro-casp-8) is also activated directly due to FasR signalling, leading to truncation of cytosolic Bid (tBid) and
translocation of tBid to the mitochondria. Extracellular GAS binding to host integrins is enabled via bridging molecules such as fibronectin (Fn), and
enables Rac1-mediated internalization of GAS into host epithelial cells. GAS internalization and Rac1 activation facilitates production of ROS, leading
to increased p38 phosphorylation [65,66]. Encapsulated extracellular GAS are not internalized by epithelial cells, and secrete the pore-forming toxin
SLO. Integration of SLO into host cell membranes triggers net calcium (Ca++) flux into the cytosol and endoplasmic reticulum (ER) stress [67]. All three
pathways elicit loss of mitochondrial outer membrane potential (ym) and release of cytochrome C from the mitochondria, which precedes activation
of caspase-9 (casp-9), caspase-3 (casp-3), and apoptosis. Overexpression of the anti-apoptotic factor Bcl-2 by the host can inhibit epithelial cell
apoptosis. B GAS evades xenophagic killing by epithelial cells. GAS binding to the CD46 receptor is an early signal to activate autophagic responses
[72], and GAS are uptaken into early endosomes in a Rab5-dependent manner [74]; however, SLO expression allows GAS to escape from endosomes
into the cytosol. GAS exposure to the cytosol is recognized via ubiquitin (Ub) adapter proteins that, in conjunction with Rab7 and Rab23, facilitate
shuttling of GAS into GcAVs bearing the classic autophagy LC3 marker [71,73]. In the absence of SLO, streptolysin S is sufficient to damage
endosomal vacuoles for targeting to GcAVs by Ub-independent, galectin-8-mediated autophagy [76]. Lysosomal fusion with GcAVs, via Rab7 and
Rab9a, effects xenophagic destruction of intracellular GAS. Expression of SpeB by cytosolic GAS degrades Ub adapter proteins and prevents targeting
of bacteria to GcAVs, enhancing intracellular GAS survival [77]. Secretion of GAS NADase also protects GAS from xenophagic killing by inhibiting
fusion of GcAVs with lysosomes [76].
doi:10.1371/journal.ppat.1004266.g002
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serotypes do not elicit uniform epithelial responses, and compar-

ison of apoptotic induction by disparate GAS strains demonstrates

multiple caspases are utilized [70].

GAS-Induced Autophagy

Epithelial cell apoptosis has been suggested to protect host cells

from infection; however, data validating this hypothesis is lacking,

and contention exists regarding whether epithelial apoptotic cell

death is, indeed, a protective host response or a pathogenic

mechanism utilized by GAS [66,67]. An alternative epithelial cell

defence mechanism against GAS infection has been recently

described. Autophagy, a stress response wherein damaged cellular

components are targeted to degradative endosomal vacuoles, can

protect cells from intracellular GAS (Figure 2B). HeLa cells

containing intracellular M6 serotype GAS recognize cytosol-

exposed bacteria and target them for autophagic degradation via

ubiquitinylation, LC3 labelling, and the formation of GAS-

containing, autophagosome-like vacuoles (GcAVs) [71]. Expres-

sion of SLO by intracellular GAS is crucial for GAS escape from

endosomes into the cytosol and subsequent targeting to GcAVs

[71]. Binding of the cell surface CD46 receptor is an early trigger

of GAS-mediated autophagy [72]. The Rab-family of G-proteins

is responsible for multiple aspects of GcAV formation. Rab7

protein performs numerous roles, including targeting of GAS to

GcAVs and initial GcAV formation, and autophagosomal

maturation [73]. Other Rab-enzymes, Rab5, Rab23, and Rab9a,

also play distinct roles, which include facilitating GAS uptake into

endosomes, targeting of GAS to GcAVs, fusion of nascent GcAVs,

and autophagosomal maturation [74,75]. Recent studies report

that GAS is able to subvert autophagy-mediated bacterial

destruction (also called xenophagy) for intracellular survival.

SLO-mediated translocation of GAS NADase prevents efficient

killing of serotype M6 GAS via inhibition of autophagosomal

fusion with lysosomes [76]. A novel ubiquitin-independent

pathway of GcAV formation was also described for primary

human keratinocytes in this study, mediated by SLS damage to

endosomal vacuoles leading to galectin-8 labelling [76]. Infection

of HEp-2 cells with M1T1 serotype GAS reveals significantly

greater intracellular survival than by M6 GAS, with M1T1 GAS

displaying exposure to the cell cytosol but lack of the LC3

autophagy marker [77]. Enhanced M1T1 GAS survival was found

to be directly linked to SpeB activity, which degrades cytosolic

ubiquitin and the adapter proteins NDP52, p62, and NBR1 to

effect highly efficient evasion of cellular xenophagy [77].

Discussion

Detailed understanding of the host cellular processes that

precipitate severe GAS disease is vital to the development of

improved treatment strategies. Host receptor binding to GAS-

derived ligands activates PMNs and pro-inflammatory signalling

cascades of other cell types, which result in the release of host

molecules such as HBP, cytokines and resistin. Excessive exposure

of these factors is associated with multiple hallmarks of severe GAS

disease, including increased vascular permeability, systemic

inflammatory responses and destruction of focal tissues. GAS

and GAS cytolysin induction of regulated cell death of leukocytes,

leading to increased DAMP release, may further contribute to the

virulence and inflammatory potential of this pathogen. While

GAS-induced, host leukocyte apoptotic, and regulated necrotic

cell death may contribute to GAS disease pathologies, regulated

epithelial cell death responses could serve a more protective role,

as epithelial xenophagy directly counters GAS intracellular

invasion. However, as recent studies illustrate, GAS is able to

prevent intracellular killing, and so apoptosis of epithelial cells may

serve as a host contingency response, as these cells will be taken up

by nearby phagocytes. Thus, therapeutic interventions that reduce

the exposure of inflammatory mediators and/or restore native cell

death processes may help alleviate pathologies of severe GAS

infection.
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