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The 2013 Nobel Prize in Chemistry went to Martin Karplus, 
Michael Levitt and Arieh Warshel for their pioneering work 
on computer modelling, specifically, the ‘development of 
multiscale models of complex chemical systems’ (1). This 
award not only recognises the critical contributions by 
the three laureates to the field of molecular simulations, 
but also underscores the broad impact that computer 
simulations have made in fields as diverse as chemistry, 
biophysics, enzymology and material sciences. This review 
will present an overview of computational enzymology, a 
rapidly maturing field where multiscale modelling plays a 
key role in deciphering enzymatic catalysis (2–4). 

Enzymes are superb catalysts in nature; the enormous 
rate accelerations of enzymatic reactions over their 
uncatalysed counterparts typically range between 1010 
to 1020 fold (5). Unraveling how enzymes ‘work’ – how 
they speed up difficult chemical transformations with 
high efficiency and specificity, under mild physiological 
conditions, is a question of fundamental importance in 
biochemistry. At the same time, knowledge of the origin 
of this catalytic power on a molecular level has many 
practical applications in the form of novel artificial catalysts 
and enzyme inhibitors that might act as drugs. Over 
the past decades, enormous progress has been made in 
understanding the molecular basis of enzymatic reactions 
and their underlying mechanisms. Experimentally, 
this has been achieved through sustained efforts in 
structural biology, mutagenesis and enzyme kinetics. 
Such achievements have led to the de novo design of novel 
enzymes (6) and numerous inhibitors for use as drugs (7). 

Why is QM/MM Used to Model Enzymatic Reactions?
Because of the complexity of enzymes, potential 

ambiguity in the interpretation, and limitation in the 
spatial and temporal resolution of many experimental 

observables, a number of key mechanistic questions remain 
to be answered. For instance, it has been debated whether 
linear free energy relations and kinetic isotopic effects can 
unambiguously define the nature of transition states (8). 
As a result, a complete and quantitative understanding of 
enzyme catalysis is still lacking; this is evident from our 
inability to engineer efficient catalysts that match naturally 
evolved enzymes, in addition to the many mechanistic 
puzzles uncovered over the years. The seminal work by 
Karplus, Levitt and Warshel demonstrated that well-
calibrated, combined quantum mechanics/molecular 
mechanics (QM/MM) computational methods are capable 
of producing reliable predictions for structural and 
energetic properties and are tremendously valuable for 
detailed, atomic-level analyses of underlying mechanisms 
(9,10). The basic strategy in the QM/MM approach 
is straightforward (Fig 1a): the reactive part, a small 
portion of the system, is treated quantum mechanically; 
popular choices include fast, approximate methods (11) 
(e.g. SCC-DFTB, DFTB3, OMX) and more accurate, but 
computationally more expensive density functional theory 
or ab initio methods (12). The QM treatment allows the 
modelling of the electronic rearrangements involved in 
bond breakage and formation during a chemical reaction. 
On the other hand, the large non-reactive part of the enzyme 
and surrounding solvent are described more simply by 
empirical molecular mechanics (MM), the so-called force 
field (Fig 1b). In such a force field, the intra-molecular and 
inter-molecular interactions are represented by simple 
mathematical functions. The interactions between the 
QM and MM regions are included via different coupling 
schemes. Combined QM/MM simulations provide a 
direct window to monitor the electronic, structural and 
dynamical properties of an enzymatic reaction as it occurs 
(Fig 1c and 1d).
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Fig. 1. The major components of 
computational enzymology include:
(a) combined QM/MM methods; 
(b) classical force fields; 
(c) multiscale modelling approaches to 
explore the free energy landscape along 
the conformational coordinate; and 
(d) methods to calculate accurate 
energetics along the chemical coordinate. 
States I/II represent two conformational 
states along the conformational 
coordinate; while States II/III are the 
reactant state and the product state along 
one possible reaction pathway defined 
by the chemical coordinate.
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What Can QM/MM Offer Biochemists?	
Over the years, biomolecular simulations have become 

an indispensable tool for studying the structural, dynamic 
and functional aspects of biomolecular systems in atomic 
detail and are now widely used to interpret experimental 
data, test mechanistic hypotheses, and inspire new 
experiments (13). Since the very first study by Warshel 
and Levitt on hen egg white lysozyme in 1976 (10), QM/
MM simulations of enzymatic reactions have contributed 
significantly to the field of enzymology. This has been 
made possible by increased computing power, greater 
accessibility of simulation software and developments in 
methodology.  

Formulating and testing mechanistic hypotheses: 
Determination of enzyme mechanisms has proven difficult 
in many cases, since differentiating between alternative 
possibilities in experiments is often challenging; even the 
common examples of enzyme mechanisms described in 
classical biochemistry textbooks have been challenged by 
recent investigations (14,15). Computational studies can 
be carried out on the wildtype enzymes and substrates, 
thereby avoiding the possible confusion and controversies 
in the literature where experimental modifications 
of enzymes or/and substrates are required to probe 
the wildtype mechanisms. From combined QM/MM 
simulations, the reaction thermodynamics and kinetics 
can be evaluated for different reaction pathways, and thus 
validate or disapprove them (16). One example to show the 
value of such QM/MM simulations for clarifying catalytic 
mechanisms is recent work on ATP hydrolysis catalyzed 
by myosin (shown in Fig. 2) (17). In the hydrolysis-
competent state of myosin, it is generally believed that 
ATP hydrolysis operates via an associative mechanism, 
with the conserved Ser236 serving as the proton relay 
(Fig. 2a). The rate-limiting step is the formation of the 
‘pentavalent’ intermediate state (Fig. 2b and 2c). The 
calculated energy barrier is ~16 kcal/mol, in agreement 
with experimentally estimated values of 15–17 kcal/mol. 
We provide structural and energetic evidence to support 

the idea that regulation of ATP hydrolysis activity is not 
limited to residues in the immediate environment of ATP. 
Efficient hydrolysis of ATP depends not only on the proper 
orientation of the lytic water but also on the structural 
stability of several nearby residues in the active site of 
myosin. More importantly, our results clearly indicate that 
turning on the ATPase activity requires not only structural 
displacement close to the active site but also structural 
transitions beyond the immediate environment of ATP, 
which have been proposed previously to be ultimately 
coupled to the rotation of the converter subdomain 40 Å 
away (schematically shown in Fig. 1c). Additionally, such 
QM/MM simulations also offer an efficient way to predict 
the effects of mutagenesis by examining the contributions 
from a specific residue to the energetic properties and 
this in turn contributes to the practical application of 
enzymology.

Characterisation of the key states along the catalytic 
pathways: Combined QM/MM simulations can also 
provide structural and electronic information on the species 
appearing along the reaction pathway: from the Michaelis 
complex, to the transition state and the intermediate state, 
and finally to the product state. This knowledge is of great 
value for mechanism-based inhibitor design, which has 
been exemplified by the success in developing inhibitors 
as drugs. Most obviously, simulations at atomistic scale 
are capable of capturing the transition state structure 
and their key interactions that are not directly accessible 
by experiments. Enzymologists have theorised for many 
years that enzymes are able to recognise and stabilise the 
transition states, and that this stabilisation is at the heart of 
enzyme catalysis. For instance, a recent study showed that 
the alkaline phosphatase superfamily can recognise and 
stabilise different types of transition states in the same active 
site (18). Detailed QM/MM analyses provide a molecular 
rationale for the catalytic promiscuity these enzymes 
exhibit towards a broad class of substrates. Another feature 
noted about enzymatic catalysis is that despite the limited 
functional groups available, enzymes can catalyse the 

energetically more favorable for Ser181 to break
hydrogen bonding to O3β and to seek alternative
interactions with nearby groups. Since such an
isomerization also involves changing the orientation
ofWat3, the process is difficult to sample in localMEP
calculations but is readily accessible in PMF calcula-
tions; the scenario is similar to our recent analysis of
long-range proton transfer reactions using MEP and
PMF calculations.32 Perturbation analysis of the MEP
results (see Supporting Information) indicates that
removing the hydrogen-bonding interaction between
Ser181 and ATP lowers the barrier by ∼8 kcal/mol,
which is a significant portion of the difference bet-
weenMEP and PMF barriers. Nevertheless, similarity
in the average positions of most key active-site
residues suggests that the MEP calculations, if com-
pared carefully, are appropriate for analyzinghow the
hydrolysis energetics depends on the conformational
state of the motor domain.

ATP hydrolysis in a closed post-rigor state

As discussed in both experimental literature7,17,18

and simulation studies,8,31 there is a consensus that

the post-rigor state, which has an open active site in
the crystal structure,20 is unable to catalyze ATP
hydrolysis. The precise reason behind this, however,
remains debatable and likely involves both water
structure16,28 and electrostatics contributions8,24

(Yang et al., in preparation). Here we focus on the
issue of whether locally closing the active site in the
post-rigor state is sufficient for turning on efficient
ATP hydrolysis. For this purpose, we generate a
closed post-rigor configuration by displacing only
SwII in the post-rigor X-ray structure (see Materials
andMethods); it is meaningful to displace SwII itself
because our previous simulations have shown that
the open/close transition of SwII in the post-rigor
state is a low-barrier and nearly thermoneutral pro-
cess.10 This structure is carefully equilibrated with
extensive MD simulations, and a large set of QM/
MMMEP calculations is then carried out for the first
step of the hydrolysis reaction starting from snap-
shots sampled in the MD trajectories. MEP cal-
culations, instead of PMF calculations, are employed
here because it is easier to correlate the structural
features of the active site and the energetics of the
hydrolysis in the MEP framework.

Fig. 2. ATP hydrolysis in the post-rigor and pre-powerstroke states of the myosin motor domain. (a) The schematics of
the reaction pathway followed in the QM/MM simulations, which involves Ser236 as the proton relay. (b) The two-
dimensional PMF (kcal/mol) for the first step of ATP hydrolysis in the pre-powerstroke state; the x-axis is the distance
between the lytic water oxygen and Pγ of ATP, and the y-axis is a collective coordinate that describes the relayed proton
transfer involving the lytic water, Ser236, and the γ phosphate of ATP. (c) Overlay of the active site for the transition state
region in the PMF simulations and ensemble MEP calculations for the pre-powerstroke state. (d) The two-dimensional
PMF for the second step of ATP hydrolysis in the pre-powerstroke state; the x-axis is the antisymmetric stretch involving
the O2γH group and O3β of ATP, and the y-axis is the Pγ–O3β distance.
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(a) (b) (c)

Fig. 2. ATP hydrolysis in the myosin motor domain.
(a) The schematics of the reaction pathway followed in the QM/MM simulations, which involves Ser236 as the proton 
relay. (b) The two-dimensional potential of mean force (kcal/mol) for the first step of ATP hydrolysis in the pre-
powerstroke state; the x-axis is the distance between the lytic water oxygen and Pg of ATP, and the y-axis is a collective 
coordinate that describes the relayed proton transfer involving the lytic water, Ser236, and the γ phosphate of ATP. 
(c) The two-dimensional potential of mean force for the second step of ATP hydrolysis in the pre-powerstroke state; 
the x-axis is the antisymmetric stretch involving the O2g group and O3b of ATP, and the y-axis is the Pg-O3b distance. 
Adapted from ref. 17 with permission.
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myriad reactions necessary to sustain life. This has been 
attributed to their ability to modulate the protonation 
states of the catalytic residues so that they can serve either 
as nucleophilic, electrophilic, or general acid–base catalysts 
(19). Recently, we have shown through pKa calculations 
based on combined QM/MM simulations that the general 
acid/base in trans-sialidase and neuraminidase can go 
through the so-called ‘pKa cycling’ process to achieve the 
proper protonation states required for their roles (20). For 
the first time, we provide a structural and energetic basis 
for the proposed pKa cycling in these enzymes.    

What Does QM/MM Hold for the Future? 
In 2002, Hansson et al. summarised the future of 

biomolecular simulations in general as “bigger, better, 
faster” (21), which we believe nicely depicts the future of 
computational enzymology.

Bigger: Like all branches of computational science, 
computational enzymology benefits from the seemingly 
never-ending improvements in computer hardware. 
This will allow us to study chemical reactions in much 
larger systems with a more realistic representation of the 
molecular environment. QM simulation of a small protein 
with explicit solvent for 350 ps has been reported (22). 
Many enzymes are able to couple the chemical step in 
the active site with large-scale conformational transitions 
that occur in parts of the enzyme far from the active site. 
The unsolved issues surrounding the complexity and the 
multiscale nature of the coupling between the chemical 
step and structural transition are the subjects of many 
heated debates (as illustrated in Fig. 1). For instance, it has 
been debated in the literature whether enzyme dynamics 
contributes significantly to catalysis. It is expected that 
with the development of multiscale modelling techniques 
in computational enzymology, simulation will play an 
important role in addressing these challenging questions 
(23,24).

Better: The accuracy of the adopted QM/MM model 
largely determines the reliability of computational 
studies (25). Sustained efforts have been directed towards 
improving the various components of combined QM/MM 
simulations (Fig. 1). Semi-empirical models have been 
one of the most attractive choices for the QM model in the 
combined QM/MM simulations, due to their efficiency 
and ability to carry out free energy simulations where 
entropic effects are naturally taken into account  (11,26). 

With the need for the power to make predictions with 
near chemical accuracy (i.e. within 1 kcal/mol) and the 
realisation of the possible limitations of the available semi-
empirical models, methodology development is currently 
focused in two directions. First, substantial efforts are being 
devoted to improving the accuracy of the semi-empirical 
models (27,28). Second, algorithms are being designed 
to obtain, with practical feasibility, reaction barriers and 
energies at the ab initio level (12,29). From the perspective 
of the adopted MM potentials, polarisable force fields 
are currently an area under active development (30). 
Incorporating explicit polarisation will provide a better 
description of the changing electrostatics that accompany 
the chemical reactions (31). It is also critical to compute 
the long-range electrostatic interactions accurately in the 
QM/MM simulations as they have a profound effect on 
structural, dynamic and energetic properties (32,33).

Faster: Adequate sampling is also crucial for reliable 
results when modelling enzymatic reactions. It has been 
shown that the extensive sampling of the configuration 
space of both the reactive part and the enzyme are essential 
for properly determining the energetics (26,34). The 
reaction energies and activation energies based on energy 
minimisation studies heavily depend on the exact protein 
structure used in the simulation. With the development 
of computing hardware, such problems can be partially 
alleviated by carrying out sufficiently long molecular 
dynamics simulations to sample multiple, energetically 
relevant configurations. Novel techniques that enhance 
the sampling of rare events offer an alternative approach 
to overcoming the problems associated with insufficient 
sampling (35). This is particularly attractive for a QM/
MM simulation when considering the fact that the 
amount of conformational sampling is often limited by its 
high computational cost. Moreover, enzymatic reactions 
are likely coupled to significant protein conformational 
changes and solvent responses, some of which are not 
easily captured with brute-force simulations due to the 
existence of significant barriers between different states. 

Considering the complexity of enzymatic reactions 
and the possible limitations of the experimental and 
computational techniques, the most productive avenue 
is to use an integrated computational/experimental 
framework, designed to maximise the complementarity 
between computation and experiment. Indeed, synergistic 
collaborations between experimental and computational 

Table 1. pKa for the general acid/base Asp151 in influenza 
virus neuraminidase (adapted from Ref. 20). Three different 
approaches were used to calculate pKa. PBEQ: pKa calculations 
based on PBEQ; PROPKA: pKa calculations based on PROPKA; 
QM/MM FEP: pKa calculations based on DFTB3/MM FEP with 
explicit representation of solvent; Prot. States: the protonation 
states required to perform the proposed catalytic roles.

State 
 
apo
holo
int.

PBEQ 
 
4.1
5.1
4.4

PROPKA 
 
3.6
3.6
4.2

Prot. States 
 
Deprot.
Prot.
Deprot.

QM/MM 
 
4.1
8.7
6.3
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enzymologists are common, and are poving to be 
extremely beneficial in addressing mechanistic puzzles 
that cannot otherwise be conclusively resolved. With the 
development of computational methods and the ever-
increasing availability of computing resources, the field of 
computational enzymology will continue to flourish and 
play an increasingly important role in various aspects of 
biochemistry and medicinal chemistry.
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