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FULLY NONLINEAR CURVATURE FLOW OF AXIALLY SYMMETRIC
HYPERSURFACES WITH BOUNDARY CONDITIONS

JAMES A. MCCOY*, FATEMAH Y. Y. MOFARREH, AND GRAHAM H. WILLIAMS

Abstract. Inspired by earlier results on the quasilinear mean curvature flow, and recent

investigations of fully nonlinear curvature flow of closed hypersurfaces which are not convex,
we consider contraction of axially symmetric hypersurfaces by convex, degree-one homogeneous

fully nonlinear functions of curvature. With a natural class of Neumann boundary conditions

we show that evolving hypersurfaces exist for a finite maximal time. The maximal time is
characterised by a curvature singularity at either boundary. Some results continue to hold

in the cases of mixed Neumann-Dirichlet boundary conditions and more general curvature-

dependent speeds.

1. Introduction

After Huisken’s classical study of contraction of smooth convex hypersurfaces without bound-
ary by their mean curvature [Hu1], and his subsequent study of the mean curvature flow with
boundary conditions [Hu2], several papers have considered the formation of singularities in the
mean curvature flow of axially symmetric surfaces and hypersurfaces [Hu3, AAG, DK, Ma, EM].
For the mean curvature flow, the position vector X (x, t) of the evolving hypersurface Mt =
X (M, t) satisfies the system of quasilinear weakly parabolic partial differential equations

(1)
∂X

∂t
(x, t) = −H (x, t) ν (x, t) ,

with initial condition
X (x, 0) = X0 (x)

for some initial embedding X0 of a given hypersurface M0, possibly with boundary. Above,
H is the mean curvature of Mt at the point X (x, t) and ν (x, t) is a smooth choice of unit
normal vector. In the case of boundary conditions which are not pure Neumann conditions, a
tangential component is added to the right hand side of (1) such that the problem is well-posed,
yielding ‘non-parametric mean curvature flow’. Results obtained in this setting have been useful
in classification of singularities and the extension beyond singularities of the mean curvature flow
[Hu3, AAG, HS1, HS2, HS3]. Recently there has been interest in singularities of fully nonlinear
curvature flows of closed nonconvex hypersurfaces [ALM1, ALM2, ALM3] so it is natural to
consider such flows of axially symmetric hypersurfaces as model cases. There have also been
some related studies of volume preserving mean curvature flow of axially symmetric surfaces
[At1, At2, CRM1, CRM2, CRM3, AK]. In this paper we generalise results of [DK, Ma, EM] for
the mean curvature flow of axially symmetric surfaces with monotone nondecreasing generating
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the Australian Research Council. The research of the second author was supported by a postgraduate scholarship
from Princess Nora bin Abdulrahman University.
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function and certain boundary conditions to the fully nonlinear case. Our flow equation is
motivated by the normal flow

(2)
∂X

∂t
(x, t) = −F (W (x, t)) ν (x, t) ,

where F is a suitably smooth function of the eigenvalues of the Weingarten map W of the evolving
hypersurface Mt. Exact requirements on F will be given in the next section.

The structure of this article is as follows. After setting up notation and preliminaries in
Section 2, in Section 3 we observe some fundamental behaviour of the flow, while in Section 4 we
characterise the finite maximal time of existence of the flow in terms of a curvature singularity.
Finally, in Section 5 we consider a more general case where the speed F in (2) is replaced by F k

for constant k > 0.
In a later paper we intend to examine the nature of curvature singularities in the more general

setting where the generating function of the surface is no longer monotone nondecreasing.
The authors would like to thank Prof Dong-Ho Tsai, Dr Glen Wheeler and Dr Valentina

Wheeler for useful discussions.

2. Preliminaries

We will use similar notation to earlier work. In particular, g = {gij}, A = {hij} and W =
{
hij
}

denote respectively the metric, second fundamental form and Weingarten map of Mt. The mean
curvature of Mt is

H = gijhij = hii

and the norm of the second fundamental form is

|A|2 = gijglmhilhjm = hjlh
l
j

where gij is the (i, j)-entry of the inverse of the matrix (gij). Throughout this paper we sum
over repeated indices from 1 to n unless otherwise indicated. Raised indices indicate contraction
with the metric.

We will denote by
(
Ḟ kl
)

the matrix of first partial derivatives of F with respect to the
components of its argument:

∂

∂s
F (A+ sB)

∣∣∣∣
s=0

= Ḟ kl (A)Bkl.

Similarly for the second partial derivatives of F we write

∂2

∂s2
F (A+ sB)

∣∣∣∣
s=0

= F̈ kl,rs (A)BklBrs.

We will also use the notation

ḟi (κ) =
∂f

∂κi
(κ) and f̈ij (κ) =

∂2f

∂κiκj
(κ) .

Unless otherwise indicated, throughout this paper we will always evaluate partial derivatives of
F at W and partial derivatives of f at κ (W). The nonlinear speed functions F should have the
following properties:

Conditions 2.1.
i) F (W) = f (κ (W)) where κ (W) gives the eigenvalues of W and f is a smooth, symmetric

function defined on an open convex cone Γ containing the positive cone

Γ+ = {κ = (κ1, . . . , κn) ∈ Rn : κi > 0 for all i = 1, 2, . . . , n} .
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ii) f is strictly increasing in each argument: ∂f
∂κi

> 0 for each i = 1, . . . , n at every point of
Γ.

iii) f is homogeneous of degree one: f (kκ) = kf (κ) for any k > 0.
iv) f is normalised, f (1, . . . , 1) = 1.
v) f is convex.

These conditions, sometimes with some adjustments, have been used before in curvature con-
traction flows of convex hypersurfaces [An1, Han, An4, An5, AM, CKK, AMZ] and recently in
flows of closed hypersurfaces not necessarily convex [Mc, ALM1, ALM2, ALM3]. Some example
functions F are given in those papers; in particular many examples satisfying the above prop-
erties including positivity on a cone larger than the positive cone can be built from appropriate
operations of the elementary symmetric functions of the principal curvatures. One particular
example is F = H + η |A| for any constant η ∈ [0, 1).

Conditions 2.1, ii) ensures existence at least for a short time of a solution to (2); we will state
a precise short time existence result in the next section (Theorem 3.1).

Our initial n-dimensional hypersurface M0 is rotationally symmetric about the x-axis, ‘axially
symmetric’, so there is a corresponding strictly positive and suitably smooth function u0 : [0, a]→
R such that M0 is parametrised by X0 : [0, a]× Sn−1 → Rn+1, where

X0 (x, ω) = (x, u0 (x)ω) .

We will assume that u0 is at least twice differentiable on [0, a]. Throughout the paper, derivatives
at the endpoints x = 0 and x = a are interpreted naturally as one-sided derivatives. We will
denote by κ1 the curvature of the generating curve (x, u (x)) of the surface of revolution, that is,
κ1 is the ‘axial curvature’. We denote by κ2 = κ3 = . . . = κn the ‘rotational curvatures’. It is
straightforward to compute that these are given in terms of u0 by

κ1 =
− (u0)xx(

1 + (u0)2x
) 3

2
, κj =

1

u0

√
1 + (u0)2x

, j = 2, . . . , n.

In the same process as for the mean curvature flow, we add an explicit diffeomorphism to the
right hand side of (2) such that the parametrisation X (x, t) = (x, u (x, t)ω) is preserved and the
evolution problem with boundary conditions is well-posed. Then the equivalent scalar evolution
equation for the graph function is

(3)
∂u

∂t
= −

√
1 + u2

x F (W) ,

and the Weingarten map W has everywhere the useful diagonal structure

W =
[
κ1 0
0 κ2I

]
=

 −uxx

(1+u2
x)

3
2

0

0 1

u
√

1+u2
x

I

 =
1√

1 + u2
x

[
− (arctan (ux))x 0

0 1
uI

]
,

where I is the (n− 1) × (n− 1) identity matrix. Here and throughout the article we will write
u2
x =

(
∂u
∂x

)2
. Using the degree one homogeneity of F , equation (3) can be rewritten as

∂u

∂t
= Ḟ 11 uxx

1 + u2
x

−
n∑
j=2

Ḟ jj
1
u

= Ḟ 11 (arctan (ux))x −
n∑
j=2

Ḟ jj
1
u

.

Since the matrix of the Weingarten map is everywhere diagonal, the matrix of Ḟ is everywhere
diagonal and Ḟ kk = ḟk for each k (see, for example, [An4]), and the above evolution equation
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for u becomes

(4)
∂u

∂t
= ḟ1 (arctan (ux))x −

n∑
j=2

ḟ j
1
u

.

Our analysis will be performed by working directly with (3) and (4) and other evolution
equations obtained from it. We will also need the following flow independent estimates.

Lemma 2.2. Any function F satisfying Conditions 2.1 also satisfies

i) f ≥ 1
n
H,

ii)
n∑
k=1

ḟk = trace
(
Ḟ kl
)
≤ 1.

Proof: Parts i) and ii) are proved in exactly the same way as in [U], Lemma 3.3 and Lemma
3.2, where the signs are opposite in that paper due to the concavity of f there. Here the proof
works similarly, even when Γ is a larger convex cone than the positive cone. 2

3. Behaviour of the flow

In this section we are interested in solutions of (3) with the boundary conditions

(5) ux (0, t) = 0, ux (a, t) = g (t) ,

where g is a suitably smooth function. Although not necessary for the short time existence
theorem, Theorem 3.1, we will for for the subsequent results assume g is smooth, non-negative
and non-increasing.

Our short time existence result for (3) is a special case of Theorem 8.5.4 from [Lu] whose proof
uses semigroup theory. A similar result is presented for the case of mean curvature flow in [EM].

Theorem 3.1. Given an initial function u0 ∈ C2 ([0, a]) (C2,α [0, a]), compatible with the bound-
ary conditions (5), there exists a δ > 0 such that there is a unique solution u ∈ C2 ([0, a]× [0, δ))
(C2,α ([0, a]× [0, δ)) to (3), with initial condition u (·, 0) = u0 and satisfying the boundary con-
ditions (5).

Remarks:
1. Uniform parabolicity of f is not required for the above result; Condition 2.1, ii) suffices.
2. Above we are using the standard notation for parabolic Hölder spaces, as in [Li], for

example.
3. A similar short time existence result holds for Dirichlet or more general Robin boundary

conditions, provided the inital data u0 is compatible. Such a result is relevant for our
later remarks concerning a mixed boundary value problem.

4. We will not pursue the optimal smoothing affect of the nonlinear operator F here, except
to note that the case of u0 ∈ C2 ([0, a]) above gives that the curvatures of the hypersurface
Mt are continuous, so (4) is uniformly parabolic on a possibly shorter time interval[
0, δ̃
)

. The short time existence result in Chapter 14 of [Li] then implies that u ∈

C2,1
(

[0, a]×
(

0, δ̃
))

, moreover, classical Schauder estimates then provide higher short-
time regularity provided F is sufficiently smooth. We will assume f is at least smooth
enough for our maximum principle arguments to be valid. Importantly, we will use the
C2 version of Theorem 3.1 in characterising the maximal time T of existence (Theorem
4.2).

We now turn our attention to initial hypersurfaces for which the generating function u0 is
non-decreasing. The next Lemma does not require f to be convex.
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Lemma 3.2. Consider (3) under the boundary conditions (5), with F satisfying Conditions 2.1,
i) to iv). Let u0 be at least C2 ([0, a]).

i) If

(6) (u0)x ≥ 0,

then ux(x, t) ≥ 0 for all x ∈ [0, a], t ∈ [0, T ), that is, as long as a solution to (4) exists.
ii) Suppose that f ≥ 0 everywhere on the initial hypersurface M0, that is, u0 satisfies

(7) f

 − (u0)xx(
1 + (u0)2x

) 3
2
,

1

u0

√
1 + (u0)2x

, . . . ,
1

u0

√
1 + (u0)2x

 ≥ 0.

Then ut ≤ 0 for all x ∈ [0, a], t ∈ [0, T ).

Proof: To prove i) we differentiate (3) with respect to x to find that v = ux satisfies

(8)
∂

∂t
v =

ḟ1

1 + v2
vxx −

2ḟ1

(1 + v2)2
vv2
x +

n∑
j=2

v

u2

From (5) we see that v ≥ 0 for x = 0 and x = a and (6) implies v ≥ 0 for t = 0. If v (x, 0) = 0
at any x ∈ (0, a) then this is a local minimum and by (8), v does not decrease. Moreover, from
(8), if v attains an interior zero minimum then v does not decrease. Hence v ≥ 0 remains true
under (3).

The proof of ii) is similar; we instead differentiate (3) with respect to t to find that v = ut
satisfies the equation

(9)
∂

∂t
v =

ḟ1

1 + u2
x

vxx −
2ḟ1

(1 + u2
x)2

uxuxxvx +
n∑
j=2

ḟ j
v

u2
.

In view of (7), v is initially nonpositive, so it remains so by short time existence and we have at
least for a short time

(10)
∂

∂t
v ≤ ḟ1

1 + u2
x

vxx −
2ḟ1

(1 + u2
x)2

uxuxxvx.

Suppose there is a first time when v = 0. Applying the maximum principle to (9), this can-
not occur at an interior point. At a boundary point, in view of (5), we have vx (0, t) = 0 and
vx (a, t) = g′ (t) ≤ 0. By the Hopf Lemma (see, for example, [PW]) a boundary maximum would
have vx (0, t) < 0 or vx (a, t) > 0, so there can be no boundary maximum. We conclude that
v ≤ 0 is preserved. 2

Remarks:
1. Since the cone of definition of f is larger than the positive cone, f > 0 does not im-

mediately follow from Conditions 2.1 ii) and iii) via the Euler identity as in the case of
convex hypersurfaces. Consequently, the above result Lemma 3.2, iii) is useful because
it implies that f does not become negative under the flow.

2. In the case of pure Neumann conditions (g ≡ 0) we can construct an entire C2 solution
of (3) by reflecting u : [0, a] × [0, T ) in the x-axis to create a spatially even function
on [−a, a] × [0, T ) and then extending this periodically in space to R × [0, T ). Such a
construction is done in [Hu3,At1]. We can then apply the maximum principle considering
only interior extrema. In particular, the speed F evolves according to

(11)
∂

∂t
F = LF + Ḟ klhmk hmlF ,
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where L = Ḟ kl∇k∇l and ∇ denotes the covariant derivative on Mt = X (·, t). Applying
the maximum principle to (11) we observe that F remains bounded below by its initial
minimum.

Further, under (2), as in [An1], for example, the mean curvature evolves according to

∂

∂t
H = LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhmk hmlH.

In the case that F is convex, that H ≥ 0 remains true under (3) now follows directly by
the maximum principle.

We refer the reader to Section 5 where we will use similar properties for more general
speeds.

We may specify in a similar way as in [Ma] a condition on g which ensures that the solution
u exists for a finite maximal time T > 0. Here we need F convex, so we can use Lemma 2.2, i).
Of course, in the special case that g ≡ 0 we know as in [DK] that the maximal existence time is
finite by comparing the solution of (3), with initial data u0, with an enclosing cylinder; such a
comparison does not require F convex nor F homogeneous.

Lemma 3.3. Suppose in addition to (6) and (7) that

(12) arctan g(0) <
(n− 1) a2∫ a
0
u0(x) dx

.

Then the maximal existence time T of solution u to (3) is finite.

Proof: Otherwise a solution u exists and is positive for every finite time. We define the function
E : [0,∞)→ R+ by E(t) =

∫ a
0
u(x, t) dx. We have

E′(t) =
∫ a

0

∂1
∂
tu(x, t) dx = −

∫ a

0

√
1 + u2

xF (W) dx.

Using Lemma 2.2, i), we obtain

E′(t) ≤ − 1
n

∫ a

0

√
1 + u2

xH dx ≤ 1
n

∫ a

0

(arctanux)x dx−
n− 1
n

∫ a

0

1
u
dx.

By Hölder’s inequality,

−
∫ a

0

1
u
dx

∫ a

0

u dx ≤ −a2

so

E′(t) ≤ 1
n

arctanux(a, t)− 1
n

arctanux(0, t)− n− 1
n

a2∫ a
0
u dx

=
1
n

arctan g(t)− n− 1
n

a2∫ a
0
u dx

≤ 1
n

arctan g(0)− n− 1
n

a2∫ a
0
u0 dx

< 0.

Integrating, we obtain

E(t) ≤ E(0) +
1
n

[
arctan g(0)− (n− 1) a2∫ a

0
u0 dx

]
t

which implies that E becomes negative in finite time, a contradiction. 2

Remarks:
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1. If the boundary condition (5) is replaced by the mixed condition

(13) ux (0, t) = 0, u (a, t) = h (t)

for a positive function h which is bounded by 2(n−1)a
π , then similar arguments show that

again the flow speed remains nonpositive and, using the energy E (t) =
∫ a
0
u2dx, the

maximal existence time is finite.
2. The second spatial derivative uxx also satisfies a parabolic equation. The fully nonlinear

version of the Sturmian theorem gives that the number of zeros of uxx does not increase
during the evolution. This tells us that the number of sign-changes of the axial curvature
does not increase under the evolution, a property that could be of interest in applications.
We refer the reader to [G, AK] for details of the nonlinear Sturmian theorem and its
applications.

4. Singularity

Now we characterise the maximal existence time T as the time of a curvature singularity, that
is, when the norm |A| of the second fundamental form becomes unbounded. More specifically,
we show that if the axial curvature κ1 does not blow up at x = a as t→ T , then the rotational
curvatures blows up at x = 0 and in view of the formula for κj , j = 2, . . . , n, we must have
u (0, t) → 0 as t → T . This result is also analogous to the corresponding result for the mean
curvature flow in [Ma]. Critical to the argument in [Ma] was that the mean curvature remains
positive under the evolution. We do not have this, but an extra, reasonable structure condition
on f , permits a similar deduction.

Condition 4.1. Suppose f satisfies limz→−∞ f (z, 1, . . . , 1) < 0, where we allow the case that
the limit is equal to −∞.

Remark: For the above condition to be satisfied the cone Γ of definition of f must allow the
above limit to be taken.

In view of Lemma 3.2, ii), F ≥ 0 is preserved under the evolution. Condition 4.1 then implies
that z does not become too negative. Two examples of f satisfying Condition 4.1 are

i) The mean curvature, F = H, so f (z, 1, . . . , 1) = z + (n− 1);
ii) Our earlier fully nonlinear example, F = H + η |A| for any η ∈ [0, 1). In this case

f (z, 1, . . . , 1) = z + (n− 1) + η
√
z2 + (n− 1).

Theorem 4.2. Suppose that F satisfies Conditions 2.1 and 4.1. Suppose in addition to (6), (7)
and (12) that limt→T κ

2
1(a, t) <∞. Then limt→T κ

2
j (0, t) =∞ for j = 2, . . . , n.

Proof: Suppose for the sake of establishing a contradiction that limt→T u(0, t) = δ > 0. Then
for j = 2, . . . , n we have that for all (x, t) ∈ [0, a]× [0, T ),

(14) κ2
j (x, t) =

1
u2(x, t)(1 + u2

x(x, t))
≤ 1
u2 (x, t)

≤ 1
u2 (0, t)

≤ 1
δ2

.

It follows from Lemma 3.2, ii) that under the evolution

f (κ1, κ2, . . . , κ2) = κ2 f

(
κ1

κ2
, 1, . . . , 1

)
≥ 0.

Since the rotational curvatures κ2 > 0, this means that for z = κ1
κ2

,

f (z, 1, . . . , 1) ≥ 0

as long as the solution exists. Condition 4.1 on F implies therefore that

z =
κ1

κ2
≥ −c0,



8 JAMES A. MCCOY*, FATEMAH Y. Y. MOFARREH, AND GRAHAM H. WILLIAMS

for some c0 > 0, which, in terms of derivatives of u means
−uuxx
1 + u2

x

≥ −c0,

that is, in view of our assumption, we have on [0, a]× [0, T ) that

(15)
uxx

1 + u2
x

≤ c0
u
≤ c0

δ
.

Multiplying equation (9) by −e−λt and setting w = −ut e−λt, the function w satisfies the
equation

∂

∂t
w =

ḟ1

1 + u2
x

wxx −
2ḟ1

(1 + u2
x)2

uxuxxwx +

 n∑
j=2

ḟ j
1
u2
− λ

w.

In view of Lemma 2.2, ii) and our assumption, taking λ > 1
δ2 ensures the coefficient of w is

negative and so w cannot obtain an interior maximum. Further,

(16) w (x, 0) =
√

1 + u2
x (x, 0)F ≤ C (M0)

Let us now show that w is bounded on the sides x = 0 and x = a. We have

w(0, t) =

− ḟ1uxx
1 + u2

x

+
n∑
j=2

ḟ j
1
u

∣∣∣∣∣∣
(0,t)

e−λt

and at x = 0, uxx ≥ 0 in view of our assumption and Lemma 3.2, i), so using also Lemma 2.2,
ii) we have

w(0, t) ≤ 1
δ

.

Similarly, using our assumption and that g (t) is nonincreasing, there is a non-positive constant
α ≤ uxx (a, t) for all t ∈ [0, T ) and

w(a, t) ≤

−ḟ1α+
n∑
j=2

ḟ j
1
u

 e−λt

∣∣∣∣∣∣
(a,t)

from which it follows using Lemma 2.2, ii) that on [0, T )

w(a, t) ≤
(

1
δ
− α

)
e−λt <

1
δ
− α.

Therefore, together with (16) we have an upper bound for w, that is

w = −ute−λt ≤ C (M0, δ, T )

and so on [0, a]× [0, T ),
−ut =

√
1 + u2

xF ≤ CeλT .
Using now Lemma 2.2, i), we obtain

κ1 =
−uxx
1 + u2

x

≤ nCeλT .

Together with (15) we have on [0, a]× [0, T ) that

(17) κ2
1 ≤ max

(
c20
δ2
, 4C

2
e2λT

)
.

Now the assumption together with Lemma 3.2, implies uT (x) = limt→T u (x, t) ≥ 0 exists, and
(14) and (17) imply uT generates a C2 axially-symmetric hypersurface which could be used as an
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initial hypersurface in the short time existence result, Theorem 3.1, contradicting the maximality
of T . Thus our assumption is false and the theorem is proved. 2

5. Extension

In this section we are interested in generalising our earlier results to the case where the flow
speed is homogeneous of degree k > 0, that is,

∂X

∂t
(x, t) = −F k (W (x, t)) ν (x, t) ,

where F continues to satisfy Conditions 2.1. Such flows of hypersurfaces have been considered
before, particularly flows by Gauss curvature and powers of the mean curvature and often for
surfaces, usually in the context of convex initial data or translating solutions [I, Han, An3, An2,
An5,Schu1,Schu1,Schu2,Schn,JJ,AS,AM,AMZ,CKK].

The corresponding evolution equation of the graph function u is now

(18)
∂u

∂t
= −

√
1 + u2

x F
k

Under the flow (18), we have the following evolution equations.

Lemma 5.1.

i) ∂
∂tux = kFk−1

1+u2
x
ḟ1 (ux)xx+(1− 3k) F

k−1ḟ1ux

(1+u2
x)2

((ux)x)2+(k − 1) F
k−1ḟ2ux

u(1+u2
x) (ux)x+ kfk−1ḟ2

u2 ux,

ii) ∂
∂tut = kFk−1

1+u2
x
ḟ1 (ut)xx + (1− 3k) F

k−1ḟ1uxuxx

(1+u2
x)2

(ut)x + (k − 1) F
k−1ḟ2ux(ut)x

u(1+u2
x) + kfk−1ḟ2

u2 ut,

iii) ∂
∂tF

k = LF k + kḞ ijh m
i hmjF

k,

where we have used the notation L = kF k−1Ḟ ij∇i∇j.

Using these equations and similar arguments as in the previous section we have the following
consequences.

Corollary 5.2. Suppose the initial hypersurface M0 has f > 0 everywhere and consider the flow
(18).

i) With the boundary conditions (5), ux ≥ 0 and ut ≤ 0 continue to hold under the flow.
ii) With the boundary conditions (13), ut < 0 continues to hold under the flow.
iii) In the case of pure Neumann boundary conditions ( (5) with g ≡ 0), the minimum of F

does not decrease under the flow.

We have specified M0 to have f > 0 strictly now, so our result Corollary 5.2, ii) is also a strict
inequality. This is to ensure equation (18) is strictly parabolic for any k > 0, at least for a short
time. Therefore a similar argument as in Section 2 gives an equivalent local existence result to
Theorem 3.1 in the case that the initial hypersurface satisfies minM0 F > 0.

In the case of pure Neumann boundary conditions we can compare the surface Mt evolving via
(18) with an enclosing cylinder. The cylinder shrinks to a line segment in finite time, providing
a sharp bound on the time T by which the solution hypersurface Mt must have ceased to exist.
This argument needs only that the flow (18) is parabolic; the speed need not be homogeneous
nor F convex.

Finally in the case that k ≤ 1, pure Neumann boundary conditions and F satisfies Conditions
2.1 and 4.1 we classify the singularity at time T , using a similar argument as in the proof of
Theorem 4.2.
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Theorem 5.3. Let M0 be such that (u0)x ≥ 0 and minM0 f > 0. Consider the flow (18)
with k ≤ 1 and pure Neumann boundary conditions. Suppose limt→T κ

2
1 (a, t) < ∞. Then

limt→T κ
2
j (0, t) =∞ for j = 2, . . . , n.

Proof: Suppose limt→T u (0, t) = δ > 0. Then, as in the proof of Theorem 4.2,

κ2
j (x, t) ≤ 1

δ2

for all (x, t) ∈ [0, a] × [0, T ). It follows using Condition 4.1 in the same way as in the proof of
Theorem 4.2 that on [0, a]× [0, T ),

uxx
1 + u2

x

≤ c0
δ

for some finite c0 > 0. For a constant λ to be chosen, the evolution equation for w = −ute−λt is

∂

∂t
w =

kF k−1

n (1 + u2
x)
wxx + (1− 3k)

F k−1

n(1 + u2
x)2

uxuxxwx

+ (k − 1)
n− 1
n

F k−1

u (1 + u2
x)
uxwx +

(
n− 1
n

kF k−1

u2
− λ
)
w.

Since k ≤ 1, F k−1 ≤ minM0 F
k−1 holds under the flow, by Corollary 5.2, iii) and we can again

choose λ such that the coefficient of w is negative and so w cannot obtain an interior maximum.
The remainder of the proof is the same as for Theorem 4.2, where we now use our generalisation
to the short time existence result of this section. 2

The authors are grateful to Andrew Holder and the Soaring Eagle project of the Faculty of
Informatics at the University of Wollongong for production assistance for this article.
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