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Abstract

This paper presents an intensity ratio approach for 3D object profilometry measurement based on
projection of triangular patterns. Compared to existing intensity ratio approaches, the proposed one is not
influenced by the surface reflectivity and ambient light. Moreover, the proposed intensity ratio is point-by-
point-based and thus does not suffer from the influence of surrounding points. The performance of the
proposed technique has been tested and the advantages have been demonstrated by experiments. This
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This paper presents an intensity ratio approach for 3D object profilometry measurement based on pro-
jection of triangular patterns. Compared to existing intensity ratio approaches, the proposed one is not
influenced by the surface reflectivity and ambient light. Moreover, the proposed intensity ratio is point-
by-point-based and thus does not suffer from the influence of surrounding points. The performance of the
proposed technique has been tested and the advantages have been demonstrated by experiments.
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1. Introduction

As an effective technology for noncontact 3D shape
measurement, digital fringe projection profilometry
(DFPP) has attracted extensive research in recent
years due to many potential applications. With
DFPP, a number of images with special designed pat-
terns are employed to probe the object surface of
interest, and the 3D shape of the surface can be ex-
tracted from the reflected light patterns.

In order to obtain 3D object shape information, a
number of sinusoidal-pattern based techniques [1-6]
have been developed, among which phase-shifting
profilometry (PSP) [4] is commonly used due to such
advantages as being less sensitive to the surface re-
flectivity and background illumination. However,
PSP usually requires extensive computation, and
it also suffers from the influence of nonlinear distor-
tion associated with projectors. Instead of sinusoidal
fringe patterns, various other types of image
patterns have been proposed and implemented.

1559-128X/14/020200-08$15.00/0
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(110.6880) Three-dimensional image acquisition; (150.6910) Three-dimensional sens-

For example, three images with trapezoidal fringe
patterns shifted by one-third of fringe period are em-
ployed in [7,8], and a function called intensity ratio is
formulated based on the three images. In [9,10] a
uniform bright pattern and a linear gray-level pat-
tern are projected, and an intensity ratio map is cal-
culated for each pixel based on these two image
patterns. A linearly coded profilometry is presented
in [11,12], which uses a saw-tooth-like light pattern
to probe the object surface and then utilizes a phase-
shifting technique to decode the profile. Jia et al.
[13,14] proposed a multiple-step triangular patterns
phase-shifting method to profile 3D object shape. In
these methods, triangular patterns are projected,
based on which intensity ratio maps are obtained
by calculating the normalized intensity difference be-
tween different patterns projected. The intensity
ratio can be used to extract the height distribution
using the triangulation principle. In [15], it is
shown that using the intensity ratio, the three-step
phase-shifting algorithm can be 3.4 times faster than
the traditional three-step method because arctan
computation is not required. Unlike the phase calcu-
lation in PSP, these approaches obtain the 3D object
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shape by means of the intensity ratios, which are ob-
tained based on the linear operation of the patterns
projected. All these intensity-ratio based techniques
are advantageous because of reduced computational
burden, but fringe patterns are still influenced by
nonlinear distortion associated with digital projec-
tion, which will then degrade the measurement accu-
racy. Consequently, intensity ratio-based approaches
also need additional techniques to compensate the
nonlinear errors [15-17].

As an effort to eliminate the influence of the non-
linear distortion associated with digital projection, a
formulation for calculating the 3D shape is proposed
in [18]. The proposed technique uses the same inten-
sity ratio as presented in [13,14], but the 3D shape
calculation is based on the spatial shift estimation,
similar to the work presented in [17]. Consequently,
the approach in [18] enjoys the advantages of inten-
sity ratio but does not suffer from the nonlinear

I,(x) contains triangular fringes with period T (or
pitch) and other patterns are formed by shifting
I,(x) along x by an integer multiple of T/N that
is, I,(x) =I1(x — (nT/N)) A general expression for
the intensity ratio using N triangular patterns can
be derived as follows [18]:

N (=1, (x) —mod(N, 2) x Iy
ro(x) — Z[_]_( ) h, ( )I ( ) ,

N >2, @

where Iy, =1 max —I i, Imax and I;, are the maxi-
mum and minimum intensities for the projected
triangular patterns, and I;, can be considered as
the background illumination. I, ;(x) is the ith highest
intensity values among the N projected patterns at
the location of x. As ry(x) has the period T'/N, the fol-
lowing can be used to produce a function that mono-
tonically increases over every fringe period 7" [18]:

@ — (-1 1rg(x) + 2 x round(’%l), E=1,2, ...,
’ k=12, ..,

(-1*ry(x) + 2 x round (’g) -

2N,N > 2, Nis the odd number
2N,N > 2, Nis the even number

distortion. However, there are still a number of
problems associated with the proposed method in
[18]. First, these methods usually require the neigh-
borhood pixel properties to calculate the intensity
ratio. Second, intensity-ratio based methods are sen-
sitive to either surface reflectivity or background
illumination.

In this paper, we propose a new formulation for the
intensity ratio, which is also not sensitive to surface
reflectivity and background illumination. Besides,
the proposed intensity ratio is a point-to-point-based
operation and hence is not influenced by the sur-
rounding points. In addition, with the spatial shift
estimation method in [18], the 3D object measure-
ment will not be influenced by the system nonlinear
distortion.

This paper is organized as follows. In Section 2,
the intensity ratio method based on multiple
triangular patterns is presented. Section 3 shows
experlment results for the proposed method and a
comparison with the triangular-pattern spatial shift
estimation method. The conclusions are given in
Section 4.

2. Proposed Method

A. Existing Intensity Ratio Methods

The intensity ratio methods proposed in [14,18] are
based on the projection of multiple triangular fringe
patterns. As the fringe patterns are strips along the y
direction, we only consider a cross section along x for
simplicity, assuming that N fringe patterns are em-
ployed, which are denoted by I,,(x) (n = 1,2,...,N).

where £ is referred to as region number, by which
each fringe period T is divided into 2N equally
spaced segments. r,(x) is denoted as the intensity ra-
tio for reference plane, and the same operations can
be carried out to yield r;(x) based on the reflected
fringe patterns from the object. In Fig. 1, the inten-
sity ratio calculation based on three-step triangular
patterns by employing an existing approach [14,18]
is shown as an example. In Fig. 1(a), three-step tri-
angular patterns are projected, and by employing
Egs. (1) and (2), the intensity ratios ry(x) and r,(x)
are shown in Figs. 1(b) and 1(c), respectively.

The intensity ratio ry(x) contains I,;, and Iy in
Eq. (1), implying that ry(x) is influenced by the back-
ground illumination if an odd number of triangular
patterns is employed. However, if even numbers of
triangular patterns are projected, ry(x) is not influ-
enced by the background illumination. Whatever
odd or even numbers triangular patterns are used,
ro(x) is influenced by the peak-to-valley intensity dif-
ference Iy, which will not be a constant in practice
due to some factors such as surface reflectivity.

B. Proposed Intensity Ratio

In order to reduce the influence of background illumi-
nation and surface reflectivity on the intensity
ratio calculation, we propose a new definition for in-
tensity ratio, which is point-to-point-based, implying
that the intensity ratio calculation at each pixel does
not suffer from the influence of the surrounding
pixels. The proposed intensity ratio is also not
sensitive to surface reflectivity and background
illumination.
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(©)

Intensity ratio calculation for three-step triangular-pattern method. (a) Cross section of three triangular patterns shifted by one

third of the fringe period. (b) Cross section of triangular shape intensity ratio. (¢) Cross section of intensity ratio after removal of triangles.

Let us use three-step triangular patterns as an ex-
ample. The fringe patterns I;(x), I5(x), and I3(x) are
still the same as that in Fig. 1(a), which are projected
onto the reference plane and object surface, respec-
tively. The three image patterns can be described
by the following:

%x + Iins = [0,%
Lix)=19 ", r (6))
%+ L + 21, x€[5.7)
o Loy + 2, xe[o,%)
L= +Iin-%. xe[5F) @
~2Lox + T + 2, xe[%,T)
%x+lmin+23i, xe[O,%)
Iyw) = { -Fx + Lnn + %5, x€[5.5) . )
T min T 73 > 6:3) -

21 4]
7% + Imin =75,

xe[%,T)
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Instead of using Eq. (1), we employ the following to
yield rq(x):

I, 1(x) = I o (x)

o) = 0 =I5 @)

ngx, xef0d)
%z—%x—i—& e[5.7)

) %%x-z xe[5.9) .
fw-tw oo <[1)
e = paa xe[F.9)
%:—%H& xe:%,T)

Note that ry(x) calculated by Eq. (6) is still a triangu-
lar function with the period 7'/3, and it has the same



shape as that in Fig. 1(b). However, ry(x) does not
contain I .., I, or Iy, implying that it is not influ-
enced by the background illumination. The following
operation is still used to obtain an intensity ratio
function:

ro(x) = (=1)%*1ry(x) + 2 x round (]%1)
k=1,2,3,4,5,6. )

Obviously r,(x) is also saw-tooth-like, ranging from 0
to 6, and it also has the same shape as that shown in
Fig. 1(c). However, as mentioned above, r(x) does not
contain I, .4, I min, Or Iy, and thus is not influenced by
the background illumination.

The above can be extended to the case of arbitrary
number of fringe patterns. When an even number of
triangular patterns is projected, the intensity ratio is
given by the following:

YN (1) .
o) = O T ®

and

rs(x) = (=1)**1ry(x) + 2 x round (]%1)
k=12,...,.2N, N > 3. 9
When N is an odd number, we have

Wy (D))

00 = 10 + s ~Tns@) ~Toy @ O
and
ro(x) = (=1)kry(x) + 2 x round(g) -1,

k=12 ..2N,N >4. (11)

Also note that r,(x) ranges from 0 to 2V over the full
pattern pitch. The same operations can be carried
out to yield r;(x) based on the reflected fringe pat-
terns from the object.

From Egs. (9) and (11), we can see again that the
intensity ratio r(x) does not contain Iy, I,y or Iy,
and hence r,;(x) is not influenced by the background
illumination. Besides, in Eq. (8), ry(x) is calculated on
a point-by-point basis, hence not suffering from the
influence of the surrounding points.

C. Discussion on the Proposed Intensity Ratio

We have seen that the proposed intensity ratio in
Eqgs. (9) and (11) is advantageous by immunization
from background illumination and the influence of
the surrounding points. However, in practice there
are many unwanted factors associated with the
projection and capture of the image patterns. In this

section, we will look into the influence of these fac-
tors on the performance of the proposed method.

The actual process in which an image is projected
by a digital projector and captured by a digital
camera can be described by Fig. 2 [17]. Assuming
a fringe pattern I, (x) is fed into the projector, the
actual pattern created will be a deformed version,
described as follows:

I (x) = p(I, (%)), (12)
where p(-) is a nonlinear function representing the
actual response of the projector to the input. Let
us utilize f(x) and b;(x) to denote the reflectivity
of object surface, and the background illumination,
the image pattern reflected from the surface is

I5(x) = f(x)(Ih (x) + b1 (x)). (13)
The reflected patterns are then captured by the cam-
era with a sensitivity of a, which is a constant if we
assume the camera response to the light intensity is
linear. The image pattern captured by the camera is
as follows:

I (x) = a(I}(x) + ba(x)), (14)
where by (x) represents the background illumination
directly entering the camera. Assuming o« = 1 and
combining Egs. (13) and (14) we have

I5,(x) = f)(x) + f(2)b1(x) + b2 (x)

= R(x)I5(x) + B(x), (15)
where R(x) = f(x) and B(x) = f(x)b1(x) + by(x).

Considering Eq. (15), the intensity ratio r¢(x) in
Eq. (1) from N-step triangular patterns presented
in [14,18] can be expressed as

R(x) X, ()"} (%) = Inyin + B()

ro(x) = 1,
N >3, when N is even (16)
and
R(@) XL, (1) (x)
ro(x) = I, —,
N >4, when N is odd 17

It is seen that B(x) does not appear in Eq. (17), im-
plying that the even number-step method does not
suffer from background illumination. However,

Projector - Object > Camera >
I Illp 1710 ]):
1'=p(,) I =f{)+b) I,=al+b,)

Fig. 2. Camera image generation procedure [17].
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R(x) appears in both Egs. (16) and (17), implying that
the intensity ratio method in [14,18] is influenced by
the surface reflectivity. Besides, calculation of the
intensity ratio requires the peak-to-valley intensity
difference I,. In practice, I, changes over different
fringe period due to the influence of factors like sur-
face reflectivity and noise, thus introducing errors to
the intensity ratio.

Now let us consider the intensity ratio method de-
scribed in Eq. (8) and Eq. (10). Considering Eq. (15)
and for even number-step implementation we have

R@) YV (D7 ()
R(®)I}, | (x) + B(x) = R()I y(x) - B(x)

XN D, @)
I‘Z,l(x) —IZ’N(x) ’

ro(x) =

N > 3. (18)

For odd number-step implementation, we have

actual height distribution. The system parameters
H and d are calibrated as 1280.0 mm and 328.9 mm,
respectively. The field of vision for CCD camera is
234.5 mm x 175.0 mm. Hence, the equivalent spatial
resolution is 0.1684 mm/pixel. With the intensity
ratio proposed in Section 2.B., we use the spatial
shift approach to determine the height distribution
of the surface as follows:

= (20)

where d is the distance between camera and project
and H is the distance of the camera to the reference
plane. Note that Eq. (20) was originally proposed in
[20], where u(x) is the spatial shift between a pixel on
the projected image pattern on the reference plane
and its corresponding pixels on the object with the
same intensity. It has been proved in [18] that
Eq. (20) is also valid if u(x) is considered as the

R@x) YN, (-1)*E (x)

ro(x) =

_ ?Ll (_1)”1112.i(x)
I‘qu(x) + IZ’Q(x) - 12,3(’6) - IZ,N(x) ’

R@)I} ;(x) + B(x) + R(0)I} 5(x) + B(x) - R(x)I}, 5(x) = B(x) - R@)I}, (x) - B(x)

N > 4. (19)

Equations (18) and Eq. (19) do not contain R(x) and
B(x), implying that the intensity ratios do not suffer
from background illumination as well as surface re-
flectivity. Moreover, the intensity ratio of a pixel is
calculated only based on the intensities of the same
pixel on different patterns and hence is not influ-
enced by surrounding ones.

3. Experiment

Experiments have been performed to verify the per-
formance of our proposed intensity ratio method. The
triangular patterns are generated by a HITACHI
CP-X260 projector with a resolution of 1024 x 768,
and a Duncan Tech MS3100 3CCD camera with a
resolution of 1392 x 1039 pixels is used to capture
the images. The camera and projector are calibrated
by means of a reference plane marked by colored
grids with their position known a priori. In particu-
lar, the camera is calibrated using Bouguet’s camera
calibration toolbox, which is based on Zhang’s cali-
bration method [19]. With the camera calibration
toolbox, calibration is achieved by capturing images
of a printed checker-board with 15 % 15 mm grids
laced at eight different positions. Similarly, the pro-
jector is calibrated using the same eight positions of
calibration board as in the camera calibration proc-
ess. The calibration procedure will yield the intrinsic
and extrinsic parameters for both the camera and the
projector, with which we can map the pixels in optical
devices to real world coordinates to obtain the real
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spatial shift between a pixel on r (x) and its corre-
sponding pixels on ry(x).

The first experiment was implemented to deter-
mine the accuracy performance associated with the
proposed method. First, a flat white board was posi-
tioned as the reference plane, yielding r,(x). Then,
the same board was moved 20 mm away from its po-
sition as the reference plane, and the reflected pat-
tern is taken as ry(x). The intensity ratio proposed
in Egs. (9) and (11) and Eq. (20) was utilized to cal-
culate the height distribution. The same experiment
was repeated using three-, four-, and five-step tri-
angular patterns, each with different pitch values,
including 30, 40, and 60 pixels, respectively. For com-
parison purposes, we also measure the same objects
using the intensity ratio proposed in [18]. The meas-
urement results were evaluated by root-mean-
square (RMS) error and max error with respect to
true height at 700 x 700 pixels in the middle of the
measured board image. The results of the measure-
ment are shown in Table 1.

In order to compare the proposed method with
existing approaches, we also applied the method in
[18] to the same object, and the results are shown
in Table 1 and Fig. 3. Figure 3 shows the results
for the cross section of the board at y = 700, where
the true height is 20 mm by using the proposed
method and the method in [18]. From Table 1 and
Fig. 3, we can see that the proposed intensity ratio
method is characterized by smaller measurement



Table 1. RMS and Max Error (in mm) of Measuring a Flat Board Using the Proposed Approach and Method in [18] with Different
Shifting Steps and Pitch Values

Pitch (pixels) 30 40 60
RMS/Max Error (mm)
The proposed method (3 Steps) 0.285/0.704 0.344/0.732 0.315/0.760
The method in [18] (3 Steps) 0.333/0.827 0.422/1.084 0.607/1.773
The proposed method (4 Steps) 0.267/0.665 0.318/0.738 0.336/0.703
The method in [18] (4 Steps) 0.281/0.673 0.310/0.870 0.380/1.340
The proposed method (5 Steps) 0.260/0.646 0.262/0.592 0.319/0.705
The method in [18] (5 Steps) 0.271/0.754 0.280/0.686 0.356/0.904
3-Step 4-Step 5-Step
23 23 23
22 22| 22
£ £ E £
= 20 = 20 = 20
20 20 20
5 : IQWMWW : B
18 18 18
17 17 17
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
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(a) (b) (c)
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20 20 20
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Fig. 3. Height measurements across the flat board positioned 20 mm from the reference position using different algorisms with pitch
values 60 and different shifting steps. The measurement results are for the three-, four-, and five-step triangular-pattern spatial shifting
methods as follows: (a)—(c) Intensity ratio method in [18] for pitch 60, (d)—(f) proposed intensity ratio method for pitch 60.

error than the method proposed in [18] with the same
shifting steps and pitches.

The second experiment was conducted to verify the
robustness to surface reflectivity of the proposed
method. A plate board was used but its surface
has different areas, including coated paper, ivory
board, blotter paper, and regular A4 print paper,
and so the surface reflectivity of the board is different
in these areas. Then, the same experiment was re-
peated as the first experiment does. The results of

the measurement are shown in Table 2. From Table 2,
we can see that the proposed intensity ratio method
is characterized by smaller measurement error than
the method in [18] with the same shifting steps and
pitches.

In the third experiment, the flat white board was
also first positioned as the reference plane. Then, it
was moved away from its original position on step-
by-step basis with each step of 2 mm until it is
40 mm away. The proposed method and the method

Table 2. RMS and Max Error (in mm) of Measuring a Flat Board with Different Surface Reflectivity Using the Proposed Approach and
Method in [18] with Different Shifting Steps and Pitch Values

Pitch (pixels) 30 40 60
RMS/Max Error (mm)

The proposed method (3 Steps) 0.289/0.717 0.350/0.736 0.378/0.766
The method in [18] (3 Steps) 0.391/0.887 0.475/1.144 0.652/1.533
The proposed method (4 Steps) 0.270/0.683 0.322/0.706 0.351/0.745
The method in [18] (4 Steps) 0.321/0.793 0.374/0.899 0.411/1.412
The proposed method (5 Steps) 0.261/0.632 0.287/0.666 0.322/0.728
The method in [18] (5 Steps) 0.290/0.762 0.328/0.796 0.371/0.997

10 January 2014 / Vol. 53, No. 2 / APPLIED OPTICS 205
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Fig. 4. Measurement accuracy comparison between proposed
three-step intensity ratio method and method in [18] by measuring
different height of flat board using a pitch of 40 pixels. (a) RMS
comparison between proposed method and method in [18].
(b) Max error comparison between proposed method and method
in [18].

in [18] were employed to measure the height of the
board for every step of the movement and the meas-
urement accuracy performance is shown in Fig. 4 and

Table 3. RMS and Max Error (in mm) of Measuring Different
Height of Flat Board Using the Proposed Approach and Method in
[18] with Three Steps Triangular Patterns and Pitch 40 Pixels

Height(mm) Proposed Method Method in [18]
RMS/Max Error (mm)
2 0.362/0.792 0.441/1.076
4 0.373/0.833 0.451/1.030
6 0.392/0.879 0.467/1.014
8 0.418/0.931 0.490/1.066
10 0.454/0.989 0.521/1.123
12 0.447/0.993 0.505/1.429
14 0.403/0.917 0.468/1.352
16 0.367/0.835 0.438/1.268
18 0.345/0.747 0.421/1.179
20 0.344/0.732 0.422/1.084
22 0.369/0.877 0.444/0.984
24 0.420/0.928 0.488/1.059
26 0.434/0.967 0.491/1.393
28 0.372/0.849 0.439/1.274
30 0.337/0.725 0.412/1.148
32 0.347/0.764 0.423/1.018
34 0.403/0.895 0.471/1.025
36 0.419/0.938 0.476/1.357
38 0.349/0.790 0.418/1.208
40 0.333/0.706 0.408/1.053

206 APPLIED OPTICS / Vol. 53, No. 2 / 10 January 2014

(b)
Fig.5. 3D reconstruction of a plaster face model by proposed four-
step intensity ratio method with a pitch of 30 pixels. (a) Triangular
patterns on the plaster face model and reference plane with pitch
30. (b) Reconstructed 3D models model using surfl() function in
MATLAB.

Table 3. The results show again that the proposed
method is better than the method in [18] in terms
of measurement accuracy.

In the fourth experiment, a plaster face model was
used as the target. We used the proposed method
with four-step triangular-patterns and with pitch
30 to reconstruct the shape of the model, and the re-
sults are depicted in Fig. 5. It is shown that complex
objects can be reconstructed by the proposed inten-
sity ratio method.

It should be pointed out that there are a number of
issues impacting on the performance of the above
proposed method. For example, the experimental
setup must be precisely calibrated where the distan-
ces among the projector, camera, and reference plane
are determined through the calibration process.
Besides, the projection being out of focus may also
influence the performance, although it may help to
yield a better sinusoidal pattern [21]. This is because
being out of focus changes fringe shapes, making
them nontriangular. The performance of proposed
method is also limited by other factors common to
the intensity ratio based traditional triangular
patterns methods, such as quantization error and
intensity noises.

4. Conclusion

This paper has presented an intensity ratio formu-
lation for 3D profile measurement based on the pro-
jection of multiple triangular patterns. Compared to
the method in the approach [18], the proposed one is
not influenced by the surface reflectivity and ambi-
ent light. Moreover, the proposed intensity ratio is



point-by-point-based and thus does not suffer from
the influence of surrounding points. Experimental
results are also presented, showing that measure-
ment error can be significantly reduced by the
proposed method in contrast to the existing approach
in [18].

This work was supported by National Natural
Science Foundation of China (Nos. 41101406,
61272206, 60903023), Program for New
Century Excellent Talents in University (NCET-11-
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