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Superposition coded modulation with peak-power limitation

Abstract

We apply clipping to superposition coded modulation (SCM) systems to reduce the peak-to-average
power ratio (PAPR) of the transmitted signal. The impact on performance is investigated by evaluating the
mutual information driven by the induced peak-power-limited input signals. It is shown that the rate loss is
marginal for moderate clipping thresholds if optimal encoding/decoding is used. This fact is confirmed in
examples where capacityapproaching component codes are used together with the maximum a posteriori
probability (MAP) detection. In order to reduce the detection complexity of SCM with a large number of
layers, we develop a suboptimal soft compensation (SC) method that is combined with soft-input soft-
output (SISO) decoding algorithms in an iterative manner. A variety of simulation results for additive white
Gaussian noise (AWGN) and fading channels are presented. It is shown that with the proposed method,
the effect of clipping can be efficiently compensated and a good tradeoff between PAPR and bit-error rate
(BER) can be achieved. Comparisons with other coded modulation schemes demonstrate that SCM offers
significant advantages for high-rate transmissions over fading channels.
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Superposition Coded Modulation With Peak-Power
Limitation

Jun Tong, Student Member, IEEE, Li Ping, Senior Member, IEEE, and Xiao Ma

Abstract—We apply clipping to superposition coded modulation
(SCM) systems to reduce the peak-to-average power ratio (PAPR)
of the transmitted signal. The impact on performance is investi-
gated by evaluating the mutual information driven by the induced
peak-power-limited input signals. It is shown that the rate loss is
marginal for moderate clipping thresholds if optimal encoding/de-
coding is used. This fact is confirmed in examples where capacity-
approaching component codes are used together with the max-
imum a posteriori probability (MAP) detection. In order to reduce
the detection complexity of SCM with a large number of layers,
we develop a suboptimal soft compensation (SC) method that is
combined with soft-input soft-output (SISO) decoding algorithms
in an iterative manner. A variety of simulation results for additive
white Gaussian noise (AWGN) and fading channels are presented.
It is shown that with the proposed method, the effect of clipping
can be efficiently compensated and a good tradeoff between PAPR
and bit-error rate (BER) can be achieved. Comparisons with other
coded modulation schemes demonstrate that SCM offers signifi-
cant advantages for high-rate transmissions over fading channels.

Index Terms—Capacity, clipping, iterative decoding, peak-to-av-
erage power ratio (PAPR), soft compensation, superposition coded
modulation (SCM).

1. INTRODUCTION

RADITIONAL trellis-coded modulation (TCM) [1] is

based on uniformly spaced constellations with equal
probability for every signaling point. In an additive white
Gaussian noise (AWGN) channel, there is an asymptotic gap
of about 1.53 dB (the so-called shaping gap) between the
achievable performance of TCM (and other schemes based
on uniform signaling [2], [3]) and the channel capacity [4].
To narrow this gap, Gaussian signaling (that produces signals
with a Gaussian distribution) can be applied using shaping
techniques, e.g., by assigning nonuniform probabilities on
different signaling points [4]-[8]. The resulting advantage is
referred to as the shaping gain [5]. Usually, special shaping
codes and algorithms are needed.
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Recently, superposition coded modulation (SCM) has been
studied as an alternative approach to other bandwidth-efficient
coded modulation techniques [9], [10]. With SCM, several
coded sequences (each referred to as a layer) are linearly
superimposed before transmission. Consequently, when the
number of layers is large, the transmitted signal exhibits an
approximate Gaussian distribution that matches to an AWGN
channel. This provides a more straightforward approach for
achieving shaping gain [9], [11]. The work in [9]-[12] shows
that such a concept is realizable with practical encoding and de-
coding methods. Simulation results show that an SCM scheme
can operate within the shaping gap over AWGN channels
[11], surpassing the theoretical limit of the uniform signaling
based methods. (In this paper, it will be shown that SCM also
provides a simple and effective means of high-rate transmission
over fading channels. By using low-rate component codes,
significant diversity gains can be achieved with SCM.)

SCM also finds use in many other contexts, e.g., in the
achievability proof of multi-user channel capacity in [13]-[15].
In [10], SCM has also been studied for practical broadcasting
channel applications, where it is shown that SCM can provide
a significant gain over traditional time-division schemes. An-
other application is adaptive modulation through adjusting the
number of layers (and so rate) according to channel condition
[16]. This is more flexible than traditional approaches, such as
switching among, say, TCM using 8-PSK (8-ary phase shift
keying), 16-QAM (16-ary quadrature amplitude modulation),
32-QAM, etc., for channel adaptation [17]. The latter has the
drawbacks of abrupt rate change and high receiver cost due
to the need of many different TCM decoders. With SCM, rate
change can be achieved smoothly by using a low-rate code for
each layer. The receiver cost can be kept low by using the same
code for all the layers and time-sharing a common decoder.

However, there is a practical concern with SCM: the
Gaussian-like transmitted signal has a relatively high
peak-to-average power ratio (PAPR), which may cause a
problem for radio frequency amplifier efficiency [18]. The
same PAPR problem also exists in other shaped coded mod-
ulation schemes [5]-[8] and orthogonal frequency-division
multiplexing (OFDM) systems. For OFDM systems, a number
of PAPR reduction techniques have been studied (see [18] and
references therein). Among these techniques, clipping is the
most straightforward but may lead to substantial degradation in
the bit-error-rate (BER) performance [18]—-[27], especially for
high-rate applications.

In this paper, we investigate the use of clipping in SCM
schemes. We show by mutual information analysis that the
theoretical penalty due to clipping is marginal for practical
PAPR values. (Actually, with the same PAPR, the capacity

0018-9448/$25.00 © 2009 IEEE
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Fig. 1. Encoder of a superposition coded modulation system.

of clipped SCM signaling is higher than uniform signaling
in low-to-medium rate region, see Fig. 4 later.) This is also
verified by simulation results.

We devise a practical soft compensation method to recover
the performance loss due to clipping by exploiting the charac-
teristics of clipping noise. This method can provide (at much
lower complexity) performance close to the optimal maximum
a posteriori probability (MAP) method. It can be easily incor-
porated into the overall iterative receiver structure based on the
low-cost multiuser detection principles developed in [29], [30].
A variety of numerical results for AWGN and fading channels
are provided. It is shown that the proposed method can effec-
tively recover the performance loss incurred by clipping.

We also consider the clipping issue for SCM with trans-
form-domain transmission (e.g., OFDM). The soft compen-
sation technique is extended to such cases and we provide
performance comparisons between SCM and the well-known
bit-interleaved coded modulation (BICM) scheme [31]-[36].
We show that when rate is relatively low, the two schemes
have similar performance. However, as the rate increases, the
advantage of SCM becomes more significant. In particular,
when an underlying OFDM layer is involved, SCM can offer
a better tradeoff between PAPR and BER at high rates than
alternative schemes.

This paper is organized as follows: Section II introduces the
basic system model. Section III contains an information-the-
oretic analysis of the clipping effect. Iterative decoding tech-
niques are developed in Section IV. Section V addresses the
clipping issue for SCM with transform-domain transmission.
Comparisons of SCM and BICM are presented in Section VI.
Finally, we summarize our main results in Section VII.

II. SYSTEM MODEL

A. Encoding

We consider a K-layer SCM system. The encoding scheme
is shown in Fig. 1. A binary data sequence w is partitioned
into K subsequences {uy, }. The kth subsequence uy, is encoded
by a binary encoder (ENC-k) at the kth layer, resulting in a
coded bit sequence ¢, = {cx(j)} of length 2.7, where c(j) €
{0,1} and J is the frame length. The randomly interleaved ver-
sion vy, of ¢, from interleaver-k (INTL-k), is then mapped
to a quadrature phase shift keying (QPSK) sequence x4 (j) =
zle () + izl™(j), where i = /=1, the superscripts “F¢”
and “/™” are used to denote the real and imaginary parts of

complex numbers, respectively, z2¢(5) 1 — 2vi(24) and
zim(§) = 1 = 204(25 + 1). Itis clear that z1°(5) € {+1, -1}
and so does 2™ (j).

The output signal at time j is a linear superposition of K

independently coded symbols
K-1
2(j) =Y Berr(), i=01,....0—=1 (1)
k=0

where {(3; } are constant weighting factors. The overall rate is
R=2 Efz_ol Ry, in bits/symbol, where Ry, is the rate of the kth
binary component code. The selection of {3, } will be discussed
in Section II-B.

B. Peak-to-Average Power Ratio

Let E[-] denote the mathematical expectation and | - | the am-
plitude. The PAPR (in decibel) of z(j) is defined as

Hlax{lx(j)l2}>
Ellz()IP1 /-

We assume that all the interleaved coded bits {vx(j)} are in-
dependent and identically distributed (i.i.d.) random variables
with Pr(vg(j) = 0) = Pr(vk(j) = 1) = 1/2. The PAPR
can be very high when K is large. For an SCM scheme with
{fo = -+ = PBr_1}, the PAPR is K. In order to suppress
PAPR, we can clip z(j) to Z(j) before transmission according
to the following rule:
z(j),

=) = {Ax<j>/|x<j>|,

where A > 0 is the clipping threshold. We define the clipping
ratio (CR, 7) in decibel as
AQ
v =10log <— ) .
O\ E[«(7)?]

The PAPR of the transmitted signal is given by PAPR
10log; (A%/E[|Z(5)|?]). We select A according to the desired
PAPR value.

The performance of an SCM scheme can be improved by
properly choosing the power allocation factors {|ﬂk|2} In
this paper, {| ﬁk|2} are determined using the simulation-based
power allocation method [11], [12] for small K and the linear
programming method [29] for large K. The phase angles
{4k} can be used to shape the signal constellations and adjust
PAPR. For example, for a 4-layer SCM with {|8x| = 1, V k},

PAPR = 101log;, ( 2)

|z(j)| < A

()] > A )

“)
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Fig. 2. Capacities of clipped Gaussian input signals over (a) AWGN and (b) Rayleigh fading channels.

the maximum PAPR = 6.02 dB is reached at {£0; = 0, V k}.
On the other hand, if we set {{0; = kn/8, V k}, then the
PAPR is reduced to 5.16 dB.

C. Received Signal Model

The clipped signal Z(j) is then transmitted over a memoryless
channel. The received signal is given by

where h(j) is the channel coefficient and w(j) is a complex,
zero-mean white Gaussian noise with variance o2 per dimen-
sion. The ratio of energy per bit (E} ) to the noise power spectral
density (Ng = 202) is given by E,/No = E[|2(5)|%]/(2Ro?).

When K is large, 2(j) can be approximated by a Gaussian
random variable from the central limit theorem. Using Price’s

theorem for nonlinear systems with Gaussian inputs [28], we
can model the clipping operation in (3) as a linear process

2(j) = ax(f) + d(5) (©)

where « is a constant attenuation factor, and d(j) is a Gaussian-
distributed distortion term with zero-mean and variance o2 per
dimension, which is statistically uncorrelated with (7). In gen-
eral, o and ag depend on +y and the statistics of z(j), and can be
calculated as [20], [25]

Bl ()a()]
CERGE "
2 _ Ell()P] = 0Bl )1} "
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where * denotes complex conjugate. Then the received signal
can be alternatively written as

y(4) = ah(§)z(4) + h(5)d(5) + w(i). ©)

The above modeling will be used in Section IV-E.

III. EFFECT OF CLIPPING ON THE ACHIEVABLE RATES

We now investigate the impact of clipping on the performance
limits of SCM systems. Consider a memoryless channel charac-
terizedby Y = HX +W,where H, X and W are, respectively,
the channel coefficient, transmitted signal and AWGN. Assume
that the receiver has perfect knowledge of H. Then for a given
distribution of X, the capacity is quantified by the average mu-
tual information [13]

C=En [[(X;Y|H)]

=Eg [—Ey [log(p(Y|H))] — 10g(27reo2)] (10)

where E jy[-] and Ey [-] denote expectation with respect to H and
Y, respectively. We can apply numerical methods to evaluate C'.
We examine the cases of continuous and discrete X separately
below.

A. Continuous Input Signal

We first consider X as a clipped version of a complex,
Gaussian random variable with zero mean and variance 1/2
per dimension. The clipping rule given by (3) is used. The
probability density function of X is given by

L fexp(—laP)/m,
ple) {exp<—|A|2>6<|a:|—A>/<27rA>,

|z] < A

ol=a

where §(-) is the Dirac delta function.

The numerical results based on (10) for the clipped Gaussian
signaling and the Shannon limit are shown in Fig. 2. We set v =
3 and 2 dB, and the resultant PAPR is 3.64 and 3 dB, respec-
tively. The performance of the clipped Gaussian signaling is
close to the Shannon limit if optimal decoding is used. We have
also included in Fig. 2 the results (marked by “EAWGN”) for
a suboptimal strategy [20] based on (9), in which the clipping
distortion d(j) is approximated by an equivalent AWGN. It is
seen from Fig. 2 that this suboptimal approach leads to signif-
icant performance loss. This motivates us to develop improved
techniques.

B. Discrete Input Signal

Next we examine the SCM systems where X is a discrete
variable. For the K -layer scheme described in Fig. 1, the input
signal before clipping is the summation of K complex random
variables. When K is large, the distribution of the unclipped
signal is approximately complex Gaussian. Hence, the above
analysis on clipped Gaussian signaling can provide insights into
such cases.

We now focus on the impact of clipping on SCM schemes
with a small-to-medium K. We take a five-layer scheme as an
example. It employs a nonequispaced 4° = 1024-ary signal
constellation that is fully determined by {0}, as depicted in
Fig. 3. The related PAPR without clipping is 5.39 dB. We set

2565
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Fig. 3. SCM constellations (a) without and (b) with clipping. K = 5,
{18k]} = {1,1.4565,2.1218,3.0912,4.5031} and { £3). = kw/10,V k}.

v = 3.5 dB, and the resultant PAPR = 3.68 dB. The capacities
achieved over AWGN and Rayleigh fading channels are shown
in Fig. 4. The performance of the conventional 1024-QAM! sig-
naling (PAPR =~ 4.5 dB) and the Shannon limit are also in-
cluded for comparison. From Fig. 4, we can make the following
observations:

* Without clipping, the differences between the SCM ca-
pacity, 1024-QAM capacity and Shannon limit are not
significant for low-to-medium rates (e.g., up to about 9
bits/symbol). The SCM capacity is also higher than the
1024-QAM capacity for the most part in this region. For
a target rate of 5 bits/symbol, the difference between the
required Ej /Ny of SCM and the Shannon limit is only
0.21 dB for AWGN channels, representing a shaping gain
of about 0.7 dB over the 1024-QAM signaling.

* Although clipping degrades the achievable rate, the ef-
fect is not serious if optimal decoding is applied. We
see that in AWGN channels, at a rate of 5 bits/symbol,
about 0.2 dB loss in E}/Ny is introduced by clipping at
PAPR = 3.68 dB. The clipped SCM, when compared with
the conventional 1024-QAM, has lower PAPR but higher
capacity in the vicinity of 5 bits/symbol. This reveals that
the clipped SCM scheme can provide a good trade-off
between PAPR and achievable rate.

IV. ITERATIVE DECODING

Now we turn our attention to practical SCM systems. For sim-
plicity, we only discuss AWGN channels with h(j) = 1, V 7,
and assume that the weighting factors {(} are real numbers.
The discussions below can be easily extended to more general
cases.

In Section III-A, we have shown that, from the point of view
of capacity, the performance penalty incurred by clipping is not
severe for a reasonable clipping ratio. But, as seen from the
“EAWGN” curves in Fig. 2, clipping can cause serious prob-
lems if treated improperly.

The following observations suggest a possible approach to
this issue.

o If |y(7)]|, the amplitude of the received signal, is large, then

the clipping probability (i.e., the probability of z(j) being
clipped) is high.

ITn this paper, a “conventional QAM” constellation represents a square QAM
constellation in which signal points are equispaced and utilized with equal prob-
abilities [5].
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Fig. 4. Capacities of clipped SCM schemes over (a) AWGN and (b) Rayleigh fading channels.

o If |y(j)| is small, then the clipping probability is small.
We may exploit these facts to compensate for the clipping ef-
fect. This is the underlying rationale for the soft compensation
method presented here.

A. Overall Iterative Detection Principle

We first outline the basic receiver structure. SCM systems can
be treated as perfectly coordinated multiple-access systems by
viewing one layer as one user. Hence, multiuser detection prin-
ciples can be applied. Specifically, due to the similarity between
the SCM systems and the interleave-division multiple-access
systems, we employ a suboptimal iterative receiver similar to
that in [29] and [30].

Asillustrated in Fig. 5, the receiver consists of one elementary
signal estimator (ESE) and K soft-input soft-output (SISO) de-
coders (DECs). They are connected by the INTLs and DEINTLs
(deinterleavers), operating iteratively. The messages passing be-
tween the ESE and the DECs are the so-called extrinsic informa-
tion values. The turbo-type iterative process basically follows
the discussion in [11] and [29] with the ESE outputs used as the
DEC inputs and vice versa. We will not discuss the DEC func-
tion in detail since it only involves standard a posteriori prob-
ability (APP) decoding. We will focus on the ESE that handles
the interlayer interference, as well as the clipping distortion.

B. Optimal Realization of the ESE

The function of the ESE is to estimate the transmitted signals
{z(j)} ignoring the coding constraint (i.e., as if {z(j)} is an
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Fig. 5. Block diagram of the iterative decoding/detection algorithm.

uncoded sequence). The optimal MAP principle can be applied
here to compute the following log-likelihood ratio (LLR) for the
coded bit z:1(5) (we handle 2™ (j) in a similar way)

e 2R = In Pr(zi(4) = +1ly(5)) — e (xPo(i
sotel ) =0 (Fhe Gy = S ) e o

where e,(z) = In(Pr(xz = +1)/Pr(z = —1)) is the a priori
LLR for z. During iterative decoding, e, (z) is approximated by
the feedback LLRs from the DECs. See Fig. 5 and [29]. Given
the signal constellation (e.g., Fig. 3) at the transmitter, (12) can
be evaluated following the standard procedure [33], [37]. The
related complexity is proportional to the constellation size.

The constellation size of the SCM (with and without clipping)
grows exponentially with the number of layers K, which can
be a serious concern for large K. In the following, we present
several suboptimal, low-cost alternatives.

C. Suboptimal Realization of the ESE Based on Gaussian
Approximation

We first consider unclipped SCM. The following Gaussian
approximation (GA) detector forms the basis for all the subop-
timal methods discussed in this section. Let us concentrate on
layer-k. Rewrite (5) as

y(j) = =(4) + w(j) = B (d) + G(J) (13)

where

() = Braw (i) +w(y)

k'#£k

(14)

represents the interference-plus-noise with respect to z:1.(7). We
approximate (i (j) by an additive complex Gaussian variable.
Then we can compute the extrinsic LLRs by (15) below (with
much lower complexity than the optimal MAP method)

erse(af (7)) |

R e
(@r VIR () ™ exp { —(wog;r[i% :(Ej[ﬁmj)w }
v () B [ ()]

- 15

NG 13
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where V-] denotes the variance function and we have assumed
that {8} are real numbers. The computational details for
E[¢fe(4)] and V[(Ee(5)], as well as the treatments for complex
{Bk}, are given in Appendix.

D. SNR Evolution

The following signal-to-noise ratio (SNR) evolution tech-
nique [29] can be used to evaluate the performance of the GA de-
tector. It also provides insight into the convergence properties of
the iterative decoding. Denote by {Snrgf), k=0,1,...,K—1}
and {v,(cq), k=0,1,..., K — 1}, respectively the average SNR
contained in the ESE outputs and the average variance at the
output of the DECs, both in the gth iteration. Let ) be the
number of iterations between the ESE and the DECs. It can be
shown that, during the iterative process, these two groups of
quantities determine each other recursively as follows.

Initialization: Set {v,(CO) =1,k=0,1,...,K — 1}

Recursion: For ¢ = 1,2,...,Q, compute
2
Snr,(f): |ﬂk(| - , kE=0,1,..., K -1
2 B Pog T + 0
k'#k
(16)
ol = f(surl?), k=0,1,... K —1. (17)

An intuitive explanation of (16) is that |3x]° and
> okrsk 1B |2v,(ﬂ_1) + o?, respectively, represents the re-
ceived power and uncertainty with respect to the kth layer. The
uncertainty is caused by the joint effect of the interfering signals
from other layers and the channel noise, with the contribution
from the kth layer measured by the variance at the output of
DEC-k scaled by a power factor |3|?. The function f(-) in
(17) characterizes the DEC operation and can be obtained using
the Monte Carlo method (similar to the treatment of an extrinsic
information transfer (EXIT) function [38]). We also define the
BER performance of DEC-k as a function of sur;”’ as

BER;, = gi (snr;”) . (18)

The BER performance can be estimated by substituting snr,(cQ)
from the final step in (16) into gx(-). We show later that this
semi-analytic SNR evolution technique provides a fast and rea-
sonably accurate way to predict the performance of the GA de-
tection procedure outlined above. Furthermore, this technique
can be used to optimize the weighting factors {1} following
the procedures developed in [29].

E. Modified GA Method (MGA)

We now proceed to consider clipped SCM systems. In this
case, the basic GA method in Section IV-C deteriorates if the
clipping distortion is ignored. Based on the approximation in
(9), an improved method is to treat the clipping distortion d(j)
as an equivalent AWGN. Again, we focus on layer-k. Rewrite
9) as

y(j) = abrar(G) + G(j) (19)
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with
G() =a Y Buaw(i) +dG) +w(i).  (20)

k' £k

Now the GA method can be applied. The performance of this
modified GA (MGA) method is still not satisfactory, but it can
be used in the initial stage for our simulation results presented
below, because it can start without accurate feedback informa-
tion.

FE. Soft Compensation

Next, we derive a soft compensation (SC) technique that uses
a joint process to treat the interlayer interference and clipping
noise. We rewrite (5) as

y(4) ==() + w(j) + 2(5)
= Brak(d) + () + 2(4) 21
where (i (j) is given by (14) and z(j) = Z(j) — =(j) represents
the clipping noise. Consider the detection of z(j) based on
(21). We propose the following suboptimal SC method which
has complexity only slightly higher than the GA method.
We again approximate (;(j) + z(j) by an additive complex
Gaussian variable. It is important to note that here the statistics
of ((j) + 2(j) are different for different hypotheses on z(7),
since the clipping effect depends on the hypothesis. For sim-
plicity, we omit the time index j from now on and rewrite (21)
as y = Orzr + (x + 2, and introduce the following notations.
e ETand E~ are, respectively, the means of ¢ ,lfe +zBe under
the hypothesis z£* = +1 and —1.
e V+ and V~ are, respectively, the variances of C,fﬁ + pfte
under the hypothesis 27¢ = +1 and —1.
Similar to (15), we have

epse (1)

—1/2 'IRG— - +\2
(27VT) /exp{—i(" 2’8&+E )}

(V) Poeny ()

=In

2V—

L (VY W B BT
~ T\ ye 2V +
(yBe + Bp — E7)?
+ e . (22)

The conditional means E+ and variances V* in (22) can be
estimated using the method in Section IV-G. Notice that (22) is
only slightly more complicated than (15).

G. Efficient Techniques to Evaluate the Conditional Means
and Variances

We approximately treat (3, and z in (21) as independent vari-
ables. Since (. is exactly the same as that in (14), the key is to
find the statistics of z. From (3), z is given by

lz] < A

|z > A. *3)

— 07
7\ Az/|z| - =,
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If the conditional probability density function p(z|zf® = £1)
is available, then E* and V* can be evaluated using numer-
ical integration. However, this is difficult in practice due to the
excessive computational cost. We propose the following subop-
timal strategy based on Gaussian approximation. For clarity, we
will omit the superscripts “*” and the method below is applied
to both the hypotheses 1*® = +1 and —1. Let C[z] be the co-
variance matrix of z, as defined in Appendix. From (21), we can
express & as

= C(r —w+ Ppxy. 24)
Then p» = E[z] and V = CJz] can be obtained from (24), if
E[zt] and C[xzy] are given and E[(x] and C[(}] are available.
We now treat x as a complex Gaussian random variable. Then
E[z] and CJz] are fully determined by (u, V') from (23). We
denote these relationships using the two functions below:

(25a)

Clz] = ¢(n, V). (25b)
In general, the functions in (25) can be generated numerically
using the Monte Carlo method. We can create two look-up ta-
bles to characterize them. Assuming that these two tables are
available, then the SC cost is only slightly higher than the GA
method in Section I'V-C.

Since (u, V') involves five parameters, we need two five-di-
mensional (5-D) tables. We now consider an approximate tech-
nique to reduce memory cost using

V ~ ol (26)
where v = (V[zf¢] 4 V[2/™])/2 and I denotes the 2 x 2 iden-
tity matrix. This is to approximately characterize = using a sym-
metric complex Gaussian distribution CA (u, vI). Now there
are only three parameters involved. Furthermore, it is easily
shown that

$(u,0l) = ﬁ (Il vI) (27a)
(i, vI) = V(|| vI) " (27b)
where
1 /LRS —,U,Im:|
= 28
1l [M“" ue .

Therefore we only need two two-dimensional (2-D) tables to
characterize ¢(|p|, vI) and ¢(|p|, vI) and then use (27) to find
¢(p, vI) and @(p, vI) for the SC method.

The SC method is essentially a turbo-type clipping noise can-
cellation technique based on the extrinsic information produced
by the SISO decoders. This distinguishes it from the decision-
aided clipping noise cancellation techniques in [25], [27] and
the signal reconstruction techniques in [24], [26].

H. Examples

We now provide several examples of clipped SCM schemes.
We will always assume that the interleavers are randomly gener-
ated. We observe that the MGA method based on the approxima-
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TABLE I
PARAMETERS OF THE SCM SCHEMES IN FIG. 6
K| R {18:[} {4Bx} | PAPR(B)
7|4 1,1.4523, 2.1086, 3.0626 kn/8,Vk 174
5[ 5| 1,1.4565,2.1218, 3.0912, 4.5031 | kx/10,Vk 5.39

tion in (9) (see Section IV-E) provides improved performance at
the starting stage of the iterative process. In this case, the feed-
back is not reliable and the SC method (see Section IV-F) is not
effective. However, after a few iterations, the feedback from the
DECs becomes reliable and the SC method becomes more ef-
fective. In the following, we adopt a hybrid strategy in which
the MGA method is executed for @) iterations, followed by
the SC procedure for Qg iterations. The values of @, and Qg
are obtained experimentally.

1) AWGN Channels: We first consider AWGN channels. The
rate-1/2 doped code introduced in [39] is chosen as the compo-
nent code for each layer. We set K = 4 and 5. The parameters
and the PAPR without clipping are given in Table I. Clipping
with v = 3.5 dB is applied to both systems to reduce the PAPR
to about 3.68 dB. (Note that the conventional 64-QAM signaling
has the same PAPR of 3.68 dB.) The maximum number of iter-
ations in the component DECs [39] is set to 200, and the max-
imum number of iterations between the DECs and the ESE is set
to 6. The entropy-based stopping criterion introduced in [11] is
used to terminate the iterations.

The simulated BER performance with different detection
methods is shown in Fig. 6(a) and (b) respectively for K = 4
and 5. For comparison, the Shannon limit, the 1024-QAM
capacity, and the capacity limits of the related SCM signaling
are also included.

We can see that when clipping is not used, the GA method and
the optimal MAP method perform similarly, and the achieved
performance is quite close to the channel capacity. At BER
of 102, the difference between the required Ej/Np and the
Shannon limit is only 0.9 and 1.2 dB for R = 4 and 5 bits/
symbol, respectively.2 Also, we can see that the results predicted
by SNR evolution are in good agreement with the simulation re-
sults.

On the other hand, from Fig. 6, the SCM performance deteri-
orates when clipping is used. With the optimal MAP detection,
the loss is within 0.2 dB (at BER = 10~?) for the two examples.
This is roughly in line with the loss in capacity due to clipping.

For the suboptimal GA and MGA methods, the performance
loss in comparison with the unclipped performance increases
significantly, with the MGA method performing better. Using
the SC method, however, the differences in performance are re-
duced to about 0.3 and 0.5 dB for K = 4 and 5, respectively.
This implies that the SC method can recover most of the perfor-
mance loss due to clipping and hence provide an efficient solu-
tion.

The performance loss of the SC method due to the approxi-
mation in (26) is also shown in Fig. 6. Each dimension is quan-
tized to 20 levels. We can see that the difference between the

2For comparison, the best simulation results (to the authors’ knowledge)
based on trellis shaping and equispaced QAM constellations for both R = 4
and 5 bits/symbol are about 0.8 dB away from the channel capacity, as reported
in [7], [8]. However, the associated PAPRs in [7], [8] are relatively high (7.26
and 8.93 dB for R = 4 and 5 bits/symbol, respectively).
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5-D and 2-D methods is marginal (within 0.1 dB). For the latter,
two small tables of size 20 x 20 are used for ¢(+,-) and ¢ (-, -).

Based on the above observations, we only consider the sub-
optimal detection methods and use 2D tables for SC in the rest
of this paper.

2) Fading Channels: Next we consider SCM over fully in-
terleaved Rayleigh fading channels. The detection methods in
Sections IV-A-G can be easily extended here. For simplicity,
we only consider real {{;}, and the component code is real-
ized by the serial concatenation of a rate-1/2 nonsystematic
convolutional code with generator polynomials (23, 35)s and
a length-S repetition code. The repetition coding is introduced
here to average out the fading effect. We fix the total rate R =
2 bits/symbol (i.e., K = 25) and the frame length J = 2048.
Three schemes with different S as tabulated in Table II are com-
pared.

From Fig. 7, we can see that the SCM performance in fading
channels can be significantly improved by introducing repetition
coding. A gain of about 2.8 dB at BER = 10~ can be achieved
by increasing S from 1 to 4. Note that the receiver cost increases
slightly with S, which can be seen as follows.

* The normalized cost (per information bit) of a convolu-

tional decoder is independent of S.

» The cost related to the repetition code is negligible [29].

» The ESE cost grows linearly with .S.

* The dominant factors of the receiver cost are usually re-

lated to the convolutional decoders.

In Fig. 7, the results are also shown for the clipped schemes with
S = 4 and 8 at a PAPR of 2.96 dB, the same as that of the un-
clipped scheme with S = 1. (The clipping ratios are v = 2.1
and 2.02 dB, respectively, for S = 4 and 8.) In order to reduce
the SC cost, we have adopted the following two strategies with
marginal performance loss. First, since the number of layers is
large, we assume that different hypotheses of the bit to be es-
timated (e.g., ¥ = +1 or —1) have negligible effect on the
estimation of clipping noise. Thus, we use extrinsic information
only in evaluating (25). Secondly, we update the soft estimation
of clipping noise only when all the extrinsic information from
the DECs is renewed.

It is seen that the SC technique can reduce the error floor. The
clipped schemes with SC outperform the unclipped scheme with
S = 1 by about 2 dB at BER = 10~°. Note that with S = 8,
a large portion of the transmitted symbols are clipped and the
PAPR is reduced by about 9 dB, but the performance loss is
within 1 dB. This demonstrates that the SC technique can work
effectively for deep clipping.

V. SUPERPOSITION CODED MODULATION WITH
TRANSFORM-DOMAIN TRANSMISSION

Define the output signal vector of an SCM encoder as

z = [2(0),z(1),...,z(J — 1)] (29)
where z(j), j = 0,1,...,J — 1, is the coded symbol
given by (1). We now consider the PAPR issue for
X = [X(0),X(1),...,X(J—=1)] = F(=z), where F(-) is
a linear transform function with inverse F~1(-). The problem
arises, e.g., when the SCM signal is transmitted using an
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Fig. 6. Performance of the clipped SCM with a doped code and different detection methods over AWGN channels. (a) K = 4, (b) K = 5. J = 10°. The number
of iterations is 6. For curves marked by “MGA w/ SC”, the MGA method is first used for (2 5, = 1 iteration and then the SC method is used for () s = 5 iterations.

TABLE II
PARAMETERS OF THE SCM SCHEMES AT R = 2 BITS/SYMBOL IN FIG. 7
S | K | {Bk value x layer number} | PAPR(dB)
1 2 1x1,1.25 x 1 2.96
4 8 1x6,1.44 x 2 8.90
8| 16 1x12,1.22x 4 11.92

OFDM scheme where F(-) represents the inverse discrete
Fourier transform (IDFT).

The transmitted signal is obtained by clipping X (m), m
0,1,...,J —1,to

oo [ X(m), X (m)] < A
X(m) = {AX<m>/|X(m>|, X(m) > 4. G0
Let Z(m) = X(m) — X(m),m =0,1,...,J — 1, and
z2=1[2(0),2(1),....2(J - )] =F1Z) @D

where Z is defined similarly to (29). The received signal is
first transformed back (using F~1(+)) to the original domain,
resulting in

where {w(j)} is the transform of the channel noise. Note that
the counterparts of (30)—(32) in the original clipping system are
(3), (23) and (21), respectively.

Eqns. (32) and (21) appear the same, but there is a subtle
difference. In (21), z(j) is correlated with x(j) since a larger
amplitude of z(j) implies a larger clipping probability. On the
other hand, in (32), z(j) is the weighted sum of J clipping
noise samples (see (31)) and is approximately independent of
(7). Therefore, we will ignore the impact of the hypothesis
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Fig. 7. Performance of SCM at R = 2 bits/symbol over fully interleaved Rayleigh fading channels. J = 2048. The number of iterations is 10. For the clipped

cases with SC, we set Qs = 6, and Qs = 4.

of {z1(j)} in estimating clipping noise. We approximate z(j)
by an additive Gaussian random variable that can be treated to-
gether with w(j) provided that E[z(j)] and C[z(j)] are known.
The detection rule in (15) (instead of (22), since the influence
of the hypothesis is ignored) can then be applied. We adopt the
following steps to estimate {E[z(j)]} and {C[z(5)]}.
1) Estimate {E[X (m)]} and {C[X (m)]} from {E[z(5)]} and
{Cl()]}.
2) Find {E[Z(m)]} and {C[Z(m)]} using the look-up table
method in Section IV.
3) Generate {E[2(j)]} and {C[z(j)]} from the statistics of
{Z(m)}.
Here, {E[z(j)]} and {C[z(j)]} are computed using the feed-
backs from the DECs as in Appendix . Steps 1 and 3 can be
performed based on X = F(z) and z = F~1(2).

Note that with OFDM (a typical transform-domain transmis-
sion technique), other coded modulation methods also suffer
from the PAPR problem. The SCM has a significant advantage
in this case, since the SC method can be efficiently applied to
SCM to alleviate the clipping effect. For other coded modulation
techniques, compensation methods are not so effective [26].

VI. COMPARISON WITH BICM

It is interesting to compare SCM with other alternative coded
modulation schemes. In the following, we will focus on com-
parison with BICM [31]-[36] that has attracted much attention
recently for its performance advantages in fading channels.

SCM and BICM are closely related. Denote v(j) =
{vo(4),v1(4), - .., var—1(j)} where vy, (j) € {0,1} is the mth
coded bit carried by z(j). With BICM, the transmitted signal
x(j) is generated using, instead of (1), a more general mapping
rule:

(33)

The image of (- is usually a 2" -ary constellation of uniformly
distributed signaling points, but the principle can be generalized
to nonuniform constellations. With this view, some comments
are in order.

* SCM is a special case of BICM since (1) is a special case of
(33). As such, SCM may not outperform optimized BICM.

* The SCM in Fig. 1 involves multiple encoders while a
BICM scheme usually involves only one overall encoder.
We have observed that the performance of SCM with mul-
tiple encoders is better than that of SCM with a single en-
coder. (For the latter case, the signals in K layers are gener-
ated by interleaving and segmenting the outputs of a single
encoder.)

* For very long codes in AWGN channels, SCM is as good as
BICM, since SCM can achieve near-capacity performance
(see Fig. 6). Later, in Fig. 8, we will show that for short
codes, BICM does have advantages in certain cases.

* With QPSK modulation at each layer, SCM optimization
only involves K = M/2 weighting factors {f;} (see
Section II and [12]). BICM optimization is a much more
complicated issue involving 2 constellation points [34].

¢ The detection complexity for SCM is O(M) while that for
BICM is O(2M). Therefore SCM has a complexity advan-
tage for large M.

* As demonstrated in Fig. 7, given a target rate, we can
achieve diversity gain in SCM by decreasing the rate of
each layer (and increasing K accordingly). The design and
detection complexities of SCM grow linearly with K. For
BICM, we can increase diversity gain by using larger con-
stellations or rotating the signal constellations [35] but the
design and detection complexities of these methods in-
crease very quickly.

* As explained below, both SCM and BICM suffer from the
high PAPR problem when OFDM is involved. We show
that SCM is more robust to clipping effect compared to
BICM.
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Fig. 8. Performance of turbo-coded ({23, 35)s) SCM and BICM at R = 2 bits/symbol over AWGN channels.

In the following, we present several comparison examples based
on turbo and convolutional codes.

A. Comparison in AWGN Channels

We first compare SCM and BICM over AWGN channels.
We consider R = 2 bits/symbol. The rate-1/2 turbo code [41]
(23, 35)s is employed in both schemes. For the SCM, we set
K =2,{fk} = {1,1.51}; PAPR = 2.83 dB; the number of it-
erations is 9 in the DECs and 2 between the DECs and the ESE.
For the BICM, the Gray mapping is applied to the 16-QAM con-
stellation;3 PAPR = 2.55 dB; the number of iterations in the
DEC is 18. The two schemes have nearly the same complexity.
Clipping is not considered here since the PAPRs are not signif-
icant.

The performance with J = 2048 and 32768 is shown in
Fig. 8. The BICM performance is better when .J is small while
the SCM performance surpasses that of BICM for a large .J.
(Similar observations have been made for convolutional codes-
based schemes over AWGN channels.) One reason for this is
that the suboptimal GA detection is used in SCM while the op-
timal MAP demapping is used in BICM. Another reason is that
the interleaver length for SCM is only 1/ K of that of BICM at
fixed J, which affects interleaving gain [40]. (However, when
J is large, the impact of interleaver length becomes less signif-
icant.)

B. Comparison in Fading Channels

Fig. 9 compares SCM with BICM over fading channels at
rates & = 2, 3 and 5 bits/symbol. The same component code
with § = 4 as that in Fig. 7 is again used here for SCM.
For comparison, three BICM schemes with iterative decoding
(BICM-ID) reported in [33], [34] and [36] are also simulated.

3Gray mapping yields the best known performance for BICM with turbo
codes and QAM constellations [34].

For BICM-ID, the (23, 35)g convolutional code is directly used
for R = 2, and punctured to rate 3/4 and 5/6 (using the op-
timal puncture patterns in [42]) for R = 3 and 5, respectively.
The related parameters, including signaling schemes and PAPRs
without clipping, are given in Table III, where SP denotes the
set-partitioning mapping [1] and MSP the modified SP mapping
[33]. Clipping (with v = 3 dB, PAPR = 3.55 dB) is applied to
SCM, but not used for BICM-ID since the related PAPRs are
small.

From Fig. 9, we can see that at R = 2, BICM-ID exhibits
better performance and lower PAPR (2.55 dB). For higher rates,
clipped SCM is inferior to BICM-ID at low SNRs. However,
SCM provides a lower error floor at high SNRs, since it can
achieve higher diversity gains with low-rate component codes.
Here we would like to point out that the performance provided
in Fig. 9 are based on the best schemes known to us, although it
may be possible to improve the BICM-ID performance through
further optimization.

With real {3} and the GA method, the detection complexity
of SCM is about 6 real multiplications, 6 real additions, and
a tanh(-) operation per coded bit [29]. As a comparison, in
BICM-ID schemes employing 2 -ary constellations and the
log-MAP demapping [33], the demapping complexity is about
2M comparisons, 3 x 2 real additions and 2 table look-ups
per coded bit, which can be very high when M is large (e.g.,
M = 6 for the 64-QAM signaling). We can show that, taking
into account the APP decoding cost and the numbers of itera-
tions needed, the overall complexities of the two schemes are
comparable.

C. Comparison in Channels Involving OFDM Modulation

Finally, we briefly discuss the channels with OFDM modula-
tion. Both SCM and BICM suffer from the high PAPR problem
in this case. We apply clipping with v+ = 3 dB to the two
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Fig. 9. Performance of SCM and BICM-ID over fully-interleaved Rayleigh fading channels. J = 2048. For the SCM without clipping, the number of iterations
is 12 for R = 2 and 3, and 16 for R = 5. For the clipped SCM, we set Qs = 6, Qs = 6 for R = 2 and 3, and Q@ = 6, Qs = 10 for R = 5. The number

of iterations is 10 for all the BICM-ID results.

TABLE III
PARAMETERS OF THE SCM AND BICM-ID SCHEMES IN FIGS. 9 AND 10
R SCM BICM-ID
K {Bk value X layer number} PAPR (dB) Signaling Scheme PAPR (dB)
2 8 1x6,1.44 x 2 9.03 16-QAM, MSP [33] 2.55
3 12 1x6,1.58 x3,2.07 x 2,227 x 1 10.49 16-QAM, MSP [33] 2.55
5120 1x6,1.58 x 3,2.07 x 1,2.27 x 1,2.73 x 1, 11.79 64-QAM, SP [1] 3.68
2.99 x 1,3.27 x 1,3.58 x 1,4.30 x 2,5.65 x 1,6.19 x 2

schemes and compare their performance.# The frame length J
is set to 2048 and the number of subcarriers N is set to 256.
(This means that each frame contains .J/N = 8 OFDM blocks.)
For simplicity, the channel gains over subcarriers are assumed
to be independent, Rayleigh-distributed [20]. The coding
schemes are the same as those in Fig. 9. The operations related
to the cyclic prefix of OFDM are ignored in our simulations.

We observe that the soft compensation strategy is not effec-
tive for BICM-ID with the SP and MSP mappings. A similar ob-
servation is made in [26] and an explanation is provided there for
this observation using the EXIT chart technique. On the other
hand, compensation techniques are more effective for BICM
with Gray mapping, but the resultant performance is still not
satisfactory. Based on this, we adopt the signal model given by
(9) and treat the clipping distortion as an equivalent AWGN for
clipped BICM-ID. The results are compared with SCM applying
SC in Fig. 10. For reference, we have also included in Fig. 10
the results for Gray-mapped BICM with clipping (y = 3 dB)
and SC.

It is seen that in general, SCM provides the best solution for
clipped systems. The difference becomes significant when rate

4In this paper, we only consider Nyquist-rate-sampled systems. The oversam-
pled OFDM system [19]—[21] is a more complicated issue and we are currently
conducting a comprehensive study on the application of SCM in such systems.

is high (R = 3 and 5). Notice the serious performance degra-
dation of BICM-ID with clipping at R = 5. At this rate, the
channel noise level is very low (due to high working SNR)
and, consequently, clipping distortion becomes a dominating
problem. Clearly, considering the PAPR problem, SCM pro-
vides a better choice than BICM-ID in high-rate OFDM appli-
cations.

VII. CONCLUSION

We have investigated a peak-power-limited SCM system
based on clipping. By evaluating the mutual information
achieved with the clipped input signal, we have shown that
significant shaping gains can be achieved with reasonable clip-
ping thresholds. To combat the clipping effect for practically
coded systems, we have derived an efficient iterative soft com-
pensation method. Simulation results show that a good tradeoff
between PAPR and BER can be achieved with the proposed
method. We have also compared SCM with BICM over various
types of channels. It has been shown that, compared to BICM,
SCM provides a simpler and more efficient means of achieving
diversity gains for high-rate applications, especially when
OFDM modulation with clipping is applied.
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are the same as those in Fig. 9 for SCM and BICM-ID. For the unclipped BICM, the number of iterations is 1. For the clipped BICM, Qs = 1 and Qs = 15.

APPENDIX
THE GA METHOD FOR SCM WITH COMPLEX WEIGHTING
FACTORS

In this appendix, we extend the Gaussian approximation
(GA) detection method to SCM with complex weighting fac-
tors {3} and analyze the complexity. The statistics E[¢/*(5)]
and V[¢Fe(4)] in (15) [for the case of real {f3;}] can also be
evaluated by the methods below.

When {f)} are complex, we first generate

o
W) =15

where Ci.(j) = B;Ck(4)/1Bk| with (i (j) given by (14). We ap-
proximate (x(j) by a complex, Gaussian random variable. Re-
ferring to (15), we can see that the key to estimate x1°(j) is
to find E[A,fe (4)] and V[A,f,28 (7)]. First, a definition. Let = be a
complex random variable and E[z] be its mean. Define the co-
variance matrix of = as

V[:I?Re]
g

ICR67 xlm]

y(5) = 1Brlze(5) + Cu(j) (34)

<>

(35)

Cla] = C[xRe,xIm]}

V[:l?lm]

where C[zf¢, 31| = E[zRe2I™] — E[z®¢]E[z!™]. Following
[29], E[z1(7)] and Clz(4)] can be estimated as

Efex(j)] = tanh <M>

2
+itanh <%ﬁm(ﬂ))) (362)
1= (BRG] 0 ]
Clzr(y)] = ’
[k ()] 0 1— (B [¢1™(j)])

where eppc(zf°(j)) and eprc(zi™(j)) are the extrinsic

LLRs generated by the DECs, we have assumed that the real
and imaginary parts of x4 (j) are uncorrelated, and thus the
off-diagonal entries of C[z(j)] are zeros. The initial values of
epec(zF¢(5)) and epgrc(z1™(4)) are set to zeros, implying no
a priori information. From (1) and (13), we have

K-1
Ely(i) = > ABlrr())] (37a)
o
Cly()l = Y BiClai())B), +0*I  (37b)
k=0
where
Re _ﬁlm,
B - [ [ } (38)
k k

the superscript “7” denotes transpose of matrixes and I is the
2 x 2 identity matrix. Then, from (13), we have

E[¢(7)] =E[y(5)] — BrE[z(5)] (39a)
C[¢(j)] =Cly(j)] — BxClax(5)|BE.  (39b)
Now, we can generate
2o B .
E[G(4)] = E[¢: ()] (40a)
Bk
CLe()] = ﬁBT ClGk(7)]Br. (40b)

Finally, E[(E*(j)] and V[(2¢(5)] can be obtained from (40) and
xe(4) is estimated as

I () — B [¢Fe(h)]

v [¢Be()]

eese(zR°(5)) = 2|6 (41)
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We now consider the computational cost for the GA method
as described by (34)-(41). Some simple methods, such as
sharing the results of (37) for all layers, can be applied to
reduce the computational cost. Also, some intermediate results
can be reused to speed up the computations. It can be shown
that the total computational cost of the ESE is about 15 real
multiplications, 13 real additions and a few other operations
[e.g., tanh(z) function] per coded bit [Note: Each x4 (j) car-
ries two coded bits], which is independent of the number of
layers K. For the case of real {3}, the complexity of the GA
method can be further reduced. In contrast, the complexity of
the MAP method is linear with 4% i.e., the size of the signal
constellation.

Compared with the DEC cost, the above ESE cost is quite
moderate. As an example, the APP decoding [43] for a 16-state
rate-1/2 convolutional code requires about 64 real multiplica-
tions and 32 real additions per coded bit. In this case, the overall
complexity of the receiver is dominated by the DECs. Consid-
ering that the APP decoding has become a standard function in
modern systems employing turbo-like codes, we expect that the
cost of the above GA method is acceptable for real applications.
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