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An Investigation of Interface Bonding of Bimetallic Foils
by Combined Accumulative Roll Bonding and Asymmetric
Rolling Techniques

HAILIANG YU, A. KIET TIEU, CHENG LU, and AJIT GODBOLE

The bond strength in bimetallic materials is an important material characteristic. In this study,
0.1-mm thick bimetallic foils (AA1050/AA6061) were produced using one pass of accumulative
roll bonding followed by three passes of asymmetric rolling (AR). The AR passes were carried
out at roll speed ratios of 1.0, 1.1, 1.2, 1.3, and 1.4 separately. Finite element simulation was
used to model the deformation of the bimetallic foils for the various experimental conditions.
Particular attention was focused on the bonding of the interface between AA1050 and AA6061
layers in the simulation. The optimization of the roll speed ratio was obtained for improvement
of the bond strength of the interface of AA1050/AA6061 bimetallic foils during AR process. In
the simulation, the mean equivalent strain at the interface zone between the AA1050 and
AA6061 layers was seen to reach a peak value at a roll speed ratio of about 1.2 to 1.3, which also
corresponded to a high quality bond at the interface as observed experimentally.

DOI: 10.1007/s11661-014-2311-4
� The Minerals, Metals & Materials Society and ASM International 2014

I. INTRODUCTION

METAL laminates have become increasingly popu-
lar for engineering applications since they usually
possess several desirable properties. As such they are
being increasingly used in various fields such as the
automotive, aerospace, medical instrumentation, vessel,
and electrical industries;[1] for example, laminates can be
used for manufacturing parts with different ‘‘inner’’ and
‘‘outer’’ characteristics such as corrosion resistance,
wear resistance, and thermal and electrical conductivi-
ties. Production of the laminates (e.g., using the deep
drawing process) calls for combining the desirable
properties of different materials in a single component.
Atrian and Fereshteh-Saniee[1] studied the behavior of
steel/brass laminated sheets in the deep drawing process.
Of late, there is a great demand for micro-formed
products. The global market for microsystems reached
$25 billion in 2009, and continues to grow due the
increasing demand for microtechnical products. Micro-
forming is recognized as an emerging manufacturing
process that involves the fabrication of products from
ultra-thin foil material with thickness in the range from
0.001 to 0.3 mm. The development of adequate manu-
facturing facilities that can supply micro-formed parts in
large quantities is, therefore, a key factor in the

successful development of this process. In addition, the
strength of the foils should be improved to maintain the
structural stability of the microparts with reduction of
the foil thickness. Relevant to this need is the develop-
ment of nanostructured/ultrafine-grained materials,
which have shown higher strength compared with
coarse-grained materials. Thus, it would be very inter-
esting to investigate the mechanical properties of ultra-
thin nanostructured/ultrafine-grained bimetallic foils
and develop technologies for potential application in
micro-forming.
Among the composite material technologies, roll

bonding (RB) is an important technique used to produce
laminates because the rolling pressure can create a
mechanical bond between the metal strip components.[2]

Thus, the evolution of microstructure and mechanical
properties during the roll bonding process have been
studied, using composite sheets or strips of materials
such as Al, Al/Mg, Al/Cu, Cu/Fe, Cu/Ag, IF steel, etc.
A high-purity Al alloy and a supersaturated
Al-0.3 wt pct Sc alloy were processed by accumulative
roll bonding (ARB) to generate 0.5-mm gage sheets
consisting of alternating layers of Al and Al(Sc) by
Quadir et al.[3] In these products, the bands in the Al(Sc)
layers were observed to be more refined than those in the
Al layers. Su et al.[4] studied the microstructure and
mechanical properties of a 1.5-mm-thick AA1050/
AA6061-laminated composite processed by ARB and
observed grain refinement in both the AA1050 and
AA6061 layers. The AA1050 layer was seen to be
coarser and has more equiaxed microstructure than the
AA6061 layer after the second ARB pass. Wu et al.[5]

studied the microstructure and mechanical properties of
an Mg/Al-laminated composite of 0.5-mm thickness
fabricated by ARB at 673 K (400 �C). The tensile
strength of the laminated Mg/Al composite along both

HAILIANG YU, Vice-Chancellor’s Research Fellow, is with the
School of Mechanical, Materials & Mechatronics Engineering,
University of Wollongong, Wollongong, NSW 2500, Australia, and
also Professor with the School of Mechanical Engineering, Shenyang
University, Shenyang 110044, P.R. China. Contact e-mail:
yuhailiang1980@tom.com, hailiang@uow.edu.au A. KIET TIEU,
Professor, CHENG LU, Associate Professor, and AJIT GODBOLE,
Senior Research Fellow, are with the School of Mechanical, Materials
& Mechatronics Engineering, University of Wollongong.

Manuscript submitted August 24, 2013.
Article published online April 23, 2014

4038—VOLUME 45A, AUGUST 2014 METALLURGICAL AND MATERIALS TRANSACTIONS A



directions (along the roll direction and perpendicular to
it) increased gradually when subjected to two ARB
passes, but decreased after the third ARB pass. Li
et al.[6] studied the interfacial microstructure and
mechanical properties of a Cu/Al clad sheet fabricated
using asymmetric roll bonding with a speed ratio of
1.31 and annealing and found that roll bonding with a
larger roll speed ratio improves the ultimate tensile
strength, elongation, and peeling force of the clad sheet.
Ag/Cu bimetallic laminates were fabricated by roll
bonding and annealing by Zhang et al.[2] who found
that some Cu-rich particles precipitated along grain
boundaries in the fine grain region and could harden the
Ag strip component slightly. Kamikawa et al.[7] studied
the effect of redundant shear strain on the microstruc-
ture and texture evolution in a 1-mm-thick IF steel
during ARB processing. However, to date, there have
been no reports on the production of bimetallic foils
thinner than 0.3 mm, using the ARB technique for
microforming.

In recent years, more attention is being paid to
nanostructured materials due to their special properties
such as high strength, ductility, and corrosion resistance.
It is known that simple shear leads to the optimal
deformation mode for development of spatial networks
of high angle boundaries and fine grains during flow
localization under monotonic loading and cross load-
ing.[8,9] Using this approach, different severe plastic
deformation (SPD) techniques have been developed,
such as equal channel angular pressing (ECAP), high
pressure torsion (HPT), ARB, and asymmetric rolling
(AR). ECAP is a very promising SPD technique for
producing ultrafine-grained materials and has been used
to investigate the formation of submicron grain struc-
tures in Al alloys deformed to ultra-high plastic strains
by Gholinia et al.[10] They pointed out that the most
efficient processing route for forming a submicron grain
structure is to maintain a constant strain path and that
the least effective path is to reverse the shear each
alternate cycle by rotating the billet through 180 deg.
Besides investigations involving physical experiments,
the crystal plastic finite element simulation method has
also been used to investigate deformation heterogeneity
and texture development during ECAP process by Deng
et al.[11] The HPT method refers to the processing of
metals, where samples are subjected to a compressive
force and concurrent torsional strain. HPT followed by
annealing has been used to produce ultrafine-grained
copper by Schafler and Kerber[12] who found that the
subgrain structure vanishes and the strength becomes
governed by the recrystallised grain structure that
contains many annealing twins due to the progressive
annihilation of dislocations. ARB was developed by
Saito et al.,[13] and is a method in which a stack of metal
sheets is repeatedly rolled under a severe reduction ratio,
sectioned into two halves, piled again, and re-rolled. Lee
et al.[14] studied the role of shear strain on ultra-grain
refinement in aluminum during the ARB process. They
found that the grain size distribution through the sheet
thickness corresponded well with the shear strain distri-
bution and suggested that the role of shear strain in grain
refinement should consider the equivalent strain, strain

gradient, and strain path. AR is a technique in which
sheets are rolled between rolls that are either of different
diameters, or rotating at different angular speeds. Yu
et al.[15,16] used asymmetric cryorolling to produce
nanostructured aluminum alloys, and found that the
grain size undergoes refinement with increasing differ-
ence between the upper and lower roll speeds. In the
ARB and AR process, shear stresses appear near the
interface, with the result that the pinned dislocation
segments with edge orientation at the interface became
sources of new dislocations and the interface gradually
bonds.[17] The AR technique involves rolling with an
imposed shear deformation, which should improve the
interface bonding in bimetallic sheet/foil production. To
the best of the present authors’ knowledge, the ECAP
and HPT techniques are only suitable for production of
small size workpieces in limited quantities. In addition,
there have been no reports on the production of laminate
materials by the ECAP and HPT techniques.
Recently, Li et al.[18] and Jammaati and Toroghine-

jad[19] conducted reviews on the progress of roll bonding
process and bond strength, respectively. In their papers,
the influence of annealing time, rolling speed, initial
strip thickness, rolling direction, friction coefficient, and
surface conditions on the bond strength was discussed.
However, the AR process was not considered in these
reviews. There are a no. of theoretical models that have
been developed for the prediction of roll bonding, and
are listed in Table I. However, none of these equations
have been used to predict the bond strength of bimetallic
foils subjected to AR. Li et al.[20] investigated the tensile
properties of Al/Cu/Al-laminated composites by asym-
metric rolling, and found that the interfacial micro-
structure and intermetallic compounds improved, which
the contaminations at interface reduced and interfacial
diffusion increased, compared with that by conventional
rolling. Yu et al.[21] developed ultrafine-grained bime-
tallic foils using the ARB and AR techniques, and
showed that the bonding quality increased as the no. of
rolling passes increased. However, until now, there have
been no reports on the investigation of the influence of
AR process parameters on interface bond strength.
In this paper, we report an investigation of the bond

strength at the interface of AA1050/AA6061 bimetallic
foils produced by one ARB pass followed by three AR
passes, with various roll speed ratios. The fracture
surfaces of the tensile samples were observed by scanning
electron microscopy (SEM) and the microstructure
around the interface of AA1050/AA6061 by transmis-
sion electron microscopy (TEM). The observations were
used to analyze bond quality. Finally, equivalent strains
at the interface under various rolling conditions were
quantitatively analyzed by the finite element method.

II. EXPERIMENTAL AND THEORETICAL
INVESTIGATIONS

A. Experimental Investigation

TheARBandARtechniqueswere combined toproduce
bimetallic foils. The rolled samples were 1.5-mm-thick
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sheets of annealed commercial aluminum alloys (AA1050
and AA6061). The ARB process was carried out with two
pieces of AA1050 and AA6061 sheets. Their interface
treated the sheets that were stacked and welded at one end
with a spot welding machine. They were rolled with a
reduction of 50 pct at 473 K (200 �C).[4] The 1.5-mm-thick
composite sheets were subsequently subjected to three AR
passes using a multi-function rolling mill with dry fric-
tion[15] at different roll speed ratios until the thickness
reduced to about 0.1 mm. The rolling mill had 120-mm-
diameter rolls, independently driven by two 5.5 kW
motors. The final foil thicknesses and the ratios of roll
speeds are listed in Table II. The roll in contact with the
AA6061 layer rotated at the higher speed.

After rolling, 25-mm gage length and 6-mm gage width
tensile samples were prepared in compliance with ASTM
D412 standard.Uniaxial tensile tests were conductedwith
an initial strain rate of 1.0 9 10�3 s�1 on an INSTRON
machine operating at constant speed. The morphology of
the fractured surface of the bimetallic sampleswas studied
with a Zeiss Auriga field emission scanning electron
microscope (FESEM) operating at 20 kV, with aworking
distance of about 15 mm. Secondary electron images for
the top down view were recorded at the same magnifica-
tion for comparison purposes. Subsequently, a Philips
CM200 field emission gun transmission electron micro-
scope (FEG/TEM) equipped with a Bruker energy
dispersive X-ray (EDAX) spectroscopy system operating
at an accelerating voltage of 200 kV was used to inves-
tigate the microstructure of the thin-foil specimens from
the bimetallic foils fabricated by an FEI xT Nova
Nanolab 200 Dual Beam workstation.

B. Finite Element Simulation

Figure 1 shows a schematic diagram of the AR
process used on the ARB-processed AA1050/AA6061

bimetallic foils. The X-axis is parallel to the rolling
direction, and the Y-axis along the strip thickness.
In the two-dimensional FE model of the AR process

set up in LS-DYNA, we assumed that the initial
thickness of both layers (AA1050 and AA6061) was
0.75 mm. In the AR process, the reduction ratios chosen
were 30 and 40 pct. As in the experiments, the roll speed
ratios were set as 1.0, 1.1, 1.2, 1.3, and 1.4. The friction
coefficient between the strip and the roll was set as
0.15.[28] During the rolling process, the rolls were
regarded as rigid. The isotropic material model was
used for the AA1050 and AA6061 layers, and the yield
stresses for AA1050 and AA6061 layers were, respectively,

Table I. Theoretical Models of Bond Strength in Rolling Process

Bond Strength Model Equation No.

Vaidyanath et al.[22] rb ¼ r0Rfð2� RfÞ (1)

Wright et al.[23] rb ¼ r0H 1� ð1�RfÞ2

ð1�RtÞ2

� �
(2)

Bay et al.[24] rb ¼ ð1� w2ÞYðP� PEÞ þ w2 Y�Y0
1�Y0 p (3)

Zhang and Bay[25] rb ¼ wpb (4)

Madaah-Hosseini and Kokabi[26] rb ¼
ffiffi
3
p

2

� �n
r0

K ln 1
1�Rf

� �
(5)

Govindaraj et al.[27] rb ¼ K1r0 exp �
ffiffi
3
p

2 K2ee
� �

(6)

where rb—bond strength; r0—tensile stress of sheets; Rf—final reduction at the end of rolling pass; Rt—threshold deformation; H—empirical
hardening factor; w—fraction of the film layer with respect to the total area; Y—surface exposure of the bond interface surface; P—normal pressure
on base metal surfaces; PE—extrusion pressure; Y¢—threshold surface exposure for the contaminant film; n, K, K1 and K2—plastic constants,
depends on the sheet material and the preparation of welded surfaces.

Table II. Rolling Parameters and Final Thicknesses
of the Bimetallic Foils

Ratio of Rolls Speed 1.0 1.1 1.2 1.3 1.4

Final thickness of foils (mm) 0.12 0.11 0.12 0.11 0.10

Fig. 1—Illustration of asymmetric rolling process of AA1050/
AA6061 bimetallic foils (V2 ‡ V1).
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assumed to be 150 and 195 MPa, based on the relation-
ship between hardness and yield stress suggested by Lee
et al.[29] with the hardness as suggested in Reference 4.
Temperature change and sheet width spread were
neglected. The geometric models were meshed with
square elements and the model contained 10,453 nodes
and 8740 elements. The FE meshing of the bimetallic
foil for asymmetric rolling is shown in Figure 2. In the
rolling process, the rolls rotate with a constant angular
speed. The bimetallic foil enters the gap between the
rolls with an initial velocity and exits under the action of
the friction force.

III. RESULTS AND DISCUSSION

It is useful to investigate fracture mechanisms of the
interface in the bimetallic foils. The fracture surfaces
of the tensile-tested samples were studied by SEM.
Figure 3 shows features of the fracture at the interface
between the component materials after tensile tests.
Figure 3(a) shows the sample after the ARB process,
and Figures 3(b) through (f) show the samples after the
AR process for the roll speed ratios of 1.0, 1.1, 1.2, 1.3,
and 1.4, respectively. Figure 3(a) shows that the inter-
faces between the AA1050 and AA6061 layers are split
in the tensile process. After subsequent AR processing,
the interface bond quality is improved greatly, and the
interface between AA1050 and AA6061 layers shows
decreasing splits, as shown in Figures 3(b) through (f).
While some splitting is noticed for roll speed ratios of
1.0 and 1.1, as shown in Figures 3(b) and (c), higher
speed ratios of 1.2 and 1.3 produce interfaces essentially
free of splits, as shown in Figures 3(d) and (e). However,
when the speed ratio increases to 1.4, the split zone
appears again at the interface between the layers, as
shown in Figure 3(f).

Figure 4 shows the TEM images of the AA1050/
AA6061 interface in the processed samples. Figure 4(a)
shows the ARB-processed sample, and Figures 4(b)
through (d) the samples after AR processing with the
roll speed ratios of 1.0, 1.2, and 1.4, respectively. As
shown in Figure 4(a), there are many elongated residual

voids at the interface zone between the AA1050 and
AA6061 layers. When the thickness of the bimetallic
sheet is further reduced to 0.1 mm by AR with roll speed
ratio 1.2, the residual voids get eliminated due to further
bonding. When the speeds of the upper and lower rolls
are the same, there are still some residual voids, as
shown in Figure 4(b). When the roll speed ratio is
increased to 1.2, the interfaces between the AA1050 and
AA6061 layers bond well, and there are no residual
voids visible at the interface zone, as shown in
Figure 4(c). With further increase of the speed ratio to
1.4, the interface bond quality deteriorates, as shown in
Figure 4(d), in which three residual voids can be seen at
the locations marked by the arrows. The TEM results
confirm the SEM observations.
The SEM and TEM images show that the bond

quality at the AA1050/AA6061 interface improves after
AR processing at roll speed ratios of 1.2 and 1.3.
However, there are some residual voids at the interface
for the other speed ratios outside of this range. Of the
equations used for predicting interface bond quality
shown in Table I, Eqs. [1],[22] [2],[23] and [5][26] only
consider the final reduction ratio. These equations thus
cannot be used to predict the bond quality of bimetallic
foils subjected to AR. Recently, Govindaraj et al.[27]

have developed a new interface bonding model as shown
in Eq. [6] in Table I. In this equation, the bonding
quality is related to the equivalent strain at the interface
zone during rolling. The higher the equivalent strains at
the interface, the better is the interface bond quality, as
has been validated through measurement of bond
strength by tensile test.[27] Generally, the AR technique
results in a higher equivalent strain in samples compared
to that by conventional rolling with the same reduction
ratio. The equivalent strain (ee) induced in AR is given
by Cui and Ohori:[30]

ee ¼
2ffiffiffi
3
p 1þ ð1� rÞ2

rð2� rÞ tan h

" #28<
:

9=
;

1=2

ln
1

1� r
; ½7�

where

r ¼ 1� ðt1=t0Þ ½8�

Fig. 2—Geometry and FE meshing of bimetallic foil rolling.
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Here t0 and t1 are the thickness of the sheet before and
after AR, and h is the apparent shear angle at a given
position of the element perpendicular to the surface of
the sheet before rolling. The shear angle h changes as the
AR process parameters change. The relevant process
parameters are roll diameter, roll speed, and difference
in friction between the upper and lower rolls. It is
obvious that the shear angle h affects the bond strength
between layers in laminate production due to its direct
relationship with the equivalent strain. Equation [7] can
be used to predict the equivalent strain at the interface
zone for a single metallic material. However, it is

difficult to calculate the equivalent strain at the interface
of bimetallic foils as the yield stresses of the component
sheet materials are different.
During AR, the interface of the AA1050/AA6061 can

survive a significant fluctuation, as shown in Figure 1. It
is obvious that a drastic fluctuation will directly affect
interface bonding quality. Figures 5(a) and (b) show the
interface location in the rolling deformation zone for a
variety of ratios of roll speeds (RRS), for reduction ratios
of 30 and 40 pct, respectively. The interface curve
distribution in the rolling deformation zone has the
same trend for the reduction ratio of both 30 and 40 pct,

Fig. 3—SEM images of fracture surface around the interface of AA1050/AA6061 after tensile tests (a) ARB-processed sample, (b) through
(f) for ratios of rolls speed 1.0, 1.1, 1.2, 1.3, and 1.4.
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Fig. 4—TEM images of samples around the interface of AA1050/AA6061, (a) ARB-processed sample, (b) through (d) ratios of rolls speed 1.0,
1.2, and 1.4.

Fig. 5—Interface curve in the rolling deformation zone under various speed ratios of upper and lower rolls, (a) reduction ratio 30 pct, (b) reduc-
tion ratio 40 pct.
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which is more complex compared to that in Figure 1.
With progressively higher speed ratio, the minimum
position of the interface shifts gradually toward the exit
position, and they gradually come back to the initial
position. It is not difficult to understand that the greater
is the minimum position to the exit position, and the
equivalent strain at the interface will increase.

Figures 6(a) and (b) show the equivalent strain
distribution in the foil section after rolling with different
ratios of roll speeds, for a reduction ratio of 30 and
40 pct, respectively. When the speeds of upper and lower
rolls are the same, the equivalent strain at most
positions is lower than that following AR, and the
strain distribution in the section is not uniform. With
increasing roll speed ratio, the strain distribution
becomes more uniform. When the roll speed ratio

reaches 1.2 and 1.3, the equivalent strain in sheet attains
a maximum, and the strain distribution is uniform, while
for the roll speed ratio of 1.4, the equivalent strain is
reduced.
Figures 7(a) and (b) show the equivalent strain at the

interface between the AA1050 layer and the AA6061
layer after rolling with different ratios of roll speeds, for
a reduction ratio of 30 and 40 pct, respectively. In the
figure, the equivalent strain increases with roll speed
ratios up to 1.2 and 1.3, where it attains the highest
value. When the roll speed ratio is 1.4, the equivalent
strain at the interface diminishes. According to
Eq. [6],[27] the higher the equivalent strain at the
interface, the stronger is the bonding of the interface,
which is in good agreement with the experimental
observations in Figures 3 and 4.

Fig. 6—Equivalent strain distribution at the exit of deformation zone under various speed ratios of upper and lower rolls, (a) reduction ratio
30 pct, (b) reduction ratio 40 pct.

Fig. 7—Equivalent strain at interface under various ratios of rolls speed, (a) reduction ratio 30 pct, (b) reduction ratio 40 pct.
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IV. CONCLUSIONS

1. A no. of residual voids are seen at the interface of
AA1050/AA6061 bimetallic samples following one
ARB pass. These gradually reduce in no. with further
thickness reduction by AR at room temperature.

2. TEM images show that the interface quality is the
best when the roll speed ratio is 1.2. There are no
noticeable residual voids at the interface of the
AA1050/AA6061 bimetallic foils for this ratio, how-
ever, residual voids are observed when the roll
speed ratio is 1.0 or 1.4.

3. The deformation of bimetallic sheets during asym-
metric rolling under various roll speed ratios was
simulated with finite element methods. The mean
equivalent strain at the AA1050/AA6061 interface
zone reaches a peak value for roll speed ratios of 1.2
and 1.3, which results in the best interface bond dur-
ing AR processing of AA1050/AA6061 bimetallic
foils. The bond strength model proposed by Govind-
araj et al.[27] is consistent with this observation.

4. The best bond during AR is obtained at an opti-
mum roll speed ratio of 1.2, where the interface
between the AA1050 and AA6061 shows no resid-
ual voids at the interface.

5. The shear angle h, which is controlled by the process
parameters such as roll diameter, roll speed, and dif-
ference in friction between the upper and lower rolls,
affects bond strength due to its direct relationship
with equivalent strain. The equivalent strain is the
greatest at a roll speed ratio of 1.2 leading to a uni-
form strain distribution and a stronger bond, and
decreases when the ratio increases to 1.4.
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