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Quantifying fibronectin adhesion with nanoscale spatial resolution on
glycosaminoglycan doped polypyrrole using Atomic Force Microscopy

Abstract
The interaction of ECM proteins is critical in determining the performance of materials used in biomedical
applications such as tissue regeneration, implantable bionics and biosensing. Methods: To improve our
understanding of ECM protein–conducting polymer interactions, we have used Atomic Force Microscopy
(AFM) to elucidate the interactions of fibronectin (FN) on polypyrrole (PPy) doped with different
glycosaminoglycans. Results: We were able to classify four main types of FN interactions, including those
related to 1) non-specific adhesion, 2) protein unfolding and subsequent unbinding from the surface, 3)
desorption and 4) interactions with no adhesion. FN adhesion on PPy/hyaluronic acid showed a significantly
lower density of surface adhesion with the adhesion restricted to nodule structures, as opposed to their
peripheries, of the polymer morphology. In contrast, PPy/chondroitin sulfate showed a significantly higher
density of surface adhesion to the point where the distribution of adhesion effectively masked the topography.
Through conductive AFM imaging, we found that the conductive regions correlated with regions of FN
adhesion. Conclusions: Given that the conductivity requires doping of the polymer, these findings suggest
that FN adhesion is mediated by interactions with chondroitin sulfate and hyaluronic acid at the polymer
surface and may be indicative of specific interactions due to contributions from electrostatic attraction
between the FN and sulfate/anionic groups of the dopants. General significance: This study demonstrates the
ability of AFM to resolve the protein–conducting polymer interactions at the molecular and nanoscale level,
which will be important for interfacing these polymer materials with biological systems. This article is part of a
Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.
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Abstract  

 

BACKGROUND: The interaction of ECM proteins is critical in determining the performance of 

materials used in biomedical applications such as tissue regeneration, implantable bionics and 

biosensing.  

METHODS: To improve our understanding of ECM protein – conducting polymer interactions, 

we have used Atomic Force Microscopy (AFM) to elucidate the interactions of fibronectin (FN) 

on polypyrrole (PPy) doped with different glycosaminoglycans.  

RESULTS: We were able to classify four main types of FN interactions, including those related 

to non-specific adhesion, protein unfolding and subsequent unbinding from the surface, 

desorption and interactions with no adhesion. FN adhesion on PPy/hyaluronic acid showed a 

significantly lower surface adhesion density with the adhesion restricted to the nodule 

structures, as opposed to their peripheries, of the polymer morphology. In contrast, 

PPy/chondroitin sulfate showed a significantly higher surface adhesion density to the point 

where the uniform distribution of the adhesion effectively masked the topography. Through 

conductive AFM imaging, we found that the conductive regions correlated with regions of FN 

adhesion.  

CONCLUSIONS: Given that the conductivity requires doping of the polymer, these findings 

suggest that FN adhesion is mediated by interactions with chondroitin sulfate and hyaluronic 

acid exposed at the polymer surface and may be indicative of specific interactions due to 

contributions from electrostatic attraction between the FN and sulfate/anionic groups on the 

dopants.  

GENERAL SIGNIFICANCE: This study demonstrates the ability of AFM to resolve the protein – 

conducting polymer interactions at the bulk, molecular and nanoscale level, which will be 

important for interfacing these polymer materials with biological systems. 
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Introduction 

Living cells secrete extracellular matrix (ECM) proteins, such as fibronectin, vitronectin and 

laminin, to support adhesion, migration, proliferation and differentiation, and other processes 

(e.g. assembly of ECM in fibrillogenesis and mechanotransduction) that are important for cell 

function1. The biological function of these proteins is often played out directly at the 

interface, or effectively ‘sandwiched’, between the extracellular membrane and substratum. 

Their initial adsorption, adherence and subsequent conformation are critical to the cell 

interactions and as such the effect of different surface chemistries and materials on ECM 

protein interactions has significantly featured in many studies2,3,4. While the importance of 

ECM protein interactions is well recognized, this has been emphasized in recent times by the 

role they play in regulating stem cell niches5. In these niches, bound ECM protein and other 

growth factors, not just soluble molecules, are increasingly implicated as critical regulators of 

spatial and temporal determination of stem cell fate. 

Understanding the interactions of proteins will be particularly important for the development 

of biomaterials such as conducting polymers that are a focus of this special journal issue and 

emerging in a wide range of biological applications6, including electrodes7 and electrode 

coatings for cell culture systems (e.g. for rapid cell expansion)8, organic transistors9, neural 

prosthesis (e.g. cochlear electrodes)10, tissue regeneration devices (e.g. nerve conduits)11, 12 

and stem cell scaffolds13. While the focus on ECM protein interactions in the aforementioned 

applications has been limited, it is already very apparent that as electrode materials 

conducting polymers have unique properties that are highly suited to incorporating proteins 

and/or controlling protein interactions14. These include the ease of chemically or biologically 

functionalizing the polymer backbone, the incorporation of biological dopants such as 

glycosaminoglycans (GAGs) (e.g. heparin, hyaluronic acid and chondroitin sulfate) that 

specifically bind, and imbibe, ECM proteins such as fibronectin, and electrical stimulation that 

can dynamically and reversibly control surface energy and protein adhesion14.  

Similar to other classes of polymers and biomaterials, the surface chemistry- and redox-

dependent conformation of major ECM protein such as fibronectin is thought to underlie the 

ability to control cell adhesion and migration via conducting polymers. The prelude to this 

work was demonstrated by the ability to electrically control cell adhesion using conducting 

polymers15,16. More recently, several groups have undertaken studies that implicate the role 
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of ECM proteins in mediating cell interactions with conducting polymers17,18. Electrical 

stimulation of PEDOT:PSS films prior to cell seeding has shown that the oxidation state of the 

polymer affects cell viability17. Reduced PEDOT:PSS promoted cellular adhesion and 

proliferation of epithelial MDCK cells, while oxidation of PEDOT:PSS resulted in cell 

detachment and death. It was proposed that FN protein presents an unfavourable 

conformation that inhibits access to the cell-binding RGD sequence on the oxidized polymer, 

however the situation is opposite for the reduced polymer. A potential gradient along 

PEDOT:PSS film and its effect on FN adsorption and conformation has provided a well-

designed experimental approach to better understand the relationship between the protein-

material interaction and resulting cell behaviour such as adhesion and migration18,19. For 

example, 3T3-L1 fibroblast-adipose cells deposited on a PEDOT:tosylate polymer that had 

a potential bias of -1V to +1V distributed with a preference for cell adhesion toward the 

positive bias end. It was found that the amount of protein adsorption decreased18,19 but had a 

greater propensity to adopt a more unfolded conformation20 along the gradient toward the 

positive bias end of increased cell adhesion. A similar effect was observed with neural stem 

cells on a PEDOT:tosylate electrode with a 2-fold increase in cell adhesion on the oxidized 

polymer even though the protein adsorption was lower compared to the reduced polymer21. 

Again, the protein conformation, rather than density, was suggested to be responsible for 

promoting cell adhesion. Recently, the presence of FN in a more open confirmation on 

oxidized PPy/dextran sulfate films was shown using QCM22.  

In many of the above studies on conducting polymers, the ensemble of the protein 

interaction, or bulk processes of protein adsorption, is measured using fluorescence-based 

approaches17,18,19 and QCM22. The bulk information is then often extrapolated down to 

interactions at the molecular level, which may be difficult.  By using Atomic Force Microscopy 

(AFM), the interaction of proteins can be directly probed at the single molecule level to give 

insight into biophysical processes such as binding kinetics23 and force-induced 

conformations24. Single molecule studies take into account the multiplicity of protein 

interactions, especially in the case of large, modular FN protein that can exist in compact, 

semi-compact and extended conformations25, as well as having polyampholyte characteristics 

that makes it easily deformable on high charge density surfaces26. Furthermore, the complex 

surface properties of conducting polymers, due to different oxidation states27, inhomogenous 
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doping28 and phase separation of properties (e.g. surface potential and conductivity)29, 30, that 

have been shown to display nanoscale lateral variation are expected to amplify variations in 

the conformation and adhesion of individual proteins across the polymer surface. Whilst the 

above studies have focused on conformation17,20,21 , the FN-polymer interfacial forces are also 

interest as they play an important role in force-dependent signal transduction processes such 

as cellular forces exerted on FN through cell receptors and intracellular proteins to regulate 

cell function.  

In this study, we use AFM to elucidate the different interactions, and quantify the adhesion, of 

FN on polypyrrole doped with glycosaminoglycans (GAGs) such as chondroitin sulfate, 

hyaluronic acid and dextran sulfate, which are known to have an affinity for binding FN. We 

specifically investigate the effect of the dopants on the prevalence of the different 

interactions and for spatially resolving FN adhesion as a function of nanoscale lateral variation 

in topography and conductivity across the polymer surface.  
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Materials and Methods 

Reagents 

The pyrrole monomer was obtained from Merck and distilled prior to use. The chemicals used as the 

dopants were the sodium salts of pTS, HA, DS and CS. CS and DS were obtained from Sigma, pTS from 

Merck and HA from Fluka. All solutions were prepared with deionised Milli-Q water (18.2MΩ).  The 

functionalization chemicals 3-ethoxydimethylsilylamine propyl (3-EDSPA), gluteraldehyde (GAH) and 

human plasma FN were obtained from Sigma Aldrich. Phosphate buffered saline (PBS) was prepared at pH 

7 in Milli-Q water (18.2MΩ). The 3-EDSPA was prepared as a 1% solution in toluene. The GAH was prepared 

as a 2.5% solution in pH 7 PBS buffer. The FN was prepared as a 10 µg/mL solution in pH 7 PBS buffer.  

Preparation of polymer films 

Gold coated mylar was firstly prepared by cutting into strips of 0.5 cm by 2 cm area and then cleaned with 

methanol and Milli-Q water. An aqueous monomer solution of 0.2 M pyrrole and 2 mg/mL of the counter-

ion dopant was degassed in N2 for 10 min prior to polymerisation of the polymers. PPy films were grown 

galvanostatically at a current density of 0.25 mA/cm2 for 10 min in the aqueous monomer solution using an 

eDAQ EA161 potentiastat. Polymer growth was performed in a standard 3-electrode electrochemical cell 

with the gold coated mylar as the working electrode, a platinum mesh counter electrode and Ag/AgCl 

reference electrode. After growth, the films were washed with Milli-Q water, gently dried with N2 gas and 

placed in petri dishes until use. 

Protein functionalization of AFM tip 

The tip is functionalized using an aminosilzation method to covalently bind the FN to the tip. Silicon nitride 

(SiN) Nanoworld PNP-DB tips are used for this method due to the availability of silicon oxide groups on the 

surface. The tips were initially cleaned with a plasma cleaner to remove any impurities or functionalized 

groups on the surface. Once cleaned the tips were immediately functionalized to minimise any 

contaminants on the surface.  The tips were placed into the EDSPA solution at room temperature for 1 h. 

The tips were then removed, washed consecutively with toluene, then PBS solution. The tips were then 

encapsulated with the GAH solution for 1 h, then rinsed with PBS solution. The tips were finally 

encapsulated in the FN solution for 1 h, then rinsed and refrigerated in PBS solution until use.  

Atomic Force Microscopy - force measurements and mapping 

The force measurements were performed using an MFP-3D Asylum Research AFM (Santa Barbara, CA) and 

carried out in PBS fluid using a 500 nm approach, 0.5 Hz scan rate, 1 sec dwell toward and 1 nN trigger 



46 
 

 

force. Single force measurements were performed with 5 consecutive measurements at one x-y point, with 

a rest of 3 seconds, across 5 different points on the polymer surface over three individual samples for a 

total of 225 force curves. This process of collecting force measurements was performed on PPy films 

prepared with the four dopants. Force mapping was performed in PBS fluid using a 1 µm approach, 0.5 Hz 

scan rate, 1 sec dwell toward, 1 sec dwell away and 1 nN trigger force. The force maps were conducted 

over a 500 nm x 500 nm and 250 nm x 250 nm area on each of the polymer samples with a resolution of 32 

x 32 force curves. The topographical image was calculated by returning the –max value of the data and the 

adhesion image was calculated by returning the difference of the average of the last 10 point at the 

minimum of the force curve. Analysis of the force curves were carried out using the Asylum AFM software 

in IGOR PRO (Wavemetrics). 
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Results/Discussion 

During the force measurements, the FN-functionalized AFM tip is brought into contact with the polymer to 

initiate binding and then the FN-polymer adhesion forces acting on the cantilever are measured as it is 

withdrawn. We were able to classify four main types of interactions between the FN and differently doped 

PPy films, as shown by the different profiles of the force curves (Fig. 1). Figure 1 shows representative 

examples along with a schematic describing the corresponding FN-polymer interaction. Force curves that 

showed no hysteresis between the approach (light grey line) and retract (dark line) curves were indicative 

of no adhesion between the FN and polymers (Fig. 1A). The most prevalent type of force curve showed 

hysteresis in the form of a significant peak at zero tip-surface separations (i.e. directly at the surface) in the 

retract curve, indicating an interaction involving FN adhesion to the polymers (Fig. 1B). The strength of 

protein adhesion is given as the peak maximum. This type of adhesion is typically due to the interaction of 

several proteins on the tip, involving both the breaking of intra and inter-protein bonds, and their 

subsequent detachment from the surface (Fig. 1B, schematic). Inter-protein interactions with the polymer 

surface may include electrostatic, hydrophobic and hydrogen bonding, while intra-protein interactions 

include unfolding of the protein or adhesion between the proteins, all of which may contribute to the 

strength or overall energy of protein adhesion. Even though the peak maximum quantifies protein 

adhesion to the surface, this type of interaction is generally referred in AFM measurements as being ‘non-

specific’ adhesion as the specific forces (e.g. hydrophobic or electrostatic) involved are not readily 

identified. For AFM tips functionalized with proteins, the non-specific adhesion is often always present due 

to the inevitable direct tip-surface interaction and as such is initially observed in the other main types of 

interactions in Figure 1.  Again, whilst being referred to as non-specific adhesion, this interaction has been 

often used to determine the strength of protein adhesion to different polymer films31.  

After initial, non-specific adhesion, a significant number of force curves showed hysteresis consisting of 

multiple, smaller peaks, or ‘saw-tooth’ patterns, that persist for longer tip-surface separation distances 

(Fig. 1C). These successive peaks, defined here as ‘multiple rupture peaks’, are typically due to increases in 

force required to sequentially unfold, or break bonds within, FNIII domains of a protein(s) that remains 

tethered between the tip and surface after overcoming non-specific adhesion. The tethered protein is 

generally “stretched” in the normal direction to the surface and applied tensile forces cause the individual 

domains within the protein to unfold. AFM studies on force-induced unfolding of FN III domains have 

shown that repeating distances of 28 nm between the rupture peaks corresponds to the fully unfolded 

length of a single FNIII domain (≈ 70 peptides x 0.4 nm = 28 nm )24.  If unfolding of the FNIII domain 

proceeds through an intermediate pathway, smaller peak spacings of 12 nm are observed32. We recently 
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confirmed the characteristic unfolding of FNIII domains when using AFM to measure FN protein 

interactions on PPy doped with glycosaminoglycans33, thus a detailed analysis of the multiple rupture 

peaks was not repeated in this study. Multiple rupture peaks may also occur due to the forces required to 

detach the protein (from the surface) at multiple binding sites along its length or involvement of multiple 

interacting proteins.  

The last type of force curve shows that protein adhesion can occur with a constant force that is 

independent of the extension length (Fig. 1D). Such adhesion is referred to as ‘plateau forces’ and 

commonly observed for polyelectrolyte chain desorption from a surface, much like a polymer chain being 

‘peeled’ off the surface. Plateau forces arise due to dependencies on the dissociation rate of repeating 

polymer chain-surface bonds relative to the rate at which the chain is pulled from the surface and presence 

of oppositely charged surfaces34,35. In contrast to the interactions involving multiple rupture peaks (Fig. 1C, 

schematic) where the FN molecule is generally tethered at two points and then extended in a direction 

normal to the surface, plateau forces indicate that the FN is adhered to the polymer surface along it 

lengths by repeating bonds (Fig. 1D, schematic). The presence of two plateaus in Figure 1D suggests an 

interaction with multiple proteins. Assuming that two proteins are involved, the higher force of 450 pN is 

recorded as both proteins simultaneously detach from the surface but decreases by half when only one of 

the proteins remains adhered to the surface. A maximum tip-surface separation distance of 175 nm for the 

plateau force (total length of the protein just prior to detaching from the surface) corresponds to the fully 

extended length of FN36,37,33, suggesting that the repeating FN-polymer bonds occurred along a majority of 

the protein’s length. 

In summary, the four main types of FN interactions include those of 1) non-specific adhesion, 2) protein 

unfolding and subsequent unbinding from the surface, 3) desorption and 4) interactions where no 

adhesion was observed. The prevalence of each type of interaction as a function of the dopant is displayed 

in Table 1. Compared to the other dopants that were similar (<3%), PPy/HA showed the highest occurrence 

(17%) of force curves with no adhesion, indicating that the probability of FN adhesion to the PPy/HA films 

was significantly less. All dopants showed a similar occurrence of non-specific adhesion (34-37%), with the 

pTS dopant highest at 45%. For the occurrence of multiple rupture peaks, both PPy/CS and PPy/DS were 

similar (63% and 64 %) and significantly higher than HA (47%) and pTS (52%). The occurrence of multiple 

rupture peaks for all dopants was significantly higher compared to their respective plateau forces (< 15%), 

suggesting that FN-polymer binding and subsequent stretching of the protein involves significantly fewer 

bonds that tether the protein to the surface, as depicted in the schematics (cf. Fig. 1C and D). 
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Histograms of the non-specific adhesion (given as the force at peak maximum in Figure 1B and C) for the 

differently doped polymers are shown in Figure 2. Analysing the forces as histograms can reveal more 

information such as the most probable force distribution and number of molecules/bonds participating in 

the interaction. For example, the occurrence of multiple distributions with increasing peak values, or 

namely quantization of the adhesion force, typically correlates with an increase in the (n) number of 

interacting molecules. A similar observation is evident for the PPy/CS and PPy/HA films as both consist of 

two different peak distributions (Fig. 2A and B). The most probable distribution, which occurs in the 

nanonewton range, is indicative of forces for the non-specific adhesion involving multiple FN proteins. In 

contrast, the peak values of the lower distributions are ≈ 262 pN and 153 pN for PPy/CS (Fig. 2A) and 

PPy/HA (Fig. 2B), respectively, indicating that the interaction is on the order of single molecule 

interactions. It has previously been possible to discern single molecule FN interactions with conducting 

polymers by analysing only the forces of the last rupture peak33. This is because the last rupture peak 

typically corresponds to the detachment of one, or at most two, proteins that remain tethered to the tip, 

as most of the other interacting proteins have already detached at shorter tip-sample separation distances 

(i.e. during the non-specific adhesion). Previously measured single molecule FN binding forces for PPy/CS 

(164 ± 10.1 pN) and PPy/HA (108 ± 8.5 pN) by analysis of the last rupture peak33 are of similar order to 

peak values of the lower distributions in Figure 2A and 2B, suggesting that single protein interaction may 

even be detected when analysed as  non-specific adhesion. This is not the case however for PPy/DS (Fig. 

2C) and PPy/pTS (Fig. 2D) where no force distributions on the order of single protein interactions are 

observed. If one assumes that an increase in force scales with the (n) number of interacting molecules, the 

number of FN molecules involved in the non-specific adhesion for the higher force distribution can be 

roughly estimated. Therefore, ≈ 4 proteins may be involved for both PPy/HA and PPy/CS. Gaussian fitting 

of the higher force distributions indicated that the maximum strength of non-specific adhesion to the 

differently doped polymer films increased in the order of PPy/DS (0.53 ± 0.12 nN; mean ± s.d; n=105) < 

PPy/HA (0.63 ± 0.21 nN; mean ± s.d; n=126) < PPy/CS (1.03 ± 0.09 nN; mean ± s.d; n=158) < PPy/pTS (1.22 

± 0.22 nN; mean ± s.d; n=193) (Fig. 2). Contact angle (CA) measurements in previous studies on these 

films38 where the CA increased in the order of PPy/CS (13.4 ± 2.6°) < PP/HA (18.4 ± 2.5°) < PPy/DS (22.0 ± 

0.66°) < PPy/pTS (63.2 ± 5.5°) indicates the protein can adhere strongest to the most hydrophilic (PPy/CS) 

and hydrophobic (PPy/pTS) polymers. Under physiological conditions, FN adheres more strongly in its 

compact conformation on hydrophobic surfaces39, which may also cause subsequent denaturation of the 

FN secondary structure to increase substrate binding affinity40. The compact conformation of FN is 

stabilized by intermolecular bonds41 but can be disrupted by interacting surface groups, particularly 

hydrophilic and negatively charged surfaces, causing the protein to adopt a more unfolded 
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conformation25,42. In this conformation, the protein can interact via different domain regions that are 

specific to various ECM proteins (e.g. fibronectin and collagen) and cell surface receptors. The different 

doped films also have varying surface roughness, ranging from ≈ 6 – 100 nm RMS (over 10 um area), that is 

a mitigating factor known to affect protein-biomaterial interactions43. Nanoscale surface roughness 

particularly influences the adsorption of large proteins such as FN and fibrinogen43,44, however, its effects 

are varied and generalization of relationship between roughness and protein adsorption is difficult. Recent 

QCM studies on FN adsorption to PPy/DS showed increased adsorption on more hydrophilic films with 

higher dopant concentration yet no surface morphology-induced effects on the protein adsorption was 

observed22. An important point to consider is that in contrast to techniques that measure bulk processes of 

the protein adsorption processes, the confinement of the protein(s) at the end of the AFM tip reduces the 

interaction area to lengthscales well below or equivalent to the surface roughness. This is effectively 

analogous to measurements on the order of single proteins interaction where the influence of surface 

roughness is significantly reduced or negligible. In addition, AFM not only measures protein adhesion 

contributions from possible short- and long-range attractive forces but also the forces required to 

overcome additional bonds that a formed after the protein has already adhered and perhaps altered its 

conformation on the surface.  

To further assess difference in the strength of adhesion between the more hydrophilic films doped with 

GAGs, we performed ‘force mapping’ with the FN functionalized tips to spatially map the dependence of 

adhesion on topography of PPy/CS and PPy/HA films. In contrast to the above force curves taken at 

random single X-Y positions, force mapping performs an array of force curves to enable corresponding 

height and adhesion data to be quantified simultaneously as function of the X-Y position across the 

surface.  For height maps of PPy/CS (Fig. 3A) and PPy/HA (Fig. 3B), the lighter areas correspond to the 

higher regions, or nodules of the polymer, while the darker regions correspond to the lower regions of the 

nodule peripheries. The surface roughness of PPy/CS and PPy/HA were comparable with values of 6.5 ± 

6.5 nm (mean ± s.d; n=1024) and 6.1 ± 6.1 nm (mean ± s.d; n=1024), respectively, which are similar to 

values obtained using standard AFM imaging45.  While these images have relatively low resolution, the 

nodular topography of the polymer is still discernible. Due to the lengthy acquisition time of these images 

in PBS, we occasionally encountered the effect of lateral sample drift that causes skewness of the image. 

This is particularly evident in Fig. 3B that shows that nodule topography of PPy/HA as having a stretched 

appearance diagonally across the surface, however this does not affect the correlation with the adhesion 

map. The adhesion maps of PPy/CS (Fig. 3C) and PPy/HA (Fig. 3D) show a difference in both the strength 

and lateral distribution of the protein adhesion. Similarly to the histograms (Fig. 3), PPy/CS showed a 

higher strength of adhesion compared to PPy/HA (cf. Fig. 3C and D), as indicated by the difference in their 
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scale bars. To correlate the adhesion with topography, we firstly applied a threshold to the adhesion maps 

to exclude pixels with values < 0.3 nN and then overlaid them onto the corresponding height images (Fig. 

3E and F). The threshold was used to assess values associated with the higher force distributions in the 

histogram, or effectively those values of non-specific adhesion that reflect the maximum strength of 

protein adhesion. Due to a significantly higher occurrences of  adhesion (red pixels) above this threshold 

across the surface for PP/CS (77% surface coverage), there was no correlation between adhesion and 

topography to the point where the high density and uniform distribution of adhesion effectively masked 

the topography (Fig. 3E). However, some of the few remaining areas without adhesion did appear to 

correlate with low lying areas (darker regions) or peripheries. Conversely for PPy/HA, the adhesion was 

more distributed along the nodular regions (lighter areas), as opposed to peripheries, and thus occurred at 

much lower density (24% surface coverage) (Fig. 3F). When the threshold of the adhesion was further 

increased to 0.8 nN, the correlation between the adhesion and topography for the different polymer 

remained the same (data not shown). The correlation between adhesion and topography was also 

assessed at a higher resolution across a 100 nm scan. Once again, there was no clear correlation for PPy/CS 

whereas PP/HA appeared to show higher adhesion at the nodules though some binding was evident in the 

peripheries (Supplementary figure 1). This was particularly evident for a single, large nodular structure in 

these smaller scans areas.   

To similarly assess the lateral variation in adhesion but with interactions more closely associated with 

single molecules, we overlaid the topography with pixels (green) that represented force curves consisting 

of multiple rupture peaks as classified in Fig. 1c (Fig. 4). As mentioned above, these types of force curves 

have characteristics of single molecule interactions with the final peak representing the force required to 

detach a few, or often, single FN molecules from the surface. Similar to the non-specific adhesion, the 

overlay image for PPy/CS (Fig. 4A) showed a significantly higher density (33% of curves or 1332 interactions 

per µm2) of multiple rupture peak interactions compared to PPy/HA (21% of curves or 860 interactions per 

µm2) (Fig. 4B). However, no correlation between the multiple rupture peaks and topography was observed, 

particularly for PPy/HA which was unexpected given the observed correlation for non-specific adhesion in 

Figure 3F. In part this may be attributed to the increased spatial interaction area of single molecule FN 

interactions, as binding can occur at varying distances ranging from 60 – 170 nm along its contour length33. 

The protein may bind to the polymer at a distance beyond the pixel resolution (1 pixel = 15 x 15 nm) of the 

force maps, with the actual x-y position of binding different from the recorded x-y value (green pixel). This 

is different to the situation for non-specific adhesion where the interaction occurs at zero tip-sample 

separation distances and effectively localized near the position of the tip.  The surface roughness of PP/CS 

and PPy/HA was again similar, giving calculated surface areas of 0.28 µm2 and 0.27 µm2, respectively, 



52 
 

 

within each map. The difference in the density of the multiple rupture peak interactions between the 

polymers also correlated with the % occurrence of these FN interactions observed in the single force curve 

analysis (Table 1). Histograms of the force from the final peak of each force curve (i.e. each green pixel) 

revealed probable distributions with widths of 50–200 pN, confirming the likelihood that single molecule 

FN interactions are involved in these interactions. More specifically, gaussian fitting of the distributions 

gave values of 122 ± 23.5 pN (mean ± s.d; n=1024) and 70.3 ± 13.5 pN (mean ± s.d; n=1024) for PPy/CS 

(Fig. 4C) and PPy/HA (Fig. 4D), respectively, which within the error of the standard deviation are in 

agreement with values obtained in our previous AFM study on FN interactions with CS and HA doped 

PPy33.  

Conductive AFM scans were taken on PPy/CS and PPy/HA to further assess the correlation between the FN 

adhesion, topography and conductivity of the films (Fig. 5). PPy/HA clearly showed that regions of 

conductivity were confined to the nodular regions of the polymer, while the peripheries showed little or 

no measurable current (cf Fig. 5A and C). This correlation of the topography and conductivity is also 

evident in cross-sectional profiles where the current values (dashed curve) reach maximum at the nodules 

and are negligible at the peripheries in the topography profile (solid curve) (Fig. 5E). The conductivity of 

PPy/CS is however more uniformly distributed across the surface with no clear correlation with the 

topography (cf. Fig. 5B and D), indicating more homogenous doping of the polymer. The extent of the 

homogenous doping was reflected in the calculated surface area o f  co n d u ct i ve  regions (threshold > 

5 pA) that was 97.7% for PPy/CS compared to 54% for PPy/HA. Similarly, conductive AFM imaging of 

polybithiophene films has revealed higher conductivity in the nodules compared to the nodular 

periphery29. These observations are further supported by Kelvin Probe Force Microscopy (KPFM) of 

PPy/pTS films showing a more negative potential at the nodules and explained by these regions as having 

a higher work function, or increased doping, than their peripheries27. This characteristic phase separation 

in surface properties (e.g. conductivity, surface potential) associated with the morphology of conducting 

polymers has also been revealed using AFM phase imaging. For example, both the modulus29 and surface 

charge/energy30 was shown to undergo phase separation.  

 

The dependence of the non-specific adhesion on the topography is further depicted in Figure 6 showing 

the protein interaction with both PPy/HA (Fig. 6A) and PPy/CS (Fig. 6B) using actual 3 - D  h e i g h t  

i m a g e s  overlaid with the corresponding conductivity where areas of black indicate low or no 

conductivity, while areas in green indicate higher conductivity. The schematic of the tip with functionalized 

protein is drawn close to scale. Whilst the morphology and roughness of the films are comparable, the 

density of the non-specific adhesion acquired in the force maps closely correlates with the distribution of 
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conductive, or more CS or HA doped, regions across the film, suggesting that FN adhesion to the polymer 

is mediated by interactions with the dopants. The HA doped regions are restricted to the area of the 

nodules which reduces the density of non-specific adhesion, whereas the CS is more uniformly doped 

throughout the polymer and therefore promotes a higher density of binding. Up until now we have 

referred to these interactions as non-specific adhesion, however we suggest that they may actually be 

more indicative of specific interactions due to contributions from electrostatic attraction between the FN 

and sulfate/anionic groups on the dopants. 

 

A primary biological function of GAGs is to recognize and bind ECM proteins for regulating cellular 

activities, including cell adhesion, extracellular matrix modelling and fibrillogenesis46.  Therefore, GAG’s 

such as HA, CS, DS and heparin sulfate (HS) are often incorporated through doping into conducting 

polymers with the intention of promoting favourable interactions with proteins to improve 

biocompatibility38,45. For example, the interaction of heparin with the protein, fibroblast growth factor-2 

(FGF-2), has been implicated in the ability to control stem cell differentiation on PEDOT/heparin films47. 

The inhibition of smooth muscle cell proliferation, in contrast to endothelial cells, on PPy/Hep films has 

been explained by the interaction of the heparin with its putative cell receptors that causes anti-

proliferative effects via proposed mechanisms in which cell cycle progression into G1 is arrested through 

decreased activation of extracellular signal-regulated kinase48. We have recently shown that single 

molecule FN binding to PPy doped with GAGs occurs at several positions on the protein that correlate with 

the well-characterized heparin binding domains, suggesting a specific, sub-molecular  interaction between 

FN and GAGs present at the polymer surface33. The findings in the present study further supports the 

involvement of the GAG dopants in FN adhesion and, furthermore, shows that type of dopant and 

differences in the spatial distribution of the dopant effects the magnitude of protein adhesion, density of 

adhesion per unit area, and locality of adhesion.   
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Figure 1.  Force profiles showing different types of FN interactions. The light and dark curves are the tip 

approach and retract from the polymer surface, respectively. Insets are schematic of corresponding FN 

interaction. The FN protein is represented the grey line and the black ovals represent the bonds involved in the 

interaction. The bonds may reside within the protein and/or occur at the protein-polymer interface.  The 

different types of FN interactions are classified as (A) No adhesion, (B) Non-Specific Adhesion, (C) Multiple 

Rupture Peaks and (D) Plateaus.     
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Dopant 

   

Type of Interaction 

Chondroitin 

Sulfate 

Hyaluronic 

Acid Dextran Sulfate 

Para-Toluene 

Sulfonate 

  

    No Adhesion 2 17 0 3 

  

    Non-Specific  34 36 37 45 

  

    Multiple Rupture Peaks 64 47 63 52 

  

    Plateaus 5 9 15 15 

          

 

 

Table 1.  Table showing the percentage (%) occurrence of force profiles displaying each type of FN 

interaction on the differently doped polymers. The total number of force curves obtained for each dopant 

was 255. Note: the % of plateaus are treated separately, as they all contained either non-specific and 

multiple rupture peaks. 

 

 

 

 

 

 

 

 

 



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Histograms of maximum force of non-specific adhesion for (A) PPy/CS, (B) PPy/HA, (C) PPy/DS 

and (D) PPy/pTS. Solid lines are gaussian fits to the higher force distribution. Asterix denote lower force 

distributions for PPy/CS and PP/HA.  
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Figure 3. 500 nm force maps for topography (A) PPy/CS (Z scale 30 nm) and (B) PPy/HA (Z scale 20 nm) and 

adhesion (C) PPy/CS and (D)PPy/HA. A mask with a threshold of >0.3 nN was applied to each adhesion map and 

used as the overlay (red pixels) on the corresponding topography for (E) PPy/CS and (F) PPy/HA.   
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Figure 4.  Multiple rupture peaks obtained from adhesion maps  (green pixels) and overlaid 

to show their respective positions on the corresponding topography for(A) PPy/CS and (B) 

PPy/HA. Histograms showing the force of the final rupture peaks for (C) PPy/CS and (D) PPy/HA. 

Solid lines are gaussian fits.  
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Figure 5. PPy/HA (A) topography image, (C) current image and (E) cross-section showing topography 

(solid) and current (dashed). PPy/CS (B) topography image, (D) current image and (F) cross-section 

showing topography (solid) and current (dashed). 
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Figure 6. Schematic of protein-surface interaction using actual 3-dimensional topography with 

overlay of corresponding conductivity (green is conductive, black is non-conductive, Z scale 4 nA). 

Scan area is 1 µm and AFM tip is drawn roughly to scale (≈ 30 nm tip radius). FN is represented in 

red (A) HA displays inhomogenous conductivity resulting in lower probability of adhesion. The 

protein may not adhere to non-conductive areas (black) of the polymer. (B) CS is more homogenous 

giving a higher probability of FN adhesion. 
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