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ORIGINAL ARTICLE

Microscopic role of carbon on MgB2 wire for critical
current density comparable to NbTi

Jung Ho Kim1,8, Sangjun Oh2,8, Yoon-Uk Heo3,8, Satoshi Hata4, Hiroaki Kumakura5, Akiyoshi Matsumoto5,
Masatoshi Mitsuhara4,8, Seyong Choi5,6, Yusuke Shimada4, Minoru Maeda1,9, Judith L MacManus-Driscoll7

and Shi Xue Dou1

Increasing dissipation-free supercurrent has been the primary issue for practical application of superconducting wires.

For magnesium diboride, MgB2, carbon is known to be the most effective dopant to enhance high-field properties. However,

the critical role of carbon remains elusive, and also low-field critical current density has not been improved. Here, we have

undertaken malic acid doping of MgB2 and find that the microscopic origin for the enhancement of high-field properties is due

to boron vacancies and associated stacking faults, as observed by high-resolution transmission electron microscopy and electron

energy loss spectroscopy. The carbon from the malic acid almost uniformly encapsulates boron, preventing boron agglomeration

and reducing porosity, as observed by three-dimensional X-ray tomography. The critical current density either exceeds or matches

that of niobium titanium at 4.2 K. Our findings provide atomic-level insights, which could pave the way to further enhancement

of the critical current density of MgB2 up to the theoretical limit.

NPG Asia Materials (2012) 4, e3; doi:10.1038/am.2012.3; published online 18 January 2012
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INTRODUCTION

Soaring liquid helium prices have increased the demand for cryogen-
free superconducting magnets more than ever. For example, if
magnetic resonance imaging magnets can be operated without liquid
helium, it will be definitely beneficial. Even though numerous super-
conducting materials had already been discovered, MgB2, which was
found to be superconducting in 2001,1 is considered as the most
promising candidate for cryogen-free operation, replacing conven-
tional NbTi technology, due to its low material cost, simple crystalline
structure and relatively high transition temperature of B40 K.1–4

A decade-long intensive research effort has led to noticeable progress
in the development of MgB2 wire, and its high-field properties
are now much better than those of NbTi, for example, thanks to
carbon doping.5,6 On the other hand, at low field (o5 T), where
magnetic resonance imaging magnets are operated, the critical
current density has not been increased and is even lower than that
of NbTi. The reason why the low-field properties were not improved
has been studied, and the lack of enhancement has been mostly
attributed to porosity.7,8 The chemical reaction between magnesium

and boron results in about 30% volume reduction, and porosity is
known to be difficult to avoid. However, no quantitative analysis has
ever been carried out.

When carbon is doped into MgB2
9,10 it is believed that it substitutes

for boron, stiffens the optical E2g phonon mode, which is strongly
linked with anisotropic s bands and, hence, lowers the transition
temperature.11–13 Increased interband scattering between the p and s
bands could also be a cause for the lower transition temperature.14

Even without any variation in the interband scattering, the intraband
scattering by itself can increase the upper critical field far beyond that
of Nb3Sn, according to a recent two-band dirty-limit theory.15 It is also
argued from resistivity measurements or from lattice strain estimated
from X-ray diffraction that the impurity scattering rate is closely
related to the upper critical field enhancement by carbon doping.12,16,17

The microscopic origin of the increased scattering rate due to doping is
not yet clear. Microscopic imperfections, such as porosity, grain
boundaries, stacking faults, dislocations, secondary phases and so on,
also can act as pinning sites. The critical current density is determined
by the balance between the Lorentz force and the pinning force.
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MATERIALS AND METHODS
The wire samples were fabricated as follows: boron powder (99.9%), toluene

(C7H8, 99.5%) and malic acid (C4H6O5, 99%) were mixed in a Spex mill for

10 min, dried out at 150 1C and then processed in a planetary mill with

magnesium powder (99%). The composite powder was put into Nb/Monel

cladding and drawn until the outer diameter was reduced to 0.834 mm. Both

the doped and the un-doped samples were heat treated at 650 1C for 30 min

under argon atmosphere. After the heat treatment, samples were ground until

bare MgB2 core appeared and then mounted on a tungsten tip of an Xradia

nanoXCT, a 50-nm-resolution X-ray computed tomography scanner. The

critical current density was measured by the standard four-probe method.

An electric field criterion of 1mV cm�1 was used for the determination of the

critical current. Microscopic studies were carried out using a JEOL JEM-

2500SES, a Cs-corrected STEM equipped with a Gantan 776 EELS (Enfina

1000). High-magnification images were obtained with a JEOL JEM-3000F, a

300 keV high-resolution TEM. This electron microscope also has a Gatan 863

energy filter (GIF Tridiem), so that simultaneous EELS analysis was possible.

The high-energy synchrotron radiation powder diffraction experiment was

carried out at the SPring-8 facility using a large Debye–Scherrer camera

equipped with an imaging plate as a highly sensitive X-ray detector. The

synchrotron radiation X-ray diffraction data were analyzed by the Rietveld

refinement method using the asymmetric pseudo-Voigt function.

RESULTS AND DISCUSSION

Sample preparation and the critical current measurements
Among various carbon doping methods, chemical solution processes
using carbohydrate, such as malic acid dissolved in toluene, which is
adopted in this work, are advantageous in terms of both cost and
performance.17,18 Carbohydrates easily decompose at, or even below
650 1C, the melting temperature of magnesium, which enables low
sintering temperature fabrication to suppress grain growth. Smaller
grains are related to larger pinning force and higher critical current,19–22

according to grain boundary pinning models. It is also claimed that
more homogeneous mixing is possible than with other doping
methods. A ball milling process was adopted to further enhance the
uniformity.23–25 The mixed un-reacted powders were put into a
metallic tube and then heat treated. The field dependence of the
critical current measured by the standard four-probe method is shown
in Figure 1a. Compared with other types of carbon doping, such as
SiC doping,26–29 the malic acid-doped sample studied in this work not
only shows increased high-field critical current density, but also
increased low-field critical current density, even comparable to that
of NbTi, exceeding 105 A cm�2 at 4.2 K and 6 T. At higher temperature,
for example at 20 K, the critical current density of SiC-doped samples
has been reported to be decreased compared with the un-doped
samples, but here, even at 20 K, the critical current density was
increased.

X-ray tomogram analysis on voids
Two important ways to increase critical current density are by the
enhancement of the pinning force30,31 and/or by increasing the cross-
sectional area fraction.7 First, we consider the area fraction. This was
investigated by state-of-the-art 50-nm-resolution X-ray tomography,
as shown in Figure 2. Both the doped and un-doped wires were
ground until the MgB2 core appeared, and then 1609 sliced X-ray
tomograms covering an area of 15�15mm2 were collected (continuous
motion view for each tomogram can be found in Supplementary
Movies 1 and 2) using the Zernike phase contrast method along the
wire axis (z axis in Figures 2a and b) and also along each of the two
other orthogonal axes. MgB2, and other phases can be identified from
the contrast difference. These sliced tomograms were merged into
three-dimensional images and color-rendered, so that red and white

regions correspond to MgB2 and impurity phases, respectively, as
shown in Figures 2a and b. Voids shadowed by MgB2 or by impurity
phases, as shown in Figures 2a and b, can be more clearly identified in
the Supplementary Movies (3601 rotation along the z axis can be
found in Supplementary Movies 3 and 4). In the insets of Figures 2a
and b, magnified views of the voids are presented. The major
difference between the two samples is that for the doped sample,
the void size is on average smaller than that of the un-doped sample.

For a quantitative comparison, voids in each sliced tomogram were
directly studied using a black and white image contrast method
adopted to sharpen the boundary of each void in all the tomograms.
Voids were numbered and their physical dimensions, including their
area, and major and minor diameters, were measured. The major and
minor diameters are defined as the length and width of the void along
the longest direction, respectively. The pixel size of each tomogram is
16 nm. Comparative histograms of void area and major or minor
diameter along the z axis direction are shown in Figures 2c,d,e.
To show the difference more clearly, the y axes of the histograms
are presented as count percentage multiplied by void area, major

Figure 1 Field dependence of the critical current density and temperature

dependence of the extracted upper critical field. (a) Field dependence of the

critical current measured by the standard four-probe method. Dashed lines
are calculated from the percolation model. (b) Field dependence of the

critical current measured at various temperatures, and the upper critical

field extracted at each temperature. Lines are calculated from the two-band

dirty-limit theory.
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diameter, or minor diameter, respectively. If there is a preferential
direction for voids, the statistical distribution of the voids will be
different along each direction. However, we found that the histograms
of void area and of major and minor diameters almost coincide with
each other for all the directions, especially for the doped sample,
which could be attributed to a uniform mixing procedure. The
probability distribution of void area is almost same for small-sized
voids less than B2mm2, but there is a noticeable difference in large
void distributions. The average void area and the average major and
minor diameters along each direction are listed in Table 1.

With malic acid inclusion, the total number of voids is roughly
doubled, but the average area is reduced by more than four times. As a
result, the void fraction is reduced from around 50% to around 40%,
or in other words, the MgB2 core is densified by doping. Since 1609
sliced X-ray tomograms along each direction were collected with
equidistant steps the void fraction is basically an averaged area
fraction. Slight discrepancies are due to the finite pixel size in each
tomogram, the finite number of tomograms along each direction or
the black and white imaging process.

The critical current analysis based on the percolation model
Having understood the increase in critical current density as due, at
least partly, to the increase in the cross-sectional area fraction, we now
consider whether there is a contribution to the enhanced low-field
critical current density from increased pinning force. In order to
clarify this, the field dependence of the critical current was analyzed by
the percolation model,12,32 where the loss of connectivity caused by
voids and the upper critical field anisotropy are considered together.
The model has four fitting parameters: the effective pinning force
maximum Fm

* , the upper critical field Bc2, the anisotropy parameter g
and the percolation threshold pc. The low-field critical current density
is mostly affected by the effective pinning force maximum, which is
the pinning force maximum, Fm, multiplied by area fraction, AF
(Fm

*¼Fm�AF). The best fit is obtained with the parameters listed in
Table 2, and the dashed lines are calculated using those parameters
(Figure 1a). For the SiC-doped sample, the effective pinning force
maximum was reduced to 1.84�106 AT cm�2, but it is enhanced
noticeably by malic acid doping. The enhancement of the effective

Figure 2 Cores of powder-in-tube processed MgB2 wires examined by X-ray tomography. About (15mm)3 volume of core region was scanned along each

direction for both malic acid-doped and un-doped samples. (a, b) The tomograms along each direction were integrated into three-dimensional images.

(c–e) Histograms along the z direction.

Table 1 List of void physical dimension averages

Area

(mm2)

Major

diameter

(mm)

Minor

diameter

(mm)

Void

fraction

(%)

Number

of voids

Malic acid doped

x axis 0.34 0.73 0.37 41.24 17611

y axis 0.28 0.68 0.34 40.61 21442

z axis 0.32 0.70 0.32 40.48 18869

Un-doped

x axis 1.53 1.23 0.63 50.87 7496

y axis 1.29 1.26 0.64 50.38 8819

z axis 1.41 1.20 0.63 50.33 8009
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pinning force maximum from 3.77 to 4.12�106 AT cm�2 almost
exactly matches the reduction in the void fraction from B50 to
B40%. The pinning force enhancement by doping therefore can be
mainly attributed to the increase in the area fraction.

As with other carbon-doped samples, such as SiC-doped samples,
the high-field (near the irreversibility field) critical current density is
also dramatically increased by malic acid doping, as shown in
Figure 1a. From the percolation model analysis, this could be
attributed to the enhancement of the upper critical field, or to the
reduction in the anisotropy parameters, which are related to the
increased impurity scattering rate. The temperature dependence of
the upper critical field along the c axis and the ab plane are shown in
Figure 1b. Usually, the upper critical field is determined from the onset
of resistive broadening. However, in polycrystalline samples, this
might give an underestimation.29 Instead, the extracted upper critical
field and other fitting parameters of the percolation model can
reproduce the resistive broadening well. The relevance of the extracted
upper critical field to the actual value was also reported in the early
work of Eisterer et al.32 From the field dependence of the critical
current (Figure 1a) at each temperature, the upper critical field was
extracted using the percolation model. The extracted upper critical
field shown in Figure 1b was fitted by the following two-band dirty-
limit theory,15

2w½ln t+uðb=tÞ�½ln t+uðZb=tÞ�+l2½ln t+uðZb=tÞ�
þ l1½ln t+uðZb=tÞ� ¼ 0

ð1Þ

where t¼T/Tc, b¼:Hc2Ds/2f0kBTc and u(x)¼c(1/2+x)�c(1/2). c(x)
is the digamma function, Ds is the s band diffusivity, f0, the flux
quantum, and Z is the ratio of the p band diffusivity to that of the s
band (Dp/Ds). w and l1,2 are related to the electron–phonon coupling
constant lmn and the Coulomb pseudopotential matrix mmn. In this
work, interband scattering effects are not considered for simplicity, as
the effects of interband scattering can be neglected when the reduction
in the transition temperature is relatively small.15,33–36 The best fit is
obtained with diffusivities of 1.2�10�4, 2.7�10�6, 2.5�10�4 and
0.65�10�4 m2 s�1 for the doped sample, and 1.6�10�4, 4.2�10�6,
4.2�10�4 and 1.1�10�4 m2 s�1 for the un-doped sample, which
correspond to Ds

ab, Dp
ab, Ds

c and Dp
c, respectively (see also Supple-

mentary Table SI). It is clear that the impurity scattering rate is indeed
increased by malic acid doping.

Microscopic origin for the enhanced high-field properties
To elucidate the microscopic origin of the increase in the impurity
scattering rate, which increases the upper critical field and thereby the
high-field critical current density, the atomic structure of both the
malic acid-doped and the un-doped samples was investigated using
a 300 keV field-emission high-resolution transmission electron micro-
scope (TEM). Samples were prepared by a wedge polishing method
and then ion milled with a low acceleration voltage of 0.1 keV.
A notable difference between samples is that with malic acid doping,
many stacking faults were present (red arrows in Figure 3a), whereas it
was hard to find any trace of stacking faults in the un-doped sample
(see also Supplementary Figure S1). The stacking faults were magni-
fied and filtered for more accurate observation (Figure 3b). An inverse
fast Fourier transform was taken for Figure 3b, which proceeded with
g002 and g00�2 patterns. Edge dislocations could be pinpointed, as
shown in Figure 3c. The Burgers vector of these dislocations was
found out to be ½[001]. Even dislocation climbs were observed, for
example, as is indicated with a yellow circle in Figure 3b. Dislocation
climbs in hexagonal close-packed structure have been reported
previously,37 but not for MgB2. Dislocation climbs occur by the
diffusion-assisted movement of atomic vacancies and generate intrin-
sic stacking faults, where a plane is missing from the original crystal
structure. To see vacancies clearly, the dislocation climb was magnified
further using annular dark-field scanning TEM (ADF-STEM), as
shown in Figure 3d, where the stacking faults are marked with
white arrows. The lattice orientation is indicated in Figure 3d, and
individual magnesium and boron layers can be identified. From a
comparison of the ADF-STEM image intensity with electron energy
loss spectrum analysis (EELS), it was found that the bright spots
correspond to magnesium atoms and the less bright ones to boron
atoms (see also Supplementary Figure S1). However, along the
stacking faults, boron spots cannot be found, suggesting that a
boron layer is missing. Across the stacking faults, along area 1 and
area 2, marked with white boxes in Figure 3d, ADF-STEM intensity
scans were carried out, as shown in Figure 3e, which clearly indicates
that vacancies arise from boron deficiency.

These boron vacancies generate lattice distortion. High-energy
synchrotron radiation X-ray powder diffraction using a large
Debye–Scherrer camera was conducted at SPring-8 and was analyzed
by Rietveld refinement (see also Supplementary Table SII). The boron
deficiency reduces the a-axis lattice parameter from 3.0832 (2) to
3.0758 (2) Å, while leaving the c-axis lattice parameter more or less the
same, from 3.5221 (2) to 3.5237 (2) Å. The refinements also show that
the crystallite size, or the grain size, was slightly decreased by malic
acid doping from 44 to 40 nm. As already noted, a smaller grain size
can increase the pinning force, and the increase in the effective pinning
force can be partially attributed to the reduction in the grain size. The
lattice distortion obtained from the refinement was almost doubled by
doping from 0.34 to 0.63%. The correlation between the lattice
disorder, the resistivity and the transition temperature is quite well
established.17 Furthermore, it has recently been argued that the upper
critical field is related to the resistivity and the transition tempera-
ture.12 The diffusivities listed in the previous paragraph are decreased
by doping, or in other words, the impurity scattering rate is increased
(see also Supplementary Table SI). For the almost isotropic p bands
originating from the pz orbitals of the boron atoms, the reduction is
also quite isotropic. The reduction in the diffusivities by doping for
the p bands, Dp

ab and Dp
c, are 0.64 and 0.59, respectively. On the other

hand, for the highly anisotropic s bands from the in-plane pxy

orbitals, the reduction in diffusivity is not uniform. More severe
reduction can be found along the c axis. Ds

c is reduced by doping by a

Table 2 Percolation model fitting parameters

Pinning force

maximum

(106 ATcm�2)

Upper critical

field (T)

Anisotropy

parameter

Percolation

threshold

Malic acid-doped

4.2 K 4.12 27.6 2.8 0.26

20K 1.19 10.8 2.0 0.26

Un-doped

4.2 K 3.77 24.7 4.0 0.26

20K 1.23 9.45 2.3 0.26

SiC-doped

4.2 K 1.84 28.0 2.8 0.26

20K 0.48 9.5 1.85 0.26

Microscopic role of carbon on MgB2 wire
JH Kim et al

4

NPG Asia Materials



factor of 0.60, whereas along the ab plane the reduction in Ds
ab is only

by a factor of 0.75. We therefore argue that the intrinsic stacking faults
caused by boron vacancies are the microscopic origin of the increased
impurity scattering rate, which enhances the upper critical field and
the other high-field properties.38

The role of carbon for the void reduction
Even though it is generally argued that carbon substitutes for boron, it
was not possible to find substituted carbon inside the MgB2 phase of
the malic acid-doped sample, whereas boron vacancies were abundant.
A natural question is then where the carbon is. For that purpose, the
interface between MgB2 and impurity phases was further investigated
using a Cs-corrected scanning TEM (STEM) equipped with an
electron energy loss spectrometer. The majority of the carbon is
found to be located outside the MgB2 phase (region 1 of Figure 4a),
mostly at the grain boundaries (region 2), as seen from the detailed
EELS analysis shown in Figure 4b. No other peaks were observed other
than boron in the EELS for the impurity phase, as shown in Figure 4b.
A fast Fourier transform pattern of the impurity phase is featureless, as
shown in Figure 4c, reflecting the initial amorphous boron powder.
An EELS map for the un-reacted boron phase, where the boron and
carbon K edges are colored blue and red, respectively, is shown in
Figure 4d. Thick carbon layers are localized, surrounding a small part
of the un-reacted boron, which suggests that the carbon enclosing
each boron powder particle during the mixing procedure remains
there, even after the reaction heat treatment. The size of the boron
particle enclosed by carbon is about 100 nm, which suggests that

carbon suppresses agglomeration of boron, as is schematically
depicted in the inset of Figure 4a, leading to denser packing during
the metal cladding process and to void fraction reduction. This
explains why we do not observe an increase in the low-field critical
current density in other carbon-doped samples such as SiC doped.

CONCLUSIONS

The reaction of magnesium and boron with malic acid has produced
critical current densities over a wide field range that are either
comparable to or exceed those of commercial NbTi. There is great
potential for further enhancement by careful optimization of boron
content, while maintaining small grain size. The microscopic origin of
the improved high-field properties that is attributed to carbon
‘doping’ is really due to boron vacancies. Detailed microscopic analysis
has shown that boron vacancies generate intrinsic stacking faults
within the MgB2 grains, together with associated lattice distortion.
These structural defects produce an increase in the impurity scattering
rate, which thereby enhances the upper critical field and the high-field
critical current density. Besides enhancing the intragranular scattering
via formation of boron vacancies, the inclusion of malic acid leads to
boron encapsulation by carbon, which, in turn, prevents agglomera-
tion during heat treatment, yielding fine grains and hence strong
pinning. As shown by a detailed void analysis based on X-ray
tomography, inclusion of malic acid leads to significant densification
(void density decreased from 50 to 40%, and also much finer voids).
In short, reaction with malic acid results in a dense, strongly pinned
wire core that produces enhanced critical current density, comparable

Figure 3 Microscopic analysis of the core region of the malic acid-doped sample. (a) Low-magnification transmission electron microscope (TEM) image.

(b) High-magnification filtered TEM image. Edge dislocations are marked. An intrinsic stacking fault is marked with a yellow circle. (c) The same area as

shown in (b) was further image processed using g002 and g002̄ spots, with the upper inset showing the indicated area at higher magnification and the lower

inset the Fast Fourier transform (FFT) pattern. (d) Edge dislocations are marked, and the thick red guideline corresponds to a boron layer. Along the white

arrows, boron layers are missing, as can be more clearly seen in (e). (e) Dislocation climb of b¼½[001] leading to partial dislocation on the boron layer and

stacking faults in the bulk of the MgB2.
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to that of NbTi in the field range of interest for magnetic resonance
imaging.

ACKNOWLEDGEMENTS
This work was supported by the Australian Research Council (DP0770205) and

Hyper Tech Research Inc., OH, USA. This study was also supported by the

Japan Society for the Promotion of Science (JSPS) under the Grant-in-Aid

program for JSPS fellows and the Nanotechnology Network Project of the

Ministry of Education, Science and Technology (MEST), Japan. The work done

at the National Fusion Research Institute was supported by the Mid-career

Researcher Program through a National Research Fellowship grant funded by

MEST, Japan (no. 2010-0029136). The synchrotron radiation (SR) experiments

were performed at the SPring-8 facility with the approval of the Japan

Synchrotron Radiation Research Institute(proposal nos. 2008B1557 and

2009A1334). We acknowledge Dr K Ikeda, Professor H Nakashima (Kyushu

University, Japan), Dr J Gelb and W Yun (Xradia, Inc., USA) for their support

on the XCT measurements. We also thank Dr T Kiyoshi and Dr K Itoh at the

National Institute for Materials Science, Japan. We are grateful to Professor K

Takase (Nihon University, Japan) and Professor Y Kuroiwa (Hiroshima

University, Japan) for their valuable help on the SR experiments at SPring-8;

and Dr M Eisterer (Vienna University of Technology, Austria), Professor M

Sumption (The Ohio State University, USA) and Professor XX Xi (Temple

University, USA) for their helpful discussions.

Author contributions: JHK and SO designed the experiment. Y-UH acquired

the TEM experimental data, and JHK, SO and Y-UH wrote the manuscript.

The XCT measurements were performed by YS, MM and SH. The XRD

experiment at SPring-8 was performed by MM and AM, and SC estimated the

wire properties. HK, JLM-D and SXD contributed to the interpretation of the

mechanisms.

1 Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconduc-

tivity at 39K in magnesium diboride. Nature 410, 63–64 (2001).
2 Canfield, P. C., Finnemore, D. K., Bud’ko, S. L., Ostenson, J. E., Lapertot, G.,

Cunningham, C. E. & Petrovic, C. Superconductivity in dense MgB2 wires. Phys.

Rev. Lett. 86, 2423–2426 (2001).
3 Glowacki, B. A., Majoros, M., Vickers, M., Evetts, J. E., Shi, Y. & McDougall, I.

Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 14, 193–

199 (2001).
4 Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconduct-

ing materials for electric power applications. Nature 414, 368–377 (2001).

5 Ma, Y., Zhang, X., Nishijima, G., Watanabe, K., Awaji, S. & Bai, X. Significantly
enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon
addition route. Appl. Phys. Lett. 88, 072502 (2006).

6 Hermann, M., Haessler, W., Rodig, C., Gruner, W., Holzapfel, B. & Schultz, L. Touching
the properties of NbTi by carbon doped tapes with mechanically alloyed MgB2. Appl.
Phys. Lett. 91, 082507 (2007).

7 Rowell, M. The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol.
16, R17–R27 (2003).

8 Yamamoto, A., Shimoyama, J., Kishio, K. & Matsushita, T. Limiting factors of normal-
state conductivity in superconducting MgB2: an application of mean-field theory for a
site percolation problem. Supercond. Sci. Technol. 20, 658–666 (2007).

9 Wilke, R. H. T., Bud’ko, S. L., Canfield, P. C., Finnemore, D. K., Suplinskas, R. J. &
Hannahs, S. T. Systematic effects of carbon doping on the superconducting properties
of Mg(B1�xCx)2. Phys. Rev. Lett. 92, 217003 (2004).

10 Kazakov, S. M., Puzniak, R., Rogacki, K., Mironov, A. V., Zhigadlo, N. D., Jun, J.,
Soltmann, C., Batlogg, B. & Karpinski, J. Carbon substitution in MgB2 single crystal:
structural and superconducting properties. Phys. Rev. B 71, 024533 (2005).

11 Kortus, J., Dolgov, O. V., Kremer, R. K. & Golubov, A. A. Band filling and interband
scattering effects in MgB2: carbon versus aluminum doping. Phys. Rev. Lett. 94,

027002 (2005).
12 Eisterer, M. Magnetic properties and critical currents of MgB2. Supercond. Sci.

Technol. 20, R47–R73 (2007).
13 Xi, X. X. Two-band superconductor magnesium diboride. Rep. Prog. Phys. 71, 116501

(2008).
14 Choi, H. J., Roundy, D., Sun, H., Cohen, M. L. & Louie, S. G. The origin of the

anomalous superconducting properties of MgB2. Nature 418, 758–760 (2002).
15 Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty

two-gap superconductors. Phys. Rev. B 67, 184515 (2003).
16 Gurevich, A., Patnaik, S., Braccini, V., Kim, K. H., Mielke, C., Song, X., Cooley, L. D.,

Bu, S. D., Kim, D. M., Choi, J. H., Belenky, L. J., Giencke, J., Lee, M. K., Tian, W., Pan,
X. Q., Siri, A., Hellstrom, E. E., Eom, C. B. & Larbalestier, D. C. Very high upper critical
fields in MgB2 produced by selective tuning of impurity scattering. Supercond. Sci.
Technol. 17, 278–286 (2004).

17 Kim, J. H., Dou, S. X., Oh, S., Jercinovic, M., Babic, E., Nakane, T. & Kumakura, H.
Correlation between doping induced disorder and superconducting properties in
carbohydrate doped MgB2. J. Appl. Phys. 104, 063911 (2008).

18 Kim, J. H., Zhou, S., Hossain, M. S. A., Pan, A. V. & Dou, S. X. Carbohydrate doping to
enhance electromagnetic properties of MgB2 superconductors. Appl. Phys. Lett. 89,

142505 (2006).
19 Larbalestier, D. C., Cooley, L. D., Rikel, M. O., Polyanskii, A. A., Jiang, J., Patnaik, S.,

Cai, X. Y., Feldmann, D. M., Gurevich, A., Squitieri, A. A., Naus, M. T., Eom, C. B.,
Hellstrom, E. E., Cava, R. J., Regan, K. A., Rogado, N., Hayward, M. A., He, T.,
Slusky, J. S., Khalifah, P., Inumaru, K. & Haas, M. Strongly linked current flow in
polycrystalline forms of the superconductor MgB2. Nature 410, 186–189 (2001).

20 Eom, C. B., Lee, M. K., Choi, J. H., Belenky, L. J., Song, X., Cooley, L. D., Naus, M. T.,
Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X. Y., Bu, S. D.,
Babcock, S. E., Hellstrom, E. E., Larbalestier, D. C., Rogado, N., Regan, K. A.,
Hayward, M. A., He, T., Slusky, J. S., Inumaru, K., Haas, M. K. & Cava, R. J. High
critical current density and enhanced irreversibility field in superconducting MgB2 thin
films. Nature 411, 558–560 (2001).

21 Martinez, E., Mikheenko, P., Martinez-Lopez, M., Millan, A., Bevan, A. & Abell, J. S.
Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B 75, 134515
(2007).

Figure 4 Microscopic analysis of the grain boundary region of malic acid-doped sample. (a) Scanning transmission electron microscope (STEM) image of

interface region, with the inset showing a schematic diagram. (b) Electron energy loss spectrum (EELS). Carbon K peak can be most clearly seen at the

interface (region 2). (c) Fast Fourier transform (FFT) pattern for the impurity phase. (d) Color map of electron energy loss of boron K (blue color) and carbon

K (red color) in a selected area of (a) (marked with yellow box).

Microscopic role of carbon on MgB2 wire
JH Kim et al

6

NPG Asia Materials



22 Mikheenko, P., Martinez, E., Bevan, A., Abell, J. S. & MacManus-Driscoll, J. L. Grain
boundaries and pinning in bulk MgB2. Supercond. Sci. Technol. 20, S264–S270 (2007).

23 Flukiger, R., Suo, H. L., Musolino, N., Beneduce, C., Toulemonde, P. & Lezza, P.
Superconducting properties of MgB2 tapes and wires. Physica C 385, 286–305 (2003).

24 Gumbel, A., Eckert, J., Fuchs, G., Nenkov, K., Muller, K. H. & Schultz, L. Improved
superconducting properties in nanocrystalline bulk MgB2. Appl. Phys. Lett. 80, 2725–
2727 (2002).

25 Fang, H., Padmanabhan, S., Zhou, Y. X. & Salama, K. High critical current density in
iron-clad MgB2 tapes. Appl. Phys. Lett. 82, 4113–4115 (2003).

26 Kumakura, H., Kitaguchi, H., Matsumoto, A. & Hatakeyama, H. Upper critical fields of
powder-in-tube-processed MgB2/Fe tape conductors. Appl. Phys. Lett. 84, 3669–3671
(2004).

27 Sumption, M. D., Bhatia, M., Rindfleisch, M., Tomsic, M., Soltanian, S., Dou, S. X.
& Collings, E. W. Large upper critical field and irreversibility field in MgB2 wires with
SiC additions. Appl. Phys. Lett. 86, 092507 (2005).

28 Dou, S. X., Shcherbakova, O., Yoeh, W. K., Kim, J. H., Soltanian, S., Wang, X. L.,
Senatore, C., Flukiger, R., Dhalle, M., Husnjak, O. & Babic, E. Mechanism of
enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev.
Lett. 98, 097002 (2007).

29 Oh, S., Kim, J. H., Cho, K., Lee, C., Kim, C. J., Dou, S. X., Rindfleisch, M., Tomsic, M.
& Ahn, J. H. A comparative study on field, temperature, and strain dependences of the
critical current for doped and undoped MgB2 wires based on the percolation model.
J. Appl. Phys. 106, 063912 (2009).

30 Bugoslavsky, Y., Perkins, G. K., Qi, X., Cohen, L. F. & Caplin, A. D. Vortex dynamics in
superconducting MgB2 and prospects for applications. Nature 410, 563–565 (2001).

31 Komori, K., Kawagishi, K., Takano, Y., Fujii, H., Arisawa, S., Kumakura, H., Fukutomi,
M. & Togano, K. Approach for the fabrication of MgB2 superconducting tape with large
in-field transport critical current density. Appl. Phys. Lett. 81, 1047–1049 (2002).

32 Eisterer, M., Zehetmayer, M. & Weber, H. W. Current percolation and anisotropy in
polycrystalline MgB2. Phys. Rev. Lett. 90, 247002 (2003).

33 Erwin, S. C. & Mazin, I. I. Toward one-band superconductivity in MgB2. Phys. Rev. B
68, 132505 (2003).

34 Gonnelli, R. S., Daghero, D., Calzolari, A., Ummarino, G. A., Dellarocca, V., Stepanov, V.
A., Kazakov, S. M., Zhigadlo, N. & Karpinski, J. Evidence for single-gap superconduc-
tivity in Mg(B1�xCx)2 single crystals with x ¼ 0.132 from point-contact spectroscopy.
Phys. Rev. B 71, 060503 (2005).

35 Tsuda, S., Yokoya, T., Kiss, T., Shimojima, T., Shin, S., Togashi, T., Watanabe, S.,
Zhang, C., Chen, C. T., Lee, S., Uchiyama, H., Tajima, S., Nakai, N. & Machida, K.
Carbon-substitution dependent multiple superconducting gap of MgB2: a sub-meV
resolution photoemission study. Phys. Rev. B 72, 064527 (2005).

36 Szabo, P., Samuely, P., Pribulova, Z., Angst, M., Bud’ko, S., Canfield, P. C. & Marcus, J.
Point-contact spectroscopy of Al- and C-doped MgB2: superconducting energy gaps and
scattering studies. Phys. Rev. B 75, 144507 (2007).

37 Heo, Y. U., Takeguchi, M., Furuya, K. & Lee, H. C. Transformation of DO24 Z-Ni3Ti
phase to face-centered cubic austenite during isothermal aging of an Fe-Ni-Ti alloy.
Acta Materialia 57, 1176–1187 (2009).

38 MacManus-Driscoll, J. L., Zerrer, P., Wang, H. Y., Yang, H., Yoon, J., Fouchet, A., Yu, R.,
Blamire, M. G. & Jia, Q. X. Strain control and spontaneous phase ordering in vertical
nanocomposite heteroepitaxial thin film. Nat. Mater. 7, 314–320 (2008).

This work is licensed under the Creative Commons
Attribution-NonCommercial-Share Alike 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies the paper on the NPG Asia Materials website (http://www.nature.com/am)

Microscopic role of carbon on MgB2 wire
JH Kim et al

7

NPG Asia Materials


	Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi
	Recommended Citation

	Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors

	Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi
	Introduction
	Materials and methods
	Results and discussion
	Sample preparation and the critical current measurements
	X-ray tomogram analysis on voids

	Figure 1 Field dependence of the critical current density and temperature dependence of the extracted upper critical field.
	The critical current analysis based on the percolation model

	Figure 2 Cores of powder-in-tube processed MgB2 wires examined by X-ray tomography.
	Table 1 List of void physical dimension averages
	Microscopic origin for the enhanced high-field properties

	Table 2 Percolation model fitting parameters
	The role of carbon for the void reduction

	Conclusions
	Figure 3 Microscopic analysis of the core region of the malic acid-doped sample.
	ACKNOWLEDGEMENTS
	Figure 4 Microscopic analysis of the grain boundary region of malic acid-doped sample.


