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Abstract: We present a general strategy to synthesize uniform MnCo2O4 submicrospheres with 

various hollow structures. By using MnCo-glycolate submicrospheres as the precursor with proper 

manipulation of ramping rates during the heating process, we have fabricated hollow MnCo2O4 

submicrospheres with multilevel interiors, including mesoporous spheres, hollow spheres, 

yolk-shell spheres, shell-in-shell spheres and yolk-in-double-shell spheres. Interestingly, when 

tested as anode materials in lithium ion batteries, the MnCo2O4 submicrospheres with a yolk-shell 

structure showed the best performance among these multilevel interior structures because these 

structures can not only supply a high contact area but also maintain a stable structure. 
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In recent years, complex hollow micro-/nanoscale structures with controlled size, shape and 

interior architecture are of great interest, as these structures are expected to offer more handles to 

tailor the properties for different applications such as catalysis,1 photocatalysis,2 drug delivery,3 

and lithium ion batteries.4 Various methodologies have been developed to achieve this special 

nanostructure.5-8 Heterogeneous contraction, for example, is a typical and effective route for 

controlled synthesis of hollow structure with different interiors, which is caused by 

non-equilibrium heat treatment and determined by the difference between the cohesive force and 

the adhesive force generated by a high heating rate. In particular, metal oxides have been 

investigated mostly and a number of inorganic hollow structures have been synthesized by this 

approach. For instance, delicate γ-Fe2O3, α-Fe2O3, and ZnO multi-shelled hollow spheres, have 

been prepared by calcining the solid microsphere precursors through the heterogeneous 

contraction process.9-11 Lou and co-authors have reported binary metal oxides like ZnMn2O4 

hollow microspheres,12 double-shelled CoMn2O4 hollow microcubes,13 and ZnMn2O4 ball-in-ball 

hollow microspheres by this method.14 Our previous reports also mentioned the synthesis of spinel 

binary metal oxides including mesoporous NiCo2O4 microspheres,15 Mn1.5Co1.5O4 core-shell 

microspheres,16 yolk-shelled ZnCo2O4 microspheres,17 CoMn2O4 and MnCo2O4 quasi-hollow 

microspheres.18 However, the hollow structure is obtained as it is after calcinations and cannot be 

tuned because of the smaller weight loss. Therefore, it is still a great challenge to form the hollow 

structures for binary metal oxide with controlling interiors, despite of its popularity in simple 

metal oxide.   

In this letter, we exploited the capacity of heterogeneous contraction process for forming binary 

metal oxide MnCo2O4 complex hollow structures and found that with proper manipulation of 

ramping rates (denoted as the R value) during the heating process thus disturbing the balance 

between the cohesive force and the adhesive force, lead to the formation of mesoporous spheres, 

hollow spheres, yolk-shell spheres, shell-in-shell hollow spheres, and yolk-in-double-shell 

structures. As shown in Scheme 1, we will use the solid MnCo-glycolate submicrospheres as a 

precursor to establish some general principles in the hollowing process for fabrication of complex 

MnCo2O4 hollow spheres. More specifically, there exisits a temperature gradient (ΔT) for the 

MnCo-glycolate solid spheres along the radical direction in the initial heating period. When ΔT is 

very low (R value is 0.5 in this experiment), the solid spheres are almost homogeneously from the 

surface to the center and thus transfer into MnCo2O4 porous spheres with the mass loss of organic 

component. When ΔT is high (R value is no less than 1.0 in this experiment), the heating process 

are heterogeneous and non-equilibrium then two opposite directions of the cohesive (σco) and 

adhesive forces (σad) exert at the interface of the MnCo2O4 shell and the composite yolk. When the 

σad exceeds σco in high ΔT, leading to the diffusion of the yolk into the shell and the formation of 

the MnCo2O4 hollow spheres. If the σco exceeds σad in a large ΔT, the inner yolk will detach from 

preformed shell by the continuing calcinations, thus resulting in various hollow spheres with 

multilevel interiors, depending on the ΔT from the R value for the inner solid spheres. Interestingly, 
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when tested as anode materials in lithium ion batteries, the MnCo2O4 submicrospheres with a 

yolk-shell structure showed the best performance among these multilevel interior structures 

because this structure can not only supply a high contact area but also maintain a stable structure. 

The reaction of Mn(CH3COO)2∙4H2O and Co(CH3COO)2∙4H2O with polyvinyl pyrrolidone 

(PVP, Mw ~1300000) in ethylene glycol (EG) solvent at 170 °C can yield MnCo-glycolate, as 

indicated by the XRD pattern shown in Fig. S1 (Supporting Information; SI), which is 

characteristic of metal glycolate.19 The morphologies of the as-prepared carbonate precursors were 

investigated by field emission scanning electronic microscopy (FESEM) and transmission electron 

microscopy (TEM), and the panoramic views (Fig. S2; SI) revealed monodisperse solid 

sphere-like structures with the diameter of ~300 nm. The thermogravimetric analysis (TGA) curve 

of the precursor in Fig. 1(a) indicates that there are two major weight loss steps: the first weight 

loss below 200 °C is attributed to the loss of physically and chemically adsorbed ethylene glycol 

or other organic molecules,9 while the second prominent one is due to the thermal decomposition 

of the MnCo-glycolate into MnCo2O4. The differential TGA (DrTGA) curve shows a sharp 

exothermic peak at 274.2 °C, corresponding to the dominant mass loss (43.9 wt%). The large 

weight loss indicates that the MnCo-glycolate consisted of a large fraction of species including 

CH3COO-, PVP, and partially polymerized EG. To ensure the complete decomposition of the 

precursor, we chose 400 °C as the calcination temperature for the synthesis of MnCo2O4. 

Interestingly, after calcining at different heating rates from 0.5 to 7 °C/min under atmosphere, 

spinel MnCo2O4 phases with different structures were obtained, as was confirmed by the X-ray 

diffraction patterns, which can be characterized as face-centered-cubic (fcc) MnCo2O4 (space 

group Fd3m (227); JCPDS no. 23-1237) indicated by the XRD patterns in Fig. 1(b).  

Nitrogen sorption isotherms were collected to investigate the porous structure and the 

Brunauer–Emmett–Teller (BET) surface areas of these hollow structures with different interiors, 

and the results are shown in Fig. 1(c) and (d). All the isotherms are very similar and classified as 

type IV, with a type H1 hysteresis loop, indicating that these structures are mesoporous,20,21 while 

the areas of the loops are different, which reflects the different specific surface areas. The values 

of the BET surface areas are shown in Table S1 (Supporting Information), and the results indicate 

that the yolk-shell submicrospheres possess the largest surface area, while the mesoporous spheres 

possess the smallest one, although the latter one exhibits the narrowest pore size distribution, 

which is beneficial for maintaining the structure. These submicrospheres, with a hierarchical 

mesoporous structure, permit the electrolyte to easily penetrate through the mesopores and make 

close contact with the inner–outer surfaces of numerous primary particles, possibly resulting in a 

considerable improvement in the electrochemical properties. We also carried out X-ray 

photoelectron spectroscopy (XPS) of the hollow MnCo2O4 submicrospheres, as shown in Fig. S3 

(SI). The results indicate that the solid-state redox couples Mn3+/Mn2+ and Co3+/Co2+ coexist in 

the structure, which is similar to what has been previously reported.18 The ratios are shown in 

Table S1 based on the areas of deconvoluted peaks. 
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In contrast to the carbonate precursor reported in previous work,12-16,18 the MnCo-glycolate 

could yield a large weight loss due to the presence of a large amount of organic species by heating 

under atmosphere, the progress of which well controlled the different types of interiors. As 

commonly observed, the TEM and FESEM images in Fig. 2 indicate that the spheres obtained at 

different heating rates (from 0.5 to 7 °C/min) are various hollow structures with multilevel 

interiors, ranging from mesoporous to yolk-in-double-shell structures. Fig. 2(a) (from a1 to a2) 

shows that the mesoporous structures are obtained under the R value of 0.5 °C/min. The diameters 

of the submicrospheres are ~ 250 nm, smaller than for the precursor due to the inward shrinkage 

during the calcination process. The SEM image in Fig. 2(a3) indicates that the submicrospheres are 

also uniform and their surfaces are rough, demonstrating the porous structure due to the release of 

the organic component. When R is increased to 1 °C/min, obvious hollow submicrospheres are 

produced (Fig. 2(b1-b3)) with shell thickness of ~70 nm. The FESEM image in Fig. 2(b3) clearly 

shows several broken sphere-like particles with a hollow cavity. The yolk-shell structures are 

fabricated under the R value of 2 °C/min, as indicated in Fig. 2(c1). The high magnification TEM 

image shows that the particles are composed of a thin shell with a dense yolk in diameter of 150 

nm. A cracked submicrosphere fragment further confirms the formation of yolk-shell structures in 

Fig. 2(c3). When R rises to 5 °C/min, shell-in-shell hollow spheres with very thin walls (~20 nm) 

are obtained in Fig. 2(d1-d2). The FESEM image in Fig 2(d3) clearly shows the hollow structures 

with double shells. Fig. 2(e1) and (e2) demonstrate that more complicated yolk-in-double-shell 

structures form when the R value is increased to 7 °C/min. From the FESEM image (Fig. 2(e3)), it 

can be clearly observed that the shells of most fragments of hollow spheres are collapsed due to 

the large space and the thin shell, like deflated balloons, but not broken. When R continues rising 

to 10 °C/min or a higher temperature, the spherical structures broke into pieces (not shown here). 

In summary, by adjusting the heating rates, we can easily synthesize MnCo2O4 hollow spheres 

with multilevel interiors.  

In order to further investigate the crystallinity and internal homogeneity, detailed information 

on the structure and local atomic composition of the MnCo2O4 yolk-shell submicrospheres was 

further acquired by high resolution TEM (HRTEM) and energy dispersive X-ray spectroscopy 

(EDX) analysis. The representative HRTEM image of Fig. 3(b) at the edge of a single particle 

(marked in Fig. 3(a)) displays distinct lattice fringes with an interplanar distance of 4.75 Å and 

2.90 Å, corresponding to the spacings of (111) and (220) planes, respectively, of MnCo2O4 

crystals. The selected area electron diffraction (SAED) pattern (inset in Fig. 3b) indicates the 

polycrystalline nature of the spheres, and all the diffraction rings can be indexed as (111), (220), 

(311), (400), (511), and (440) planes from the inside out, respectively, corresponding to the XRD 

patterns. In addition, the chemical compositions of the MnCo2O4 yolk-shell submicrospheres are 

confirmed by energy-dispersive X-ray spectroscopy (EDX) analysis (Fig. 3(c)), which indicates an 

atomic Mn/Co ratio of 1:2, wherein the elements C and Cu are from the copper grid, and no other 

impurity is detected. 
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The electrochemical properties of the as-prepared yolk-shell spheres were investigated by cyclic 

voltammetry. As shown in Fig. 4(a), when the electrodes are scanned cathodically from 3.0 to 0.01 

V in the first cycle at a scan rate of 0.1 mV s-1, an intense peak with the characteristics of the 

reduction potential is located at ~0.57 V, which can be assigned to Mn2+/Mn0 and Co3+/Co0. In the 

following anodic polarization process, one weak peak centered at 1.53 V could be ascribed to the 

oxidation of Mn0/Mn2+. Another broad peak is recorded in the range of 1.8-2.3 V, corresponding to 

the complex phase transformation of Co0/Co2+. In the subsequent four cycles, a decrease in the 

reduction peak intensity could be observed with a shift of the potential (0.82 V) to the positive 

direction, which reflects the irreversible electrochemical reaction during the first discharge cycle.22 

From the second cycle onwards, both the reduction and the oxidation peaks overlap very well, 

indicating that these two electrodes exhibit good stability and cyclability for the insertion and 

extraction of lithium ions. Based on the above analysis, the lithium insertion and extraction 

reactions for our porous MnCo2O4 electrode are believed to proceed as follows, similar to our 

previous report:18 

 MnCo2O4 + 8Li+ + 8e- → Mn + 2Co + 4Li2O     (1)    

                  Mn + 2Co + 3Li2O ↔ MnO + 2CoO + 6Li+ + 6e-   (2) 

  Fig. 4(b) shows discharge-charge curves of the electrodes made from the MnCo2O4 yolk-shell 

submicrospheres at a current of 400 mA g-1 at room temperature in a potential window between 

0.01 V and 3.0 V (vs. Li+/Li). The initial discharge capacity is 1425 mAh g-1, which is higher than 

the theoretical value (906 mAh g-1) based on the conversion reaction of Equation (1). Omitting the 

capacity of the first discharge platform (about 750 mAh g-1), the remaining extra capacities of 

about 675 mAh g-1, corresponding to the two slope ranges, are mainly ascribed to two factors: the 

formation of the solid electrolyte interface (SEI) film23 and the organic polymeric/gel-like layer.24 

Comparing them, the first one is irreversible, as demonstrated by the following discharge cycles; 

the latter one originates from the reversible formation/dissolution of an organic polymeric/gel-like 

layer by electrolyte decomposition, which could deliver an extra capacity through a so-called 

“pseudo-capacitive behavior”.24 It can be seen that the initial specific charge capacity is about 

1119 mAh g-1, indicating a capacity loss of 306 mAh g-1 and a charging retention of 78.5%. From 

the following cycles onwards, the discharge capacity of the platform is about 670 mAh g-1, which 

is very close to the theoretical capacity (680 mAh g-1) based on the reversible reaction (2). The 

unique structure with porosity and yolk-shell architecture is also considered as another important 

factor. Other structures including porous spheres, hollow spheres, shell-in-shell spheres, and 

yolk-in-double-shell spheres also exhibit the similar shape and plateau except the capacity values, 

as indicated in Fig. S4 (SI). 

As is well known, mesoporous structures can stabilize the structural integrity of electrodes, thus 

improving the cyclability, while hollow structures can enlarge the contact areas between the 

electrode and electrolyte, thus improving the specific capacity of the electrode. To determine 

which structure is most appropriate for anode material, we investigated all these five samples, 
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including porous spheres, hollow spheres, yolk-in-shell spheres, shell-in-shell spheres, and 

yolk-in-double-shell spheres as the targets for electrochemical performance testing. Fig. 4(c) 

shows the charge/discharge capacity versus cycle number for the electrodes made from the 

MnCo2O4 submicrospheres with multilevel interiors at a current density of 400 mA g-1. We clearly 

observe that in the first cycle, the discharge capacities of all these electrodes decrease rapidly, 

which is due to the irreversible reactions, as mentioned above. Obviously, for the discharge 

capacity of the first several cycles, the electrode made from yolk-shell spheres possesses the 

highest capacity; the shell-in-shell spheres take the second place, and then the hollow spheres, 

yolk-in-double-shell spheres, and porous spheres. These results are almost consistent with the 

BET results (as shown in Table S1). It can be found that the sample with the larger special surface 

area possesses the higher discharge capacity. However, with increasing the cycling numbers, the 

discharge capacities for all these samples decay gradually and it’s very common for metal oxides 

because of the polarization and pulverization of the electrode. Finally, it can retain a stable value 

after cycling. From the curves of cycling life, we can only conclude that the yolk-shell sphere is 

the best one among these five samples. The capacity retention curves (defined as: certain cycle 

discharge capacity/2nd cycle discharge capacity ×100%), which would reflect the overall 

application performance, give the clear order of yolk-shell spheres, hollow spheres > mesoporous 

spheres > shell-in-shell spheres, yolk-in-double shell spheres. Therefore, based on the result above, 

the yolk-shell sphere shows the best electrochemical performance. The possible reason for this 

phenomenon is that the yolk-shell spheres not only possess the highest specific surface area, but 

also maintain the integrity of their hierarchical structure, both of which are beneficial for 

improving the capacity and cyclability. Compared with the shell-in-shell spheres and the 

yolk-in-double-shell spheres, the mesoporous ones exhibited smaller specific surface areas and 

consequently, lower discharge capacity, but they had more stable structure and better capacity 

retention. Therefore, we concluded that both high specific surface area and good integrity are two 

key factors for the micro-/nanostructures as suitable anode materials.  

In summary, we have devised a novel two-step method to prepare uniform hollow MnCo2O4 

submicrospheres with multilevel interiors, including mesoporous, hollow, yolk-shell, shell-in-shell 

and yolk-in-double-shell spheres. The first step involves the facile synthesis of uniform 

metal-glycolate submicrosphere. In the second step, the MnCo-glycolate submicrospheres are 

simply annealed in air at different heating rates to generate the unique MnCo2O4 hierarchical 

hollow submicrospheres. Interestingly, when tested as anode materials, the MnCo2O4 

submicrospheres with a yolk-shell structure showed the best performance among these multilevel 

interior structures. In addition, this general route can also be expanded to synthesize other mixed 

metal oxides with respect to the facile preparation and the high yield of the product. 
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Scheme 1. Formation process of MnCo2O4 hollow submicrospheres with different interiors calcined at different 

heating rates from MnCo-glycol precursors: (i) mesoporous spheres (0.5 °C/min); (ii) hollow spheres (1.0 °C/min); 

(iii) yolk-shell spheres (2.0 °C/min); (iv) shell-in-shell spheres (5.0 °C/min); (v) yolk-in-double-shell structures 

(7.0 °C/min). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. TGA (solid line) and DrTGA (dashed line) curves (a) for the MnCo-glycolate precursor calcined in air. (b) 

Typical XRD patterns, (c) nitrogen physisorption isotherms, and (d) pore size distributions of the five samples 

calcined at different heating rates from 0.5 °C/min to 7.0 °C/min.  
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Fig. 2. TEM (a1-e1, a2-e2) and FESEM (a3-e3) images of MnCo2O4 submicrospheres with multilevel interiors 

annealed at 400 °C in air by controlling different heating rates (R): (a1-a3) mesoporous spheres (0.5 °C/min); (b1-b3) 

hollow spheres (1.0 °C/min); (c1-c3) yolk-shell spheres (2.0 °C/min); (d1-d3) shell-in-shell spheres (5.0 °C/min); 

(e1-e3) yolk-in-double- shell spheres (7.0 °C/min). 
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Fig. 3. TEM image (a) of a single yolk-shell submicrosphere. HRTEM image (b) at the edge of the submicrosphere 

with the corresponding SAED pattern (the inset) and (c) the corresponding EDX spectrum.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The first five consecutive cyclic voltammograms (a) at a scan rate of 0.1 mV/s in the voltage range of 

0.01-3.0 V vs. Li+/Li, and discharge/charge profiles for selected cycles (b) of the electrode made from yolk-shell 

submicrospheres. (c) Cycling performance and (d) capacity retention of the electrodes composed of mesoporous 

spheres, hollow spheres, yolk-shell spheres, shell-in-shell spheres and yolk-in-double-shell spheres, respectively. 

Element Weight

 

Atomic

 Mn K 12.55 5.01 
Co K 25.84 9.62 

O K 25.69 35.22 

C K 25.49 46.55 

Cu K 10.43 3.60 

Totals 100.00 100.00 
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