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Abstract: 

In this study, LiNi0.5Mn1.5O4 (LNMO) nanoparticles were prepared as a 5 V cathode material 

via a rheological phase method and annealed at different temperatures: 680 ºC, 750 ºC, and 

820 ºC. The sample annealed at 750 ºC shows the best performance. A room temperature 

ionic liquid (RTIL) containing 1 M lithium bis(trifluoromethanesulfonyl) imide (LiNTf2) in 

N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide (C4mpyrNTf2) was 

used as novel electrolyte in conjunction with the LNMO cathodes and their electrochemical 

properties have been investigated. The results show that the LNMO using RTIL as electrolyte 

has better coulombic efficiency and comparable discharge capacities to those of the cells 

assembled with standard liquid electrolyte (1 M LiPF6 in ethylene carbonate/ diethyl 

carbonate). Electrochemical impedance spectroscopy shows that the RTIL is much more 

stable as the electrolyte for LiNi0.5Mn1.5O4 than the conventional electrolyte. 

Keywords: Lithium-ion battery; ionic liquid; LiNi0.5Mn1.5O4 nanoparticles; cathode materials; 

rheological phase method. 

 

  



 

1. Introduction: 

The search for cathode materials and electrolytes with high voltage capacity for lithium-ion 

batteries has been intense in recent years, since the capacity of a lithium-ion battery is 

normally limited by the cathode material due to the safety concerns. In recent years, 

LiNi0.5Mn1.5O4 (LNMO) has attracted considerable attention from many research groups in 

the field of energy storage, owing to its high specific energy of 658 Wh kg
-1

 [1-3], which is 

much higher than commercially available cathode materials such as LiCoO2 (518 Wh kg
-1

), 

LiMn2O4 (400 Wh kg
-1

), LiFePO4 (495 Wh kg
-1

), and LiCo1/3Ni1/3Mn1/3O2 (576 Wh kg
-1

). 

The major charge/discharge reactions of LiNi0.5Mn1.5O4 take place, however, at ~ 4.7 V (vs. 

Li/Li
+
), which is beyond the stability potential (~4.5 V) of conventional electrolytes (LiPF6 

dissolved in carbonates, such as ethylene carbonate (EC), dimethyl carbonate (DMC)/diethyl 

carbonate (DEC)) [4]. The use of an unstable electrolyte in the high potential range of LNMO 

results in low coulombic efficiency, which is a major handicap for the commercial of LNMO. 

Therefore, it is worthwhile to search for highly stable electrolytes for LNMO to improve the 

coulombic efficiency. 

Since Wilkes and Zaworotko reported on room temperature ionic liquids (RTILs) based on 

the 1-ethyl-3-methylimidazaolium cation and the tetrafluoroborate anion [5], several research 

groups have focused their work on the development of RTIL electrolyte for lithium batteries. 

RTILs have shown potential as safe electrolytes for use in lithium ion battery systems, due to 

their attractive properties, such as electrochemical stability (4.0-5.7 V), thermal stability, and 

high ionic conductivity [6-8]. In addition, owing to the high reduction dissolution of the 

active material into conventional organic electrolytes, RTIL for electrolytes can obviously 

improve the performance of lithium batteries using certain cathode materials, such as S [9, 

10], NiS-Ni7S6 [11], V2O5 [12], and LiV3O8 [13]. Among the various RTILs, electrolytes 



based on pyrrolidinium systems combined with a lithium salt can be considered as a good 

benchmark for ionic liquid-based electrolytes. This is because popular imidazolium salts 

show a window of stability of ~ 4 V, while pyrrolidinium salts, especially those based on 

imide anions, can show electrochemical stability as high as 6 V [6]. Meanwhile, it has been 

reported that lithium bis(trifluromethanesulfonyl) amide (LiNTf2), had a beneficial effect on 

solid electrolyte interphase (SEI) formation on the lithium electrode surface, which plays a 

key role in terms of  the lifetime and safety characteristics of lithium batteries [14].  In a 

previous work [15], the ionic liquid lithium bis(trifluoromethanesulfonyl) imide (LiNTf2) in 

N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyle) imide (C4mpyrNTf2) 

exhibited relatively high conductivity and low viscosity with 0.5 mol/kg of LiNTFf2. 

Furthermore, the LiNTf2-C4mpyrNTf2 system can allow lithium to be cycled with a high 

degree of reversibility as well, while uniform lithium deposit morphology over many cycles 

could be achieved at moderate current densities and cycling efficiencies exceeding 99 % have 

been obtained [16]. 

In this study, LiNi0.5Mn1.5O4 was prepared by via a rheological phase method. 1 M LiNTf2 in 

C4mpyrNTf2 was used as a new electrolyte for Li/LiNi0.5Mn1.5O4 cells without additives, and 

the relationship between the electrolyte characteristics and the performance of 

Li/LiNi0.5Mn1.5O4 cells was studied in detail. The electrochemical performance shows that the 

LiNi0.5Mn1.5O4 nanoparticles using 1 M LiNTf2 in C4mpyrNTf2 as electrolyte show 

comparable capacity to that with conventional electrolyte (1 M LiPF6 in EC: DEC = 1:2 

(v/v)), as well as significantly improved coulombic efficiency. 

2. Experimental 

2.1 Synthesis of LiNi0.5Mn1.5O4 



The starting materials were analytically pure LiOH, Ni(CH3COO)2·4H2O, 

Mn(CH3COO)2·4H2O, and citric acid. The LiOH, Ni(CH3COO)2·4H2O, 

Mn(CH3COO)2·4H2O, and citric acid were mechanically mixed in the molar ratio of 

1:0.5:1.5:3.6 in an agate mortar. After the mixture was ground homogeneously, an 

appropriate amount of water was added to the powder to obtain a rheological phase state 

mixture. The mixture was then heated at 90 °C for 12 h, and a precursor was obtained. After 

that, the precursor was first sintered at 580 °C for 5 h and then was heated at 680 ºC, 750 ºC, 

and 820 °C for 8 h in air, respectively. 

2.2 Materials characterization 

Phase analysis of the LiNi0.5Mn1.5O4 nanoparticles was conducted by X-ray diffraction (XRD; 

Philips PW1730). The morphology and structure of the LiNi0.5Mn1.5O4 were examined by 

field emission scanning electron microscopy (FESEM) using a JEOL FESEM-7500 30 kV 

instrument and the specific surface areas were determined by the Brunauer-Emmett-Teller 

technique (BET, Quanta Chrome Nova 1000). 

2.3 Electrochemical characterizations 

To test their electrochemical performance, the LiNi0.5Mn1.5O4 samples were mixed at a rate of 

80 wt% active materials with 10 wt% carbon black and 10 wt% polyvinylidene fluoride 

(PVDF). The slurry was uniformly pasted onto pieces of Al foil with an area of 1 cm
2
 and 

dried in a vacuum at 100 ºC for 24 h. Then, the electrodes were compressed before making 

the cells. Two kinds of electrolytes were used, including a home-made organic solvent-based 

electrolyte, consisting of 1 M lithium bis(trifluoromethanesulfonyl) amide (LiNTf2) in N-                                                                                                                                                                                                                                                                                             

butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) amide (C4mpyrNTf2), and a 

conventional organic solvent-based electrolyte consisting of 1 M LiPF6  in a 1:2 (v/v) mixture 

of ethylene carbonate and diethyl carbonate. The coin-type cells (CR2032) were assembled 



with a lithium metal counter electrode in an argon-filled glove box. Galvanostatic 

charge/discharge cycling was conducted using Land Battery Testers in the potential range of 

3.5-5.1 V at a current density of 0.1 C (1 C = 140 mA g
-1

). Electrochemical impedance 

spectroscopy (EIS) was conducted using a Biologic VMP-3 electrochemical workstation for 

different potential and cycling states.      

3. Results and Discussion 

3.1 Structure and morphologies: 

Figure 1 presents the XRD patterns obtained from the LNMO powders. All the samples show 

diffraction peaks characteristic of the cubic spinel structure (space group = Fd3m, JCPDS 

#32-0581). For the sample annealed at 820 °C, very weak impurity peaks indexed to LixNi1-

xO are detected at the left shoulders of the (400) and (222) peaks. This is an ordinary 

occurrence, as this impurity originates from the Ni content, and the oxygen loss in samples 

annealed at high temperature reduces the amount of Ni in the spinel phase [2, 17, 18]. The 

intensity ratio of (4,0,0)/(3,1,1) increased as the temperatures rise, indicating presence of 

relatively extensive transition metal cation substitution in tetrahedral 8a sites of the spinel-

type structure [19]. In previous research, Ohzuku et al. [20] have pointed out the occupancy 

of the 8a tetrahedral lithium sites by substituent ions will lead to some unfavourable 

electrochemical characteristics. For the sample annealed at 750 °C, the (4,0,0)/(3,1,1) 

intensity ratio is only 0.69, which is much smaller than for the others (0.89 at 680 °C and 

0.97 at 820 °C). In this regard, the sample annealed at 750 °C is expected to show the best 

performance.                                   

N2 adsorption-desorption studies were also performed to determine the specific surface area 

of the LNMO. The Brunauer-Emmett-Teller (BET) surface areas were found to be 19.1, 16.5, 



and 5.5 m
2
 g

-1
 for the samples annealed at 680 °C, 750 °C, and 820 °C, respectively. A 

further increase in the reaction temperature leads to a smaller surface area of the sample.   

Typical scanning electron microscope (SEM) images of the samples are presented in Figure 2. 

Fig. 2a shows that the sample annealed at 680 °C was composed of big secondary particles 

with rough surface compared to other samples in this study. The higher magnification SEM 

image in Fig. 2d shows that the primary particle size is in the range of 50-150 nm. The 

secondary particle size of the sample annealed at 750 °C is with an average diameter of 5 µm 

(Fig 2b). The primary particle size is approximately 100 nm (Fig 2e). As shown in Fig. 2 (c, 

g), well-defined particles 200-300 nm in diameter could be obtained after annealing at 820 °C. 

Therefore, the sample annealed at lower temperature has a relatively smaller particle size, and 

the result is consistent with the above BET analysis.  

3.2 Electrochemical characterization 

Figure 3(a-c) compares the charge-discharge voltage profiles of the Li/LNMO cells for the 

three samples in EC/DEC electrolyte. Figure 3(d) shows charge-discharge curves for the 

sample annealed at 750 °C in RTIL electrolyte. It should be noted that the cells with 

conventional electrolyte exhibit potential fluctuation at potentials higher than 5 V vs. Li/Li
+
 

for the initial charge, which can be attributed to electrolyte oxidation. Initial charge-discharge 

capacities and coulombic efficiencies for all cells are summarized in Table 1. The cells 

containing RTIL showed comparable discharge capacities and much higher coulombic 

efficiency compared to the conventional organic electrolyte. The extra charge consumption in 

the charging (oxidation) period for the conventional electrolyte can be related to the 

electrolyte decomposition and concomitant film deposition. The cells were successfully 

cycled in following cycles, however, suggesting the formation of a fairly stable solid 

electrolyte interphase (SEI), which protects the electrolyte against further degradation [21, 



22]. In contrast, the cell was successfully cycled in RTIL, indicating that the electrolyte 

decomposition and film deposition are not severe in RTIL electrolyte. For the sample 

annealed at 820 ˚C, the small plateau at 4.1 V is due to the Mn
3+

/Mn
4+

 redox couple caused 

by excessively fast cooling and oxygen deficiency during cooling of the sample [2]. Indeed, 

X-ray diffraction of this sample shows the presence of the impurity LixNi1-xO phase. The 

main charge plateau at 4.7 V is attributed to the Ni
2+

/Ni
4+

 redox couple [23]. Furthermore, the 

potential corresponding to the transformation of Ni
2+

 to Ni
4+

 in the ionic-liquid-based 

electrolyte was lower than in the conventional electrolyte due to the lower ionic conductivity 

of RTIL at room temperature. This phenomenon has been observed in previous work on 

ionic-liquid-based electrolyte for lithium batteries [9, 10].  

Figure 4 presents the coulombic efficiency of the samples in the different electrolytes. In 

general, coulombic efficiency steadily increased and then stabilized with cycle number. It is 

clear that the cells with RTIL electrolyte show much better performance than those with 

conventional electrolyte. The sample annealed at 750 °C shows the best coulombic efficiency 

among the three samples examined under the present experimental conditions. For 

conventional electrolyte, the average efficiency for the first fifteen cycles is 75.9 %. In 

contrast, the cell using RTIL has 88.6 % coulombic efficiency for the first fifteen cycles, 

which may be because the formation of a stable surface film on the electrode in RTIL is more 

favourable than in the conventional electrolyte [14]. This means that RTIL can improve the 

coulombic efficiency of LNMO. These features will be evidenced in the following 

electrochemical impedance spectroscopy (EIS) section. 

Figure 5 shows discharge capacity versus cycle number for cells based on the different 

samples in different electrolytes. The sample annealed at 750 °C has the highest capacity. 

The capacities of LNMO with conventional electrolyte were higher than for samples with 

ionic liquid-based electrolyte. Similar performance has also been observed for LiFePO4 [24] 



and LiCoO2 [25]. This can be explained by the dissolution of [Li
+
] [NTf2

-
] salt in the 

[C4mpyr
+
] [NTf2

-
] ionic liquid, leading to a ternary system [Li

+
]m[C4mpyr

+
]n[NTf2

-
](m+n) with 

increased viscosity and lower conductivity, at the level of 1-2 mS cm
-1

 [26, 27]. The highly 

viscous electrolyte causes an increase in both electrolyte resistance and charge transfer 

resistance at the electrode/electrolyte interface. It leads to poor impregnation of the electrodes 

as well [28].  

In order to gain further understanding of the differences in the electrochemical performance 

between the conventional and the ionic liquid electrolytes, the sample annealed at 750 °C, 

which had the highest capacity, was selected for EIS testing in different electrolytes. Before 

the EIS measurements, all the samples were charged to various potentials and maintained at 

charged potentials of 4.7 V and 5.1 V for 2 h. Fig. 6 shows the EIS results for lithium cells in 

the charged state at the 1
st
 and 6

th
 cycles. The impedance spectra reflect several processes that 

take place in series: Li migration through surface films, charge transfer, solid-state diffusion, 

and finally, accumulation of Li in the bulk of the active mass. According to previous 

impedance spectroscopy studies, the resistance associated with the higher frequency 

semicircle (typically, 300 Hz < f), Rfilm, is assigned to lithium-ion diffusion through surface 

films, and the charge-transfer resistance associated with the lower-frequency semicircle 

(typically, 0.1 Hz < f < 10 Hz), Rct, is related to Li ion transportation across the surface film 

active mass interface [29]. Their values calculated from the diameters of the high-frequency 

and the medium-to-low frequency semicircles in the Nyquist plots for the electrodes are 

summarized in the Table 2. In general, the interfacial resistance continuously increased with 

the potential, which can be attributed to the formation of passive layer due to the reactivity of 

the lithium electrode and the electrolyte. It should be noted that the results obtained using 

RTIL electrolytes at 4.7 V are completely different from others. The impedance curves show 

one compressed semicircle related to the greatest frequency range of interest (high to low 



frequencies) instead of separation of the different features. It means the electrode with RTIL 

is stable enough and Rf is low at the high frequencies, then the Nyquist plot becomes a steep 

line. The higher Rf is observed in the cell assembled with conventional electrolyte, while the 

cell assembled with RTIL has small value of Rf. As mentioned previously, it is because the 

RTIL leads to the formation of a stable SEI that protects against a further reductive 

decomposition of the electrolyte on the electrode, which permits the reversible migration of 

Li
+
 ions through SEI. On the other hand, the charge-transfer resistance (Rct) in RTIL is higher 

than that in conventional electrolyte for its highly viscosity. Furthermore, it has been reported 

that in the LiPF6 solution LiF is a major constituent on the electrode surface, due to the 

reaction of the active surface with trace HF, which is unavoidably present [30]. Whenever 

LiF films are formed on the electrodes, their impedance becomes very high because of the 

high resistivity of LiF films so far as Li ion transport is concerned [31]. Accordingly, the cell 

assembled with the conventional electrolyte is shown to have much higher overall resistance 

than the cell with RTIL. After 5 cycles, it should be noted that the impedance in both types of 

electrolyte is reduced due to the stabilized SEI layer on the electrode surface. 

4. Conclusions: 

In summary, LiNi0.5Mn1.5O4 nanoparticles can be prepared by a rheological phase method. 

RTIL (C4mpyrNTf2) can be a better electrolyte than the conventional alternative for 

LiNi0.5Mn1.5O4 electrodes, as it improves the coulombic efficiency. The cell using RTIL as 

electrolyte shows a higher initial coulombic efficiency of 66.4%, while the cell using 

conventional electrolyte only shows an initial coulombic efficiency of 45.7 %. The results 

suggest that RTIL could be a promising electrolyte for LiNi0.5Mn1.5O4 cells in terms of non-

flammability, safety, and better electrochemical performance. 
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Figure Captions 

 

Figure 1. XRD patterns of the samples annealed at different temperatures: 680 °C, 750°C, 

and 820°C. (° indicates impurities.) 

 



Figure 2. SEM images of samples annealed at different temperatures: 680 °C (a, d), 750 °C 

(b, f), and 820 °C (c, g). 

 

Figure 3. Charge-discharge curves for selected cycles for LiNi0.5Mn1.5O4 electrodes made 

from samples sintered at different temperatures and used with conventional electrolyte or 

RTIL electrolyte. 



 

Figure 4. Coulombic efficiency of LiNi0.5Mn1.5O4 electrodes with conventional and RTIL 

electrolytes.  

 

Figure 5. Cycle life of LiNi0.5Mn1.5O4 annealed at different temperatures: (a) with RTIL 

electrolyte and (b) with conventional electrolyte. 



 

Figure 6 EIS spectra obtained from Li/ LiNi0.5Mn1.5O4 cells for the 1
st
 (top) and 6

th
 (bottom) 

cycles using conventional and RTIL electrolytes. The electrode potentials are 4.7 V (left) and 

5.1 V (right). 

Table 1. Initial charge-discharge capacities and coulombic efficiencies. 

Electrolyte Capacity (mAh) Coulombic 

efficiency (%) Charge Discharge 

680 °C- Conventional 189.7 98.8 52.1 

750 °C- Conventional 248.2 109.1 45.1 

820 °C- Conventional 216.7 94.4 43.6 

680 °C- RTIL 149.6 100.4 67.1 

750 °C- RTIL 139.2 92.4 66.4 

820 °C- RTIL 154.0 102.4 66.5 

 

Table 2. Rfilm and Rct for different testing states calculated from Nyquist plots for 

LiNi0.5Mn1.5O4 spinel electrodes in different electrolytes. 



  Conventional Electrolyte RTIL 

Testing state 

Rfilm (ohm 

cm
2
) 

Rct (ohm cm
2
)  Rfilm (ohm 

cm
2
)  

Rct (ohm 

cm
2
) 

1st 4.7 V  1003 597 - 1310 

1st 5.1 V 1208 1180 47 1143 

6th 4.7 V 897 554 - 773 

6th 5.1 V 990 1071 52 1311 
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