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Abstract 

Graphene based materials coupled with transition metal oxides are promising electrode 

materials in asymmetric supercapacitors owing to their unique properties which include high 

surface area, good chemical stability, electrical conductivity, abundance, and lower cost 

profile over time. In this paper a composite material consisting of graphene oxide exfoliated 

with microwave radiation (mw rGO), and manganosite (MnO) is synthesised in order to 

explore their potential as an electrode material. The composite material was characterised by 

scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron 

spectroscopy (XPS), and Raman spectroscopy. Cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy (EIS) was used to explore the process occurring at the electrode / 

electrolyte interface. Long term cyclability and stability was investigated using galvanostatic 
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charge / discharge testing. From the resulting analysis, an asymmetric supercapacitor was 

constructed with the best composite containing 90% MnO- 10% mw rGO (w/w). The device 

exhibited a capacitance of 0.11 F/cm2 (51.5 F/g by mass) and excellent capacity retention of 

82% after 15 000 cycles at a current density of 0.5 A/g.  

Key Words: microwave exfoliated graphene oxide, manganosite, and asymmetric 

supercapacitor. 
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1. Introduction 

Within the last decade, there has been an increased effort in the development of new hybrid 

energy storage devices that possess both high energy and high power density which are 

beneficial for creating more energy efficient storage and delivery [1]. Such systems will find 

use in hybrid electric vehicles, mobile electronic devices, memory back up systems and 

industrial equipment that relies on long cycle-life times and uninterruptable power supply [1-

4]. Asymmetric supercapacitors are promising hybrid energy storage devices as they are able 

to provide a wider operating voltage at higher energy compared to symmetric capacitors [5]. 

Such supercapacitors are comprised of an anode that is usually an activated carbon, while the 

cathode is generally a composite consisting of a carbon material and transition metal oxide. 

Asymmetric supercapacitors make use of the different potential windows in the anode and 

cathode leading to an increased operational voltage of the aqueous electrolyte in the cell 

meaning that interfacial capacitance, energy and power density are maximised [5]. Examples 

include the use of an activated carbon anode while the cathode consists of a composite 

containing carbon material and transition metal oxide, with these materials being considered 

promising due to their availability, cost effectiveness and friendly environmental nature [6, 

7].  

Graphene is a one-atom thick, two-dimensional (2D) material composed of sp2 hybridised 

carbon which is a good candidate for energy storage materials due to its superior electrical 

conductivity, mechanical properties, thermal conductivity, high surface area, and its minimal 

cytotoxicity [2, 8]. Graphene nano-sheets were first obtained by mechanical exfoliation 

(“scotch tape” method) of bulk graphite and by epitaxial CVD [9]. Further developments 

have led to graphene, and more generally graphene oxide (GO) to be synthesised by several 

chemical methods like chemical vapour deposition (CVD), micro mechanical exfoliation, 

epitaxial growth, the creation of colloidal suspensions, and inorganic reactions [9, 10]. 
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Chemical means of creating graphene / GO are more viable as these methods are more 

effective for large-scale manufacturing, leading to the development of devices on a 

commercial scale. The exfoliation of GO using microwave irradiation is of particular interest 

as the process can be performed at room temperature, using a conventional microwave 

leading to a marked volume increase of the GO, forming an extremely porous powder [11]. 

Manganosite consists of Mn2+ and O2- molecules forming an octahedral geometry and a cubic 

crystal structure [12]. It has potential for use in hybrid energy storage devices due to its 

quasi-reversible electron transfer that provides high pseudo-capacitative energy density [7]. 

Over the last decade, manganese oxides with different morphologies including rods, 

nanotubes, and nanowires have been developed and characterised [1, 13, 14]. Currently, some 

of the most common methods to make manganese oxide compounds is by using hydrothermal 

synthesis where MnSO4.H2O, KMnO4, MnSO4 are mixed together under high pressure 

allowing the precipitate to form [15, 16]. In our case, the cathode is a composite material 

consisting of manganosite (MnO) and microwave exfoliated graphene oxide (mw rGO) 

providing enhanced energy density due to pseudo-capacitative redox processes [5]. The 

anode is an activated carbon (AC) which due to its formation of many electric double layers, 

high surface area and good electrical conductivity leads to a high rate capability (fast charge / 

discharge) [17].  

It is also important that research in energy storage and conversion not only focus on 

improving energy and power density; attention must also be directed into lowering the 

fabrication costs and maintaining environmental standards so that commercialisation 

becomes economically viable [5, 18]. Recently, much time and effort has been employed in 

developing materials for asymmetric supercapacitors which take into account factors such as 

fabrication costs, environmental concerns, and scalability. These materials include - C // 

RuO2[19], Ni-C // Ni(OH)2 [20], AC // PEDOT [21], Li4Ti5O12 // poly(3-(4-
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fluorophenyl)thiophene) [21], AC // K0.27MnO2·0.6H2O [22], AC //-Fe3O4 [23], Graphene // 

TiO2 [24], Fe3O4 // Graphene [24], MnO2 // CNT [25], and V2O5 – CNT // Li [26]. 

In this manuscript, we report a hybrid electrode architecture that incorporates MnO particles 

onto the active surfaces of an exfoliated GO matrix. For the composite, the microwave 

exfoliated reduced graphene oxide (mw rGO) nanosheets serve primarily as a high surface 

area conductive framework providing support for the adherence of MnO particles. Physical 

characterisation of the composite electrodes has shown the MnO particles to be dispersed 

throughout the mw rGO matrix. Testing of varying weight ratios of MnO and GO revealed 

that the combination of high surface area and redox phenomena yielded an electrode material 

that had a high interfacial capacitance of 0.11 F/cm2 (51.5 F/g by mass of mw rGO, MnO and 

PTFE binder). The main advantage of the MnO- mw rGO composite material is its significant 

capacity retention of 82% over 15 000 cycles which is not common for most carbon / metal 

oxide composites. A recent review of electrochemical performance conducted by Wu et. al. 

details various metal oxides and graphene composites where reported capacity retention for 

Manganese dioxide / graphene sheet composites ranged from 84%-97% between 1000 cycles 

and 5000 cycles respectively [5, 27, 28]. In addition, the interfacial capacitance of 0.11 F/cm2 

is comparable to the required value of interfacial capacitance > 0.10 F/cm2 for commercial 

devices used in peak power demands of pulsed loads in battery-powered electronics [29-31]. 

 

2. Experimental 

 

2.1. Synthesis of graphene oxide 

Graphene oxide was synthesised using a modified Hummers method as outlined by Marcano 

et. al. [9]. In detail, 1 g of graphite powder (Bay Carbon Inc.) was added to 60 ml of 

concentrated (98% w/v) H2SO4 (Univar) and mixed thoroughly for a few minutes. Then 3.5 g 
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of KMNO4 (Sigma-Aldrich) was added in small aliquots so as the temperature did not exceed 

1000C. This mixture was left stirring overnight for 18 hours. 300 ml to 500 ml of distilled 

H2O is added (ice bath condition) to hydrolyse the intercalation compound that forms 

graphite oxide. Lastly, 30% aqueous H2O2 (Univar) (drop wise, approximately 3 ml) is added 

until a complete colour change is observed. The H2O2 is added after hydrolysis to decompose 

permanganate ions into manganese (IV) ions where after the manganese (IV) ions are 

removed by vacuum filtration (PVDF membrane, 0.22 micron pour size) by washing twice 

each with concentrated (36% w/v) HCl (Univar), water, and ethanol. The HCl ensures no 

undesirable manganese hydroxides form, which can get trapped in between the graphene / 

graphite layers [32]. After vacuum filtration the slurry is dried in a vacuum oven overnight at 

500C. Exfoliated GO (mw rGO) was formed by using a conventional microwave oven (1200 

W). After irradiation, the GO glowed red-hot accompanied by fuming and sparking, leading 

to a remarkable volume expansion caused by the violent expulsion of the volatile species 

from the interlayer spaces of the graphene intercalation compound [11, 33].  

 

2.2. Hydrothermal synthesis of manganosite 

The MnO was prepared using a hydrothermal synthesis method at the Materials Science 

Research Centre, Faculty of Science, Chiang Mai University. Potassium permanganate 

(KMnO4, 97% Aldrich, USA) and Manganese sulfate (MnSO4, 97% Sigma, USA) were 

prepared by dissolving in deionised water as 0.1M and 0.6M, respectively. Mixing was 

accomplished by drop-wise addition of 100 ml KMnO4 solution into 100 ml of MnSO4 

solution while stirring. The mixed solution was transferred into a Teflon-lined stainless steel 

autoclave. The hydrothermal synthesis carried out at 140 °C for 12h. After the reaction was 

complete, the autoclave was cooled down to room temperature. The black product was 

washed with deionised water and ethanol, filtered and then dried at 60 °C for 24h [15]. 
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2.3. Fabrication of electrodes 

The fabrication of the working electrode was carried out by employing a similar method to 

that outlined by Yan et. al. [6]. Different mass ratios of MnO and mw rGO in ethanol were 

probe sonicated for 30 minutes. After 30 minutes, PTFE (10 wt. %) dissolved in ethanol was 

mixed into the MnO-mw rGO ethanol mixture and sonicated for a further 30 minutes. The 

resulting solution was then stirred on a hot plate (using a magnetic stirrer) at 60oC for 

approximately 2 hours until the ethanol had sufficiently evaporated and the heat allowed the 

PTFE to bind the material to form a slurry. The four weight ratios of MnO to mw rGO that 

where prepared were; 0% MnO- 100% mw rGO, 60%  MnO- 40 % mw rGO, 70%  MnO- 

30% mw rGO, and 90%  MnO- 10 % mw rGO respectively. Each slurry was then spread over 

a stainless steel mesh using a fine spatula and dried overnight in a vacuum oven at 100oC. 

Standardised practices for composite electrode preparation of transition metal oxides involve 

using a conductive additive and binder to provide a supporting scaffold [34, 35]. MnO by 

itself is a poor conductor (10-9 ohm-1 cm-1) [36], which is why the mw rGO was added to 

provide a conductive scaffold and enhance charge storage and delivery. A film of MnO 

exceeding 90% (w/w) under the same fabrication conditions could not be formed. 

 

2.4. Supercapacitor device fabrication 

For device testing, the positive electrode was made as outlined above in Section 2.3. The 

negative electrode was made out of commercially purchased activated carbon (VC-72, 

Cabot). Firstly, the activated carbon was functionalised by mixing a 70% (w/w) HNO3 

(Univar) and 98% (w/w) H2SO4 (Univar) solution in a 3:1 and bath sonicated for 2 hours. The 

resulting material was then washed with deionised water until a neutral pH was reached. The 

functionalised activated carbon (FC) was then mixed with a PTFE binder (10% w/w) (Sigma-



8 
 

Aldrich) to form a slurry that was subsequently spread onto a stainless steel current collector. 

All electrodes had a geometric area of 1cm2, with an approximate equal mass loading of 4 

mg/cm2. Devices were constructed by sputter coating two pieces of indium tin oxide (ITO) 

glass with 100 nm of Pt to help minimise contact resistance. The two electrodes were pressed 

between the two current collectors with a PVDF separator of thickness 110 microns and 0.22 

micron pore size (Millipore© - Durapore®). A clamp was used to hold the system in place 

(constant force of 156 N), while UV cure glue (Dynman Light Weld) and UV light source 

(Dynmax Blue Wave 50) was used to seal the cell. Lastly, a small hole was left where 1M 

NaNO3 in H2O was added as the electrolyte via vacuum filling, with the hole being sealed 

thereafter with UV cure glue. 

 

2.5.Physical characterisation 

Physical characterisation was achieved by scanning electron microscopy (SEM), x-ray 

diffraction (XRD) and Raman spectroscopy. SEM was able to show the morphology of the 

MnO and mw rGO composite. XRD was employed in order to understand the crystallinity of 

the structure and what type of manganese material was present. Raman spectroscopy was 

used to assess the vibrational properties of the hybrid material. SEM and transmitted electron 

detection (TED) images were obtained from a JEOL JSM-7500FA field emission SEM. For 

SEM and STEM imaging the accelerating voltage was 5.0 kV and 30 kV respectively with 

the emission current being set at 10 μA. Samples for TED imaging were drop cast onto 200 

rest copper grids coated with a uniform carbon-layer (EMS, USA). Energy dispersive x-ray 

(EDS) spectra were taken on a JEOL JSM-6490LA, where the accelerating voltage was 15kV 

and the emission current was 19.5μA. XRD was carried out on a GBC MMA XRD (λ = 1.54 

Ǻ) with the voltage and current kept at -40 kV and 25 mA respectively. Raman spectroscopy 

was carried out on a Jobin-Yvon Horbia 800 using a 632.81 nm laser. The data analysis was 
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carried out using Labspec V.5.45.09 software. X-ray photoelectron spectroscopy (PHOIBOS 

100 hemispherical energy analyser from SPECS) was done using Al, Kα radiation (1486.6 

eV) in fixed analyser transmission mode. 

 

2.6.Electrochemical characterisation 

The electrochemical properties of the MnO- mw rGO composites were studied in both two 

electrode (device) and three electrode systems by cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS). The CV response of the electrodes in the 

three-electrode set-up was measured at 50 mV/s using an EDAQ Australia™ system with 

EChem V 2 software (ADI Instruments Pty. Ltd) with a potential difference of 1.1 V. All EIS 

measurements were performed at room temperature where the frequency range spanned 100 

kHz to 0.01 Hz with an AC amplitude of 10 mV (rms) using a Gamry EIS 3000™ system. The 

three electrode set-ups for CV and EIS measurements were relative to an Ag/AgCl (aqueous) 

reference electrode, with a Pt mesh counter electrode (1.7 cm2).  

For long-term cyclability of the device, Galvanostatic cycling tests were carried out with a 

Neware potentiostat, Test Controlª V.5.0 software, able to record a point every 1s. The 

potential window studied was between 0 V and 1.1 V. In all tests, the electrolyte used was 

aqueous 1 M NaNO3 as it is cheap, non-corrosive and has very good conductivity. Equivalent 

circuit modelling and values for Rs, Rp, Rct, Cdl, Cf, fp were obtained using ZViewTM V 3.2, 

Scribner Associates. 

 

3.  Results & Discussion 
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3.1. Scanning electron microscopy 

The SEM images shown in Figure 1a and Figure 1b are of the raw GO and mw rGO powders 

whilst the images of Figure 1c and Figure 1d are of GO and mw rGO that have been drop cast 

onto a TEM grid. From Figure 1, some qualitative observations can be made. Firstly, in 

Figure 1a, the SEM is of the GO after it has been washed and dried as outlined in Section 2.1. 

It can be seen that its structure is very uniform, containing valleys and elevated regions, 

which reflect vast amounts of sheet stacking. In Figure 1b, after microwave irradiation; the 

GO expands leading to the development of an accordion type structure that is highly porous, 

forming an interconnected network with minimal re-stacking [11]. Optical image 

comparisons are shown in the insets of Figure 1a and Figure 1b. In Figure 1c, the GO that has 

been drop cast onto a TEM grid, is extremely flat indicating uniform GO sheets. In Figure 1d, 

the mw rGO was also drop cast onto a TEM grid, with the ensuing images depicting mw rGO 

sheets that have a crumpled shape. This crumpling effect adds porosity to the system and 

hence surface area, which could play a key role in the development and preparation of 

composite electrode materials. 

3.2. Physical characterisation of graphene oxide 

The Raman spectra of GO shown in Figure 2a is characteristic of a sp2 hybridised material 

that contains defects on the graphene / graphite basal planes. The D band peak of GO is 

associated with the disorder degree of graphene occurring at 1328 cm-1; while the G band 

peak associated with first order scattering of the stretching vibration mode E2g observed for 

sp2 carbon domains occurs at 1586 cm-1 [2]. After microwave irradiation, there is a slight 

shift in both D and G band peaks to 1343 cm-1 and 1591 cm-1 respectively, and the ratio of the 

G/D band increased from 0.8 to 0.9. This increase suggests a slight reduction of the GO. A 

very weak 2D peak is present at 2616 cm-1 which is characteristic of chemically converted 

graphene oxide as full conversion to pure graphene does not occur [2]. Microwave irradiation 
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of the GO led to exfoliation through the removal of volatile species from the interlayer spaces 

of the graphene intercalation compound [11, 33]. The XRD spectra of Figure 2b shows the 

two distinct peaks for GO at 2θ = 10.2o and 22.0o, and one distinct peak for mw rGO at 2θ = 

22o. The sharp peak at 10.2o is characteristic of GO powder that corresponds to an interlayer 

distance of 0.87 nm [37, 38]. The broader peak at 2θ = 22o corresponds to the (002) crystal 

plane of graphite and amorphous carbon [7]. It is clear that after exfoliation using microwave 

irradiation, the sharp peak at 2θ = 10.2o is much more suppressed as a result of the rapid 

expansion of the GO layers. The X-ray photoelectron spectra (XPS) of the graphene oxide 

before and after exfoliation (Figure 2c and d) supports the conclusion that some reduction of 

the GO has occurred after the microwave irradiation. Each of the C1s spectra for GO and mw 

rGO can be deconvoluted into three peaks which correspond to the following functional 

groups: sp2 carbon (C=C, 285.0, 284.4 eV), epoxy / hydroxyl / carbonyl (C-O, C=O, 286.9, 

285.4 eV), and carboxylates (O-C=O, 288.4, 288.9 eV) respectively [9, 37]. The relative 

abundance of C and O for GO was 71.85% and 26.49% with similar sized peaks 

corresponding to a C/O ratio of 3:1. While for mw rGO the relative abundance of C and O 

was 92.22% and 7.53% with the epoxy / hydroxyl / carbonyl and carboxylate peaks much 

more depressed than the carbon peak corresponding to a C/O ratio of 12:1. It must also be 

noted that the slight shift of the deconvoluted peaks for mw rGO is due to the enhanced 

regular structure as compared to the GO [9]. 

 

3.3.  Physical characterisation of manganosite – microwave graphene oxide composite. 

 

Manganosites exhibit pseudocapacitative behaviour over small ranges of potentials, through 

redox processes which contribute electron transfer between the electrode / electrolyte 

interface. By combining MnO with mw rGO, composites can be formed that combine both 
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faradaic and non-faradic effects enabling a larger energy density to be obtained, while still 

holding reasonable power density. 

In Figure 3a, the SEM image of the MnO particles after hydrothermal synthesis shows large 

cube type structures that have a porous nature. When the MnO is imaged at larger 

magnification (Figure 3b), it can be seen that the particles are comprised of larger spherical 

platelets and smaller rod-like structures. The MnO particles have a distribution of sizes 

ranging from 20 nm to 1 μm. To show the distribution of the MnO in the mw rGO matrix, 

EDS spectra was recorded on a section of the image (Figure 3c and Figure 3d). It is apparent 

that there is a good distribution of MnO as there is significant overlay of Mn (Kα) lines 

throughout the composite material, with the lighter regions (approaching white) being more 

intense. From these qualitative observations, the MnO particles are well mixed throughout the 

mw rGO matrix 

 

The 2θ peaks of MnO (Figure 4) at 35o, 41o, 59o, 70o, and 74o correspond to the Manganosite 

type MnO (JCPDS 00-001-1206). When considering the composite MnO- mw rGO, the 

carbon (002) peak at 26o along with the 35o, 41o, 59o of MnO are clearly visible. The broad 

peak of the mw rGO is due to graphene oxide and other amorphous carbons; while the 

extremely sharp peaks of MnO are due to good crystallinity of the metal oxide [6, 38]. 

 

3.4.Electrochemical behaviour of MnO – microwave exfoliated graphene oxide 

electrodes 

The cyclic voltammograms shown in Figure 5 depicts a comparison of mw rGO, 60% MnO – 

40% mw rGO, 70% MnO – 30% mw rGO and 90% MnO – 10% mw rGO composite 

electrodes on a stainless steel mesh current collector. In all cases, the CV obtained are quasi-

rectangular, with distortions also apparent indicating a pseudo capacitance type behaviour 
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(mixture of non-faradaic and faradaic responses). The slight kink in the redox peak also 

observed for the 70% MnO – 30% mw rGO and 90% MnO – 10% mw rGO are thought to be 

due to faradaic reactions of the MnO and carbon. A proposed quasi reversible reaction that 

may account for this is described below;  

MnO + C+ + e- ↔ MnOC  (1) 

CVs above scan rates of 50 mV/s (not shown) started to lose their rectangular shape and 

distort. This distortion can be attributed to ohmic polarisation (iR uncompensated) due to increased 

current at higher scan rates (i ~  dc/dx) as well as an RC time constant that is too large for the 

higher sweep rates used [39]. The largest current and capacitance was obtained for the 90% 

MnO- 10% mw rGO at 42.5 ± 9.2 mF/cm2, while the 70% MnO- 30% mw rGO was 26.6 ± 

1.2 mF/cm2. Both the 60% MnO- 40% mw rGO and pure mw rGO had values of 18.4 ± 1.1 

mF/cm2 and 19.1 ± 0.3 mF/cm2 respectively. The capacitance was calculated at 50 mV/s 

according to C = (∫Idt)/(mV), where I is the response current density (A/cm2), V is the 

potential (V), and m is the mass of the MnO, mw rGO, and PTFE [3]. The capacitance 

calculations were calculated at a larger scan rate of 50 mV/s to show a suitable rate 

capability. 

In Figure 6a (experiment conducted at open circuit potential (OCP = 100 mV)) it can be seen 

that there is systematic behaviour in the variation of the Nyquist plot as the weight percent of 

MnO is increased. The 90% MnO-10% mw rGO displayed the smallest semi-circle at high 

frequencies signifying that the kinetics of this system is the fastest with an increase in the 

semi-circle as the weight percent of MnO decreased. In this system, the semi-circle (Rct) is 

likely to represent a couple of processes. (i) Electrolyte resistance and double layer 

capacitance within the pores of the electrode, which is best modelled by a transmission line 

model; (ii) Charge transfer resistance associated with equation 1 [40, 41]. The low frequency 

increase in imaginary impedance looks to be mainly capacitative from double layer charging / 
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discharging, and redox processes as the slope is much steeper than the 45o associated with 

Warburg diffusion [42] . This result physically speaking is thought to occur due to the MnO 

particles being large (see Figure 3) which at the high weight ratio of 90% MnO- 10% mw 

rGO effectively causes the surface of the electrode to be better interconnected and more 

mesoporous [43]. At high frequencies, the intercept of the real part of impedance (Z’) with 

the x-axis Rs (which represents the resistance of the electrolyte, intrinsic resistance of the 

substrate and contact resistance) slightly decreases as the weight percent of MnO increased 

[6]. This reflects the fact that the wettability of the electrode / electrolyte interface is 

increased [44]. 

 

The imaginary part of capacitance versus frequency (Figure 6b) represents the energy 

dissipation of the complex part of capacitance, characteristic of an irreversible process, which 

can lead to the hysteresis of the electrochemical process [6, 39, 41, 45]. The relaxation time 

constant (τs) can be evaluated from Figure 6b by finding the peak frequency (fp ) of Im C(ω), 

multiplying by 2π and inverting. In Figure 6b, with the experiment conducted at OCP, the 

90%MnO-10% mw rGO showed the largest peak frequency. As the weight ratio of MnO is 

increased, there is a shift of fp towards higher frequencies (hence lower time constant) due to 

faster pseudocapacitative effects. The time constant as a function of frequency is shown in 

the inset of Figure 6b. Refer to Table 1 for Rs and Rct as a function of MnO composition. 

 

3.5. Asymmetric supercapacitor device testing 

To investigate device performance of our composite material, an asymmetric supercapacitor 

device was constructed using the 90% MnO-10% mw rGO as the cathode and functionalised 

activated carbon (FC) as the anode. Selection of the 90% MnO-10% mw rGO was based on 

results from the 3-electrode cell comparisons of varying weight ratios of MnO and mw rGO. 
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The 90% MnO- 10% mw rGO displayed the largest current and superior kinetics due to the 

enhanced interconnectivity of the MnO and mw rGO resulting in superior charge storage and 

delivery properties. The cyclic voltammograms of Figure 7a are of the asymmetric 90% 

MnO- 10% mw rGO // FC device and exhibit rectangular behaviour over a potential window 

of 1.1 V indicating very good charging and discharging of the device [46, 47]. The 

rectangular shape is maintained even up to the high scan rate of 200 mV/s. In Figure 7b and 

Figure 7c, galvanostatic charge / discharge has been employed in order to simulate and 

understand real world conditions. The charge / discharge curve (Figure 7b) is very 

symmetrical, with a slight bend / kink of the charging curve due to the asymmetric nature of 

the device and the fact that some slower redox processes are occurring due to the MnO [24, 

48]. The time difference between charging and discharging gets smaller and smaller as the 

current is increased from 0.1 A/g to 1.0 A/g; but then nearly goes back to its original time 

difference when the current is reduced back to 0.1 A/g. This signifies very good reversibility 

at different current densities which is useful for real world applications as the system is able 

to handle different current ranges [49]. In Figure 7c, the interfacial capacitance is computed 

as a function of cycle number with a step-wise increase in the current every 100 cycles. It can 

be seen that good stability is achieved at current densities of up to 0.5 A/g. At higher current 

densities approaching 1.0 A/g, the interfacial capacitance decreases rapidly. When the system 

is switched back to its initial conditions (0.1 A/g) at cycles 900-1000, the total charge is only 

slightly less (approximately 96% of the charge) than cycles 1-100, indicating excellent 

stability. In Figure 7d, galvanostatic charge / discharge was used to plot energy density versus 

power density. The maximum calculated [39, 50] energy and power densities were 2.6 

W.h/kg and 9024 W/kg respectively. The increase in the energy at low current density is due 

to the enhanced utilisation of available electroactive surface area. At these low rates, the 

electrolyte has time to fully wet all of the available surface area. 
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In Figure 8a, the interfacial capacitance is plotted against cycle number showing the capacity 

retention of our asymmetric device. It can be seen that initially there is a decrease in the 

interfacial capacitance due to initial activation of the composite material which comprises 

wetting and changes in volume as the electrolyte is being adsorbed / desorbed into the pores 

of the material [46, 51]. Once equilibrium is reached the capacitance stabilises. 

 

After approximately 1000 cycles, the interfacial capacitance rises, reaching a maximum 

between approximately 3100 and 5800 cycles due to enhanced redox behaviour of the MnO. 

There is a slight fall away in the interfacial capacitance with a plateau occurring after 9000 

cycles due to degradation (caused by changes in volume and the formation of hausmannite 

(see Figure 9)) [52]. It can be seen that initially the interfacial capacitance was 0.11 F/cm2 

(51.5 F/g equivalent by mass) and after 15 000 cycles it was 0.09 F/cm2 (41.7 F/g equivalent 

by mass) indicating a capacity retention of 82%. Our interfacial capacitance of 0.11 F/cm2 

also matches the required value of interfacial capacitance > 0.10 F/cm2 (peak power demands 

of pulsed loads) for the devices used in battery-powered electronics [29, 30, 53, 54]. Our capacity 

retention of 82% is comparable to those of other asymmetric supercapacitors such as MnO2 

//AC (96% retention after 1000 cycles) [55]; MnO2 //CNTs/SnO2 (92% retention after 100 

cycles) [56]; and LiTi2(PO4)3 (85% retention after 1000 cycles) [57]. The advantage of our 

system is the relative abundance and non-toxic nature of graphene and manganese, with the 

added benefit of no harmful electrolytes being used [58].  

In Figure 8b, the Nyquist plot reflects the asymmetric device just as it was made and after 

15000 cycles. For the long term galvanostatic charge / discharge, a current density of 0.5 A/g 

was selected based on Figure 7c where 0.5 A/g was the maximum current density that 

showed good stability. In the Nyquist plot of Figure 8b, it can be seen that at high frequencies 
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a small semi-circle is observed with the initial part of this semi-circle exhibiting an elongated 

region. It is thought that there are actually two semi-circles (Rp and Rct) in these regions 

which are not able to be resolved. The first Rp, is a smaller semi-circle representing 

predominately non-faradaic charge transfer effects and some very small irreversible redox 

processes from functionalisation of the FC anode during charging / discharging [59]. The 

second Rct, a larger semi-circle as a result of faradaic processes arsing from MnO [60]. It is 

apparent however that after 15 000 cycles the size of the semi-circle is much larger due to an 

increase in Rct with a decrease in the interfacial capacitance also apparent which is caused by 

the formation of another manganese compound as discussed below . Accompanied with this, 

is an increase in Rs from 4.5 Ω to 10.0 Ω. This occurs because as the device continues to be 

cycled, some degradation of the composite occurs through volume changes and irreversible 

redox processes that increase the contact resistance and slow down the electron transfer 

kinetics, thus reducing the effectiveness of charge storage and delivery [3, 61]. At low 

frequencies for both plots, the imaginary part of capacitance rapidly rises, indicating good 

pseudo-capacitative behaviour [52].  

To further understand the behaviour of this 90% MnO- 10% mw rGO // FC asymmetric 

device, equivalent circuit modelling (Figure 8b inset) was employed in order to establish 

values for Rs, Rp, Rct, Cdl and Cf before and after long term galvanostatic charge / discharge 

testing [62, 63]. The model chosen reflects the 2-electrode device where both the FC and the 

90% MnO-10% mw rGO must be considered [64]. In the Nyquist plot of Figure 8b, there are 

thought to be two semi-circles that are not well resolved at the high to middle frequency 

regime, with pseudocapacitative behaviour extending to the low frequency portion of the 

spectrum where the imaginary part of capacitance rapidly rises but is not perfectly vertical. 

These selected components correspond to two constant phase elements (CPEdl and CPEf) 

each accompanied with an associated charge transfer resistance that represent non ideal 
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behaviour of the two electrodes [17, 62]. The Warburg element (Wo) was also selected due to 

the frequency dependence of the porous capacitance and also counter ion diffusion to the 

electrode surface that balances the charge while faradaic processes are taking place [3]. Rs 

represents the ionic resistance of the electrolyte, the contact resistance between the active 

materials and current collectors, and the intrinsic resistance of the substrates [61]. Values for 

Rs, Rp, Rct, Cdl, Cf, fp, and τ(s) are outlined in Table 2 below. 

 

In Figure 9, an XRD spectra has been taken on the 90% MnO- 10% mw rGO electrode 

material before and after galvanostatic charge / discharge in order to gauge any changes in 

the state of MnO. The ensuing analysis uses the peak intensity ratio as described by 

Bhattacharya et. al. [65]. After 15 000 cycles, 86% of MnO (cubic) was present whilst the 

remaining 14% was converted to hausmannite (tetragonal) due to the appearance of main 

peaks at 2θ = 32.7, 36.2, 44.0, and 60.3 (card no. 00 001 1127) which is a mixture of Mn2+ 

Mn3+
2O4. This result shows that the stability of our MnO- mw rGO composite is very good 

with the decrease in interfacial capacitance (Figure 8) primarily being as a result of the 

formation of hausmannite which creates another interface in the system that is not 

electrochemically active, thus inhibiting charge storage and delivery. 

4. Conclusions 

In summary, we have successfully synthesised GO through a modified Hummer’s method 

and exfoliated the GO using microwave irradiation. The ensuing SEM and STEM images 

show significantly altered structure that is highly porous forming an interconnected network 

with minimal re-stacking of the graphene. The XRD confirms the exfoliation of the GO due 

to the significant decrease of the sharp peak at 2θ = 10.2o
; while XPS spectra confirms that 

reduction of the GO is apparent due to the much sharper C=C at 284.4 eV peak with the 
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relative abundance of C and O increasing to 92.22% and 7.53% respectively. The G/D band 

ratio of the Raman spectra also increased from 0.8 to 0.9 signifying the GO has somewhat 

been reduced. The addition of the MnO particles show that they are dispersed throughout the 

GO matrix, with the size of the MnO particles varying from 20 nm to 1 μm. 

A composite material was made of MnO and mw rGO with three electrode testing performed 

in order to gauge which weight ratio of MnO to mw rGO would provide that best 

electrochemical response in terms of capacitance and kinetic behaviour. The results 

concluded that the 90% MnO- 10% mw rGO was the best performing material with 0.107 

F/cm2, the most rectangular CV and smallest charge transfer resistance. This material was 

then used to make an asymmetric supercapacitor with functionalised activated carbon. Device 

testing showed that our composite material displayed excellent reversibility when the current 

density was altered from 0.1 A/g to 1.0 A/g and then back to 0.1 A/g. The long term 

cyclability tests over 15 000 cycles was also very good with a capacity retention of 82% at 

0.5 A/g. XRD showed the amount of MnO remaining in the device was 86% while the 

remaining 14% was converted to hausmannite after the 15 000th cycle. 
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Graphical Abstract 

 

 

 

Microwave exfoliated graphene oxide was combined with manganosite into a slurry and 

formed into a composite cathode material for an asymmetric supercapacitor. The prepared 

electrode was fabricated into a device with functionalised carbon black as the anode material. 

The interfacial capacitance was 0.11 F/cm2 (51.5 F/g) with an excellent capacity retention of 

82% over 15 000 cycles. 
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Table Captions 

 

Table 1: Comparison of Rs, and Rct as the weight ratio of MnO to GO is increased. Substrate 

is stainless steel mesh. Values for EIS obtained at open circuit potential. 

 

Table 2: Values for Rs,. Rp, Rct, Cdl, and Cf obtained from fitting to model. τ(s) obtained from 

imaginary part of capacitance verses frequency. 
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Figure Captions 

Figure 1: a) SEM image of GO powder after it has been washed and dried as outlined in 

section 2.1. Inset shows optical image of the GO sample. b) SEM image of mw 

rGO powder. Inset shows an optical image of the sample after microwave 

irradiation on the film. c) TED image of GO after it has been drop cast onto a 

TEM grid. d) TED image of mw rGO after it has been drop cast onto a TEM grid. 

Figure 2: (a) Raman spectra of GO and mw rGO powder before and after microwave 

irradiation. (b) XRD spectra of GO and mw rGO. Comparison of the C1s spectra 

for (c) GO and (d) mw rGO. 

Figure 3: (a) SEM image MnO powder after hydrothermal synthesis. (b) SEM image of 

MnO powder at higher magnification showing spherical platelets and rod shaped 

structures. (c) SEM image of 90% MnO- 10% mw rGO composite. (d) EDS map 

of Mn (Kα) showing the uniformity of distribution in the  90% MnO- 10% mw 

rGO composite. 

Figure 4:  XRD spectra of MnO, mw rGO, and MnO- mw rGO at varying weight ratios. 

Figure 5: (a) Comparison of CVs for mw rGO, 60% MnO – 40% mw rGO, 70% MnO – 30% 

mw rGO and 90% MnO – 10% mw rGO composite electrodes. Scan rate is at 50 

mV/s. System is three electrode with a Pt mesh counter, and Ag/AgCl reference. 

Electrolyte used is aqueous 1M NaNO3. Material slurry was cast onto stainless 

steel mesh using a thin spatula. 

Figure 6: (a) Nyquist plot comparison of MnO – mw rGO composite electrodes as the mass 

percentage of MnO is changed. (b) Comparison of the imaginary part of 

capacitance versus frequency for the MnO – mw rGO composite electrodes. 

Experiment conducted at open circuit potential. System is three electrode with a Pt 
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mesh counter, and Ag/AgCl. Electrolyte used is aqueous 1M NaNO3.Material 

slurry was cast onto stainless steel mesh using a thin spatula. 

Figure 7: (a) CV of 90% MnO-10% mw rGO // FC asymmetric supercapacitor at 20 mV/s, 

50 mV/s, 100 mV/s, and 200 mV/s. (b) Galvanostatic charge / discharge tests for 

varying current rates. (c) Interfacial capacity over 100 cycles as the current 

density is increased from 0.1 A/g to 1.0 A/g. (d) Ragone plot. Energy and power 

density values calculated from galvanostatic charge / discharge. 

Figure 8: (a) Interfacial capacity versus cycle number at a current density of 0.5 A/g. (b) 

Nyquist plots (with inset) of experimental impedance data (scattering dot) and 

fitting results. (solid line) for 90% MnO - 10% mw rGO // FC asymmetric device 

in the frequency range from 100 000 Hz to 0.01 Hz measured before and after 15 

000 galvanostatic charge / discharge cycles. 

Figure 9: XRD comparison before and after galvanostatic charge / discharge. The current 

density is 0.5 A/g for 15 000 cycles. 
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Tables 

Table 1: Comparison of Rs, and Rct as the weight ratio of MnO to mw rGO is increased. 

Substrate is stainless steel mesh. Values for EIS obtained at open circuit potential. 

% Composition of MnO 
: mw rGO (w/w) 

R(s) (ohm.cm2) R(ct) (ohm.cm2) 

100:0 8.4 ± 0.5 94.0 ± 5.6 

60:40 4.7 ±0.2 293.2 ± 12.5 

70:30 7.3 ± 0.2  174.8 ± 4.9 

90:10 5.2 ± 0.3 87.6 ± 5.1 
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Table 2: Values for Rs,. Rp, Rct, Cdl, and Cf obtained from fitting to model. τ(s) obtained from 

imaginary part of capacitance verses frequency.  

Cycle Rs 

(ohm.cm2) 

Rp 

(ohm.cm2) 

Rct 

(ohm.cm2) 

Cdl (F) Cf (F) fp (Hz) τ(s) 

Initial 4.5 5.9 18.6 0.0014 0.0085 0.32 0.50 

15 000th 10.0 18.0 39.5 0.0013 0.0051 0.062 2.57 
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Figures 

 

Figure 1: a) SEM image of GO powder after it has been washed and dried as outlined in 

section 2.1. Inset shows optical image of the GO sample. b) SEM image of mw rGO powder. 

Inset shows an optical image of the sample after microwave irradiation on the film. c) TED 

image of GO after it has been drop cast onto a TEM grid. d) TED image of mw rGO after it 

has been drop cast onto a TEM grid. 
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Figure 2: (a) Raman spectra of GO and mw rGO powder before and after microwave 

irradiation. (b) XRD spectra of GO and mw rGO. Comparison of the C1s spectra for (c) GO 

and (d) mw rGO. 
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Figure 3: a) SEM image MnO powder after hydrothermal synthesis. (b) SEM image of MnO 

powder at higher magnification showing spherical platelets and rod shaped structures. (c) 

SEM image of 90% MnO- 10% mw rGO composite. (d) EDS map of Mn (Kα) showing the 

uniformity of distribution in the  90% MnO- 10% mw rGO composite.  
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Figure 4: XRD spectra of MnO, mw rGO, and MnO- mw rGO at varying weight ratios. 
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Figure 5: (a) Comparison of CVs for mw rGO, 60% MnO – 40% mw rGO, 70% MnO – 30% 

mw rGO and 90% MnO – 10% mw rGO composite electrodes. Scan rate is at 50 mV/s. 

System is three electrode with a Pt mesh counter, and Ag/AgCl reference. Electrolyte used is 

aqueous 1M NaNO3. Material slurry was cast onto stainless steel mesh using a thin spatula. 
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Figure 6: (a) Nyquist plot comparison of MnO – mw rGO composite electrodes as the mass 

percentage of MnO is changed. (b) Comparison of the imaginary part of capacitance versus 

frequency for the MnO – mw rGO composite electrodes. Experiment conducted at open 

circuit potential. System is three electrode with a Pt mesh counter, and Ag/AgCl Electrolyte 

used is aqueous 1M NaNO3.Material slurry was cast onto stainless steel mesh using a thin 

spatula. 
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Figure 7: (a) CV of 90% MnO-mw rGO // FC asymmetric supercapacitor at 20 mV/s, 50 

mV/s, 100 mV/s, and 200 mV/s. (b) Galvanostatic charge / discharge tests for varying current 

rates. (c) Interfacial capacity over 100 cycles as the current density is increased from 0.1 A/g 

to 1.0 A/g. (d) Ragone plot. Energy and power density values calculated from galvanostatic 

charge / discharge. 
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Figure 8: (a) Interfacial capacity versus cycle number at a current density of 0.5 A/g. (b) 

Nyquist plots (with inset) of experimental impedance data (scattering dot) and fitting results. 

(solid line) for 90% MnO- 10% mw rGO // FC asymmetric device in the frequency range 

from 100 000 Hz to 0.01 Hz measured before and after 15 000 galvanostatic charge / 

discharge cycles. 
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Figure 9: XRD comparison before and after galvanostatic charge / discharge. The current 
density is 0.5 A/g for 15 000 cycles. 
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