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Light induced degradation has been observed in the performance of organic solar cells in the 

absence of oxygen and a detailed analysis of the effect of this photodegradation on optical and 

electrical features has been accomplished. This photodegradation study has been performed 

on encapsulated photovoltaic blend devices comprised of the silole-based donor-acceptor 

polymer KP115 blended with [6,6]-phenyl C61-butyric acid methyl ester (PCBM).  

Photodegradation induces an almost 20 % decrease in power conversion efficiency, primarily 

as a result of a reduction in short circuit current, JSC. The initial burn-in phase of the 

photodegradation has been examined using a combination of transient absorption 

spectroscopy and charge extraction measurements, including photo-CELIV (charge extraction 

by linearly increasing voltage) and time-resolved charge extraction using a nanosecond switch. 

These measurements reveal a bimodal KP115 polaron population, comprised of both 
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delocalised and localised/trapped charge carriers. The photodegradation results are consistent 

with an alteration of this bimodal KP115 polaron population, with the polarons becoming 

trapped in a broader, deeper density of localised states. Under laser illumination and at open 

circuit conditions, this enhanced trapping after light soakings inhibits charges from 

undergoing bimolecular recombination, leading to higher extracted charge densities at long 

times. At the lower charge densities operating at short circuit conditions and under continuous 

white light illumination, where bimolecular recombination is much less significant, the JSC 

decreases after light soaking due to a reduction in the efficiency of extraction of trapped 

charge carriers. 

  

 
1. Introduction 

 

Even though efficiency records of organic solar cells based on blends of conjugated polymers 

and fullerene derivatives have been frequently broken over recent years, insufficient device 

lifetime may threaten the widespread implementation of this versatile technology. The present 

certified world record for a single junction polymer solar cell has recently surpassed 9 %.[1] 

Given the trend in efficiencies, the commercial success of this promising technology is 

increasingly possible. However, with so much emphasis on increasing power conversion 

efficiencies, relatively little attention has been applied to the stability of such organic 

photovoltaic devices.[2, 3] This is a key issue and considerable research is required to 

investigate mechanisms of degradation and strategies to enhance device lifetime. 

 

A recent work addressing this point examined the effect of long-term photodegradation on 

encapsulated PCDTBT:PC70BM solar cells.[4] This high-performing blend, which has 

achieved efficiencies of over 7 %,[5, 6] exhibited an initial sharp loss in performance upon 

photo-illumination over the first few hundred hours (the burn-in phase), followed by a 
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remarkably stable efficiency over several thousand hours. The degradation mechanism was 

concluded to be a photochemical reaction in the active layer that creates sub-bandgap states, 

thereby increasing the energetic disorder of the system. Further work done by Leclerc et al.,[7] 

albeit under ambient conditions (air), showed that the photo-oxidation mechanism in this 

blend involved polymer chain scission and cross-linking reactions. The burn-in phase has 

been noted in other blends, such as P3HT:PCBM,[8] and may be a general phenomenon of 

these type of organic solar cells. 

 

A polymer that is beginning to receive considerable attention is KP115, poly [(4,4’- bis (2-

ethylhexyl) dithieno [3,2-b:2’,3’-d] silole) -2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl 

thiazolo 5,4-d thiazole)-2,5diyl].[9-13] This polymer, although it does not attain the high 

efficiencies of PCDTBT:PCBM in thin (< 100 nm) active layer thickness devices, has 

particularly interesting characteristics in thick (> 200 nm active layer) devices. KP115:PCBM 

devices, which can reach efficiencies of 5 %, possess the rare but highly desirable 

characteristic that the active layer can be considerably thicker without a detrimental effect on 

the efficiency. However, we also observed that photodegradation effects have a greater impact 

on the efficiency of photovoltaic devices with thicker active layers (vide infra). Since 

commercially produced polymer solar cells will likely have thicker active layers to maximise 

light absorption and to facilitate the high speed coating of consistent layer thicknesses, it is 

vital to examine the degradation mechanisms of photovoltaic devices that exhibit good 

performance using thicker active layers. 

 

Here we present a detailed study of the photodegradation of KP115:PC60BM photovoltaic 

devices. The devices studied here have an inverted geometry, with a Ag/hole-injecting layer 

(HIL)/active layer (140 nm thickness)/ electron-injecting layer (EIL)/ITO structure, where the 

HIL and EIL are Konarka proprietary materials. Encapsulation with glass to inhibit oxygen 
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and water degradation was employed; however, as previously noted by several research 

groups, photodegradation can still be a significant issue.[2, 4] Like PCDTBT:PC70BM,[4] 

KP115:PCBM shows an initial burn-in phase in which the efficiency drops sharply over the 

first ~ 100 hours, after which a much slower decay in efficiency is observed. This is presented 

in Figure 1, where the structure of KP115 is shown in the inset. However, in this case the 

drop in efficiency results from a substantial decrease in JSC (rather than VOC and fill factor, as 

in PCDTBT:PCBM). The aim of this study is to understand the origin of this loss of device 

performance during the burn-in phase of photodegradation in such systems. We use a 

combination of time-resolved charge extraction and optical techniques to show that this drop 

in efficiency with photodegradation is a result of a decrease in charge extraction efficiency 

due to an increased contribution from localised sub-bandgap states. 

 

In section 2.1. the detrimental consequences of light soaking on the photovoltaic performance 

of KP115 based devices is illustrated. Section 2.2. covers the changes in the optical features 

of the polymer:fullerene blend. While the steady-state absorption spectrum shows little 

alteration upon light soaking, transient absorption reveals changes in the features attributed to 

localised polymer polarons. Sections 2.3. to 2.6. deal with a variety of charge extraction 

methods. Time-resolved charge extraction using a nanosecond switch (TRCE, section 2.3.) 

reveals slower bimolecular recombination of trapped charge carriers in light soaked 

KP115:PCBM , while photovoltage decays (section 2.4.) provides further insight into the 

density of states distribution. Photo CELIV (Charge Extraction by Linearly Increasing 

Voltage, section 2.5.) allows for the determination of charge carrier mobility before and after 

light soaking, which remains virtually unchanged. However, it is revealed that more charges 

are extracted and the photocurrent becomes more dispersive. Finally, in Section 2.6., the 

results of the transient photocurrent decay measurements are presented. After light soaking, 

more current at longer times is detected, when predominantly trapped charges are extracted. 
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2. Results 

 

2.1. Current density – Voltage (JV) characteristics 

Current-voltage curves recorded under 100 mW cm-2 simulated AM 1.5 illumination and in 

the dark are shown in Figure 2 for the KP115:PCBM (1:2) device before and after 72 hour 

light soaking, while the measured photovoltaic parameters are displayed in Table 1. 

Comparing the curves reveals a change in the slope of the JV curve in the third and fourth 

quadrant. After light soaking, less current is observed at comparable voltage. This discrepancy 

becomes increasingly pronounced as the voltage moves from -2 V towards the maximum 

power point. The primary consequence of this behaviour is a significant decrease in the short 

circuit current, JSC, which drops by 14%. The open circuit voltage VOC does not change and 

the fill factor (FF) shows only a small decrease. The overall decrease in device performance 

from 4.4 % to 3.6 % (18 %) therefore primarily results from the loss of JSC. The focus of this 

paper is to determine the origin of this initial burn-in loss of device performance. The three 

contributors to JSC are the efficiencies of photon absorption, free charge carrier 

photogeneration and charge collection. Each of these possibilities will be addressed in the 

following sections. 

 

 

 

 

 

Table 1. KP115:PCBM (1:2) device performance before and after a 72 hour light soak.   
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Parameter Prior to light soaking After light soaking 

JSC (mA.cm-2) 11.8 10.1 

VOC (V) 0.64 0.64 

FF 0.59 0.57 

Efficiency (%) 4.4 3.6 

 

 

2.2. Steady state and transient absorption spectroscopy 

The ground state absorption spectrum of an encapsulated KP115:PCBM film before and after 

light soaking is shown in Figure 3. Very little change has occurred, with both spectra 

showing two bands at 590 and 640 nm, with a weak shoulder at 545 nm and the broad PCBM 

absorption shoulder at 335 nm (see Supporting Information Figure S1). No peak shifting is 

observed upon light degradation across the entire spectrum, although a very small decrease in 

absorption of < 0.02 is present for the lowest energy peak and at ~ 335 nm (PCBM 

absorption). As such, a significant decrease in photon absorption cannot be the cause of the 

decreased JSC. Furthermore, the lack of change in the absorption spectrum suggests that no 

significant concentration of photodegradation products has been formed that, for example, 

reduces the conjugation length of the polymer.[7] It should be noted, however, that studies that 

observe such effects upon photodegradation tend to use accelerated ageing conditions rather 

than the 1 sun used here, or are performed under ambient conditions.[14] Photodegradation 

products may indeed be present here but could be at too low a concentration to be observed 

using this technique. The small but reproducible decreases in absorbance observed for the 

lowest energy and PCBM peaks may also be the beginning of a slight reduction in 

crystallinity.[15, 16]         
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Transient absorption spectroscopy (TAS) is a key technique as it directly monitors the optical 

absorption of photogenerated transient species. For polymer:PCBM blends, these are typically 

charge carriers or triplet states on the nanosecond-millisecond timescales employed here. TAS 

provides information on the identity, yield and recombination of these transient species. This 

method is widely-known and has previously been applied to numerous polymer:blend 

systems.[12, 17-25] In general, the charge carrier decay kinetics exhibit a power law decay (∆OD 

∝ t-α ); this has been observed in P3HT,[26] polyselenophenes,[27] and MDMO-PPV,[28, 29] all 

blended with various fullerene derivatives. This power law behaviour is consistent with 

models describing bimolecular recombination of dissociated charge carriers in the presence of 

an exponential distribution of localised (trapped) states.[30] The value of α (the gradient of the 

power law) provides an indication of the energetic distribution of polaron localised states, 

where a shallow gradient with a low α value suggests the presence of energetically deep 

localised states. Thermal activation of the charge carriers out of these states is required before 

recombination can occur; this is the rate-limiting step. Conversely, steeper gradients are 

correlated with shallower localised states such that an α of one denotes pure (trap-free) 

bimolecular recombination. An excitation density-dependent fast phase is often observed prior 

to the slow trap-limited power law phase, assigned to recombination of free charge carriers 

generated when the density of photogenerated polarons exceeds the density of localised states. 

At low light intensities (small charge carrier densities) only the localised states are filled and 

thus this fast phase is not observed. Instead, the charge carrier dynamics are dominated by 

relatively slow, trap-limited recombination. 

 

The presence of these localised states is sometimes also evident from the transient absorption 

spectra. P3HT:PCBM has been studied the most in this respect, where its transient absorption 

spectrum generally exhibits two distinct peaks at approximately 700 and 1000 nm.[20, 31-33] The 

700 nm band has typically been attributed to mobile, delocalised positive polarons in 
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crystalline regions of the P3HT domains while the latter has been attributed to positive 

polarons localised (trapped) in disordered amorphous P3HT domains. This assignment is 

supported by the fact that these two bands often have different decay kinetics, with the 

delocalised polaron band decaying via pure bimolecular recombination while the locaIised 

polarons exhibit slower trap-limited bimolecular recombination.[20] In the case of P3HT, the 

positive polaron has a substantially higher molar extinction coefficient compared to the 

negative PCBM anion, thus the latter’s absorption at 1070 nm is not visible and the polymer 

polaron band dominates the spectrum. 

  

The transient absorption spectrum of the control KP115:PCBM device (before light soaking) 

was measured on both the early nanosecond and microsecond timescales, shown in Figures 

4a and 4b respectively. The early nanosecond timescale shows two very broad overlapping 

bands at approximately 750 and 1050 nm. These bands cannot be assigned to the polymer 

singlet state as time-resolved photoluminescence data (to be published elsewhere) shows the 

polymer singlet state emission to be 99 % quenched within 120 ps in a KP115:PCBM (1:2) 

film. It is evident from the early nanosecond data in Figure 4a that the two overlapping bands 

decay on different timescales, with the 750 nm band decaying much more quickly. At 1 ns, 

the 750 nm band is twice the amplitude of the 1050 nm band, but after only 15 ns, the two 

amplitudes are approximately equivalent. The effect of this difference in kinetics is evident on 

the microsecond timescale (Figure 4b). At 1 µs, the slowly decaying band, now centred at ~ 

1080 nm, is much more prominent and clearly defined. The rapidly decaying band is still 

visible as a feature at wavelengths below 750 nm. Most of the decay has already occurred for 

this band and only a small tail remains on the microsecond timescale.   

 

One method to establish whether the transient absorption peak at ~ 1080 nm in Figure 4b can 

be attributed to polymer KP115 polarons or PCBM anions (which absorb nearby, at 1070 nm) 
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is to measure the transient absorption spectrum of KP115:PC70BM. The PC70BM anion 

absorbs further to the red, at 1370 nm,[34] and thus is unlikely to interfere with shorter 

wavelength polymer polaron bands. The microsecond timescale transient absorption spectrum 

of KP115:PC70BM is shown in Figure 4c, appearing very similar to the KP115:PC60BM 

spectrum in Figure 4b. The 1080 nm band remains, thus providing clear support for the 

assignment of this peak to KP115 polarons rather than the PCBM anion. Indeed, there is little 

evidence of the PC70BM anion peak, suggesting that the KP115 polaron has a substantially 

higher molar extinction coefficient and thus dominates the spectrum. It is also important to 

note that the feature at wavelengths below 750 nm is also still present, indicating that it too 

can be attributed to the KP115 polaron.      

 

These results have a key similarity to results previously reported for P3HT:PCBM,[20] in terms 

of a bimodal (localised and delocalised) polaron band behaviour. Such behaviour has only 

been observed in a few systems. It has also been observed in P3HS:PCBM,[26] a selenophene 

analogue of P3HT, where thermal annealing causes the growth of a new transient feature at 

820 nm in addition to the pre-existing 1150 nm localised polaron band. This new 820 nm 

feature was assigned to delocalised polarons that increase in population upon annealing, 

which is known to enhance the crystallinity of the blend film. This bimodal (delocalised and 

localised) polaron behaviour therefore may be more likely to occur in blends that have a 

mixture of both amorphous and crystalline domains. KP115 is known to have a moderate 

crystallinity, with a substantial in-plane long-axis orientation in neat films (which persists to a 

lesser extent in blend films) with disordered side chains.[10][35] It is therefore reasonable to 

assume that, like P3HT:PCBM and P3HS:PCBM, both crystalline and amorphous phases are 

present in the KP115:PCBM blend film. This point, in addition to the similar bimodal band 

behaviour of the KP115:PCBM TAS spectrum, leads to the assignment of the feature around 

750 nm to delocalised KP115 polarons while the broad band at approximately 1080 nm can be 
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assigned to localised KP115 polarons. Note that photoinduced electroabsorption is also 

possible below at wavelengths below 700 nm,[36] however this effect is unlikely to be large at 

these relatively long timescales.[37]   

 

The charge carrier decay dynamics were measured prior to light soaking at probe wavelengths 

of λprb = 720 and 1000 nm (Figure 5), in order to differentiate between the delocalised and 

localised polarons respectively. These probe wavelengths were chosen in order to use the 

same photodetector (to avoid realignments) and, for the 720 nm probe, to be as close as 

possible to the delocalised polaron peak whilst avoiding ground state bleaching effects. Both 

probe wavelengths show an excitation-density dependent fast phase, prior to  ~ 3 µs for λprb = 

720 nm and ~ 10 µs for λprb = 1000 nm, while at longer times a power-law function can be 

fitted to the decay curves. The dependence on excitation density is shown in Figures S2-S6, 

Supporting Information. The fast phase shows an increasing rate of polaron decay with 

increasing excitation density, followed by a saturation regime: this is clear evidence of 

bimolecular recombination (Figures S2-S6). Indeed, no evidence of monomolecular 

behaviour was observed, thus geminate (monomolecular) recombination and triplet decay on 

these timescales can be discounted. 

 

The decay kinetics during the power law phase of KP115:PCBM prior to light soaking 

showed different behaviour for the two probe wavelengths. At a probe wavelength of 1000 

nm (Figure 5b) the power law α value of 0.43 is similar to what has been observed previously 

for P3HT:PCBM at probe wavelengths of 980 – 1000 nm.[20, 26] The kinetics at 1000 nm thus 

have a significant contribution from localised, trapped polarons. Thermal activation of these 

polarons out of the trap states is necessary before recombination can occur, thus causing a 

relatively slow recombination rate. At 720 nm, where the freely mobile, delocalised polaron is 

expected to be the primary absorbing species, the power law phase exhibits fast decay kinetics, 
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with an α of 0.68 for each excitation density (Figure 5a). Although not quite trap-free pure 

bimolecular recombination, consistent with what has previously been observed for 

P3HT:PCBM,[20] these kinetics are significantly faster than those observed at longer probe 

wavelengths. This suggests that it is partially delocalised polarons that are undergoing 

bimolecular recombination at this probe wavelength or, alternatively, both delocalised and 

localised polarons are present, thus the kinetics are a combination of both trap-free and trap-

limited recombination respectively.    

 

After light soaking (Figure 4b), the transient absorption spectrum shows no significant 

changes in overall shape on the microsecond timescale, with the features at 1080 and <750 

nm still present and unshifted. A small drop in ∆OD at 1 µs is observed. A distinct alteration 

in the decay dynamics at 1000 nm is observed upon photodegradation: the kinetics of the 

trapped polarons are appreciably slower, with α decreasing from 0.43 to 0.13 (Figure 5b). 

This implies that the light degradation process has resulted in an increased trap depth, slowing 

down the polaron recombination at long times. The power law decay dynamics of the 

delocalised KP115 polaron at 720 nm do not show such a large change (Figure 5a), with the α 

value decreasing from 0.68 to 0.55. This suggests that the bimolecular recombination of the 

delocalised free polymer polarons are much less affected by the light soaking process 

compared to the localised polarons at 1000 nm, but the increased trap depth is still apparent.   

 

The ∆OD (which is directly proportional to the charge carrier density) of the delocalised 

polaron band shows a small decrease with photodegradation prior to 2 µs (from 1 x 10-4 to 8 x 

10-5 at 1 µs). It has been previously established that the ∆OD at 1 µs of a polymer:PCBM 

blend film is directly correlated with the JSC of the resultant photovoltaic device.[38] According 

to this correlation, the small drop in ∆OD upon photodegradation would cause a reduction in 
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the JSC of approximately 0.5 mA cm-2. The decrease in JSC observed in KP115:PCBM upon 

photodegradation is almost four times more than this. It is possible that a reduced charge 

carrier photogeneration yield is a partial contributor to the decreased JSC. However, it appears 

that the loss in JSC can primarily be associated with the charge collection process, with an 

increase in trapping effects adversely influencing the efficiency of charge extraction. This is 

consistent with the JV curves, which show that at high negative driving voltages, the same 

current density under illumination is present before and after photodegradation (Figure 2). 

This idea will be examined further by applying a variety of electrical charge transport 

techniques to the KP115:PCBM device.  

 

 

2.3. Time-resolved charge extraction using a nanosecond switch 

The charge extraction techniques complement TAS by providing information on charge 

carrier density, mobility and lifetime. In order to examine more closely the effects of 

photodegradation on the charge carrier density and decay dynamics, a time-resolved charge 

extraction (TRCE) technique was utilised.[9] This involves a nanosecond time-resolved switch, 

where TRCE involves photogenerating charges with a nanosecond laser pulse in a 

photovoltaic device held at a very high impedance of 10 MΩ (open circuit), then switching to 

short circuit (low impedance) after an adjustable delay time, allowing charge extraction to 

occur under the influence of the built-in field.   

 

Prior to light degradation, the charge carrier dynamics of KP115:PCBM show a clear biphasic 

behaviour (Figure 6a), as previously reported.[9] The α values are similar to that observed in 

TAS, with an α of 0.35 prior to light soaking and an α of 0.2 afterwards. After the light 

soaking process, a small drop in charge carrier density after photodegradation is evident at 

early times (before 2 µs). After ~ 2 µs the photodegraded sample charge carrier density 
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decays more slowly, giving a greater charge carrier density at long times. This is also 

consistent with the TAS results.  

      

The bimolecular recombination coefficient, β, as a function of n (Figure 6b) has been 

calculated from the gradient of the charge carrier decay in Figure 6a; this methodology also 

provides information on β at long times:    
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       (1) 

 

Prior to light degradation, a region where β is strongly dependent on n is observed (as 

reported previously[9]), followed by a saturation n-independent regime at a β of 8 x 10-12 cm3s-

1. After light degradation, β is virtually unchanged at high charge carrier densities, implying 

the photodegradation has not affected the recombination of the free charge carriers. At low 

charge densities, however, β is considerably lower after light soaking (by over an order of 

magnitude), indicating a greater proportion of deeply trapped charge carriers unable to 

participate in bimolecular recombination.    

 

 

2.4. Photovoltage decay 

The decay of the photovoltage (VOC) over time can be examined (Figure 7a) and the voltages 

at each time correlated with the measured charge carrier densities from the TRCE 

measurements (Figure 7b). The voltage decay shows that at early times, the control sample 

has a slightly higher VOC (by ~ 10 mV). However, a crossover occurs at ~ 10 µs such that at 

longer times the photodegraded sample has a higher photovoltage. The measurement of 

photovoltage and charge carrier density at each time delay allows the relationship between 
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these two parameters to be examined (Figure 7b). The device shows very different behaviour 

before and after light soaking, where photodegradation induces a weaker dependence of 

charge density on VOC. Doubling the charge density from 2 x 1016 cm-3 to 4 x 1016 cm-3 

produces a larger change in voltage in the photodegraded sample. This is directly correlated 

with the density of states distribution,[39] with the data following the approximate exponential 

relationship of n  = n0e
γVoc, where n0 is the average charge density in the dark and γ is the 

slope. Bimolecular recombination in a trap-free medium is expected to have γ = e/2kBT ~ 19 at 

room temperature. The slope γ for KP115:PCBM is 13 prior to light soaking (similar to 

P3HT:PCBM[39]) but drops to only 7 afterwards. This suggests that after photodegradation the 

DOS distribution widens, in turn implying a more prominent exponential tail of trap states. 

 

 

2.5. Photo-CELIV 

Photo-induced charge extraction by linearly increasing voltage (photo-CELIV) is used to 

estimate charge carrier mobility.[40-42] Photogenerated charges are extracted after an adjustable 

delay time by a linearly increasing voltage pulse, A = ∆U/∆t. The mobility is obtained from 

the time at which the maximum photocurrent response, tmax, occurs:  

 

       (2) 

 

Where d is the active layer thickness, A characterises the voltage pulse as ∆U/∆t, ∆j is the 

photogenerated current response and j(0) = AC (the capacitive current response), where 

∆j<<j(0) is necessary. However, the RC constant of the system can limit the accuracy of this 
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technique, particularly if thin film photovoltaic devices with high charge carrier mobility are 

used.  

 

In order to circumvent RC limitations, the photo-CELIV curves were measured using devices 

with a small area (5 mm2, giving a capacitance of ~ 7 x 10-10 F). Furthermore, the nanosecond 

time-resolved switch was employed. The operation of this switch in photo-CELIV involves 

photogenerating charges in a photovoltaic device held at high impedance (open circuit), then 

switching to short circuit (low impedance) after an adjustable delay time, simultaneously 

applying the triangular voltage pulse to extract the charges. The advantage of using such a 

method for photo-CELIV is that the high impedance of the circuit prior to application of the 

voltage pulse (and closing of the switch) causes the normal photocurrent response prior to t=0 

to be reduced to almost zero (~nA range). The charge leakage is therefore negligible and VOC 

conditions are present. This is of particular value if the built-in potential cannot be completely 

compensated for by applying an offset voltage,[43] as in the case of KP115:PCBM. It therefore 

also allows a more accurate determination of extracted charge carrier density since the charge 

loss during the delay time between the laser pulse and closing the switch is solely due to 

recombination, rather than possessing an additional contribution from charge leakage.  

 

The photo-CELIV results are shown in Figure 8. The mobilities calculated from equation 2 

are shown in the inset of Figure 8. Prior to light degradation, the calculated mobility is ~ 8 x 

10-4 cm2V-1s-1; this value is higher than that previously published.[10] This could be because in 

this study the device area was reduced by a factor of three (to ~ 5 mm2) in order to minimise 

RC limitations and better resolve tmax. Furthermore, the devices measured here have much 

higher efficiencies (4.4 % rather than the previous 3.0 %[10]). The nanosecond switch does 

introduce a small artifact, however: a small capacitive discharge prior to t=0. The photo-

CELIV curves were therefore also measured without the switch to check for reproducibility 
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between techniques. Similar mobility values were determined with and without the 

nanosecond switch, as shown in the Figure 8 inset.  

 

After light degradation, the photo-CELIV curves change: most notably, the quantity of charge 

extracted has increased by a factor of 2.3 at this delay time of 100 µs. The increase in charge 

at these long times is consistent with the TAS and TRCE results, which show greater ∆OD 

and n values respectively at long times after light soaking. Given the slower trap-limited 

bimolecular recombination after photodegradation, more charge carriers survive to long times.  

 

Furthermore, the mobility decreases very slightly to ~ 6 x 10-4 cm2V-1s-1 after 

photodegradation; this decrease is largely due to the increase in ∆j (from 15.2 to 17.9 mA.cm-

2), while the tmax only increases from 605 to 670 ns. Lowering A did not substantially increase 

this difference. The two mobilities are very similar within experimental error. Indeed, the 

mobility over time (as shown in the inset of Figure 8) also shows no evidence of a decrease, 

either before or after light soaking. These are surprising results, as it would be expected that if 

the light-soaked device were subject to an increase in trapping effects – as suggested by the 

higher charge carrier densities at long times shown by photo-CELIV, TRCE and TAS – this 

would manifest in a substantially lower charge carrier mobility. Furthermore, only deeply 

trapped charges usually remain at long delay times and this would also be expected to 

decrease the mobility. Indeed, Eng et al.
[18] predicted a decrease in charge carrier mobility of 

over two orders of magnitude from the nanosecond to millisecond timescales for 

P3HT:PCBM. This is clearly not observed here. However, it is important to note that given 

the photon density incident on the active device area (and assuming a photon to charge 

conversion of unity), the photo-CELIV technique is extracting less than 20 % of the total 

photogenerated charge carriers. This is not solely due to truncation of the voltage pulse at 5 

µs: the TRCE technique extracts over 60 % of the total photogenerated charges under the 
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same integration conditions (5 µs after opening of the switch). This implies that in the photo-

CELIV measurement some charges are also recombining within the duration of the laser pulse 

or during the actual extraction process. Another possible explanation is that a large proportion 

of photogenerated charge carriers remain trapped and are not extracted, as seen by the small 

asymptotic tail of charge that does not reach the capacitive response. As such, the lower 

mobility of deeply trapped charges may not be observable using photo-CELIV. It is likely that 

it is primarily the free, delocalised charges that are being extracted here, hence the relatively 

high mobility. 

 

 

2.6. Photocurrent decay 

The photocurrent decay was measured by applying a 0.4 V constant reverse bias to the device 

under low-impedance conditions and low laser excitation density. The results are shown in 

Figure 9. The photocurrent decay is RC limited prior to ~ 350 ns, after which time a reservoir 

of charge carriers is present, as expected for a non-Langevin system.[10] Since only charge 

equal to CU0 can be extracted per transit time and bimolecular recombination is relatively 

slow in KP115:PCBM, accumulation of charge carriers in the active layer occurs. After ~ 1 µs 

the reservoir is progressively depleted by extraction, and very little charge is left after 10 µs. 

The extraction time is limited by trapping, inducing a tail of charge after ~ 2 µs. The 

extraction that is occurring on the sub-microsecond and early microsecond timescale is that of 

the free delocalised charges prior to any thermalisation into the sub-bandgap (trapped) states, 

whereas extraction on the longer timescales – in the tail of the current transient – is of charge 

carriers de-trapped from these localised states. After light soaking, however, a larger 

proportion of charges are localised into the sub bandgap states. As such, the tail of charge in 

Figure 9 is significantly more prominent, showing that the charge extraction process occurs 

on much longer timescales after light soaking. At the low charge densities present after 2 µs, 



 

181818181818181818184181818 

the low internal resistance consequently present in the cell implies that conditions closer to 

JSC (rather than VOC) are present. This implies that the more significant trapping after light 

soaking also would have an effect on JSC.     

 

 

3. Discussion 

The transient absorption measurements revealed a bimodal KP115 polaron population, 

comprised of both delocalised charge carriers with relatively fast bimolecular recombination 

kinetics and localised (trapped) charge carriers with considerably slower – trap-limited – 

decay. After light soaking, the localised polaron decay dynamics slow down, suggesting the 

presence of energetically deeper trap states, while the delocalised polaron kinetics are less 

affected. This results in a higher concentration of charges at long times, a result also observed 

using photo-CELIV, photocurrent decay and time-resolved charge extraction. This TRCE 

technique also allows the photovoltage decay over time to be monitored, allowing the charge 

density as a function of photovoltage to be examined. The results of this analysis suggest that 

the density of states broadens after photodegradation. Photodegradation therefore appears to 

result in an alteration in the bimodal KP115 polaron population, with the polarons becoming 

trapped in a broader, deeper density of localised states (as illustrated in Figure 10). As such, 

after photo-degradation the proportion of charge carriers influenced by thermalisation into 

these sub-bandgap states increases. This consequently slows down recombination – leading to 

the higher charge densities observed at long times using each technique – but also inhibits 

charge extraction. It is likely that this loss in charge extraction efficiency is the main 

contributor to the decrease in JSC observed after light soaking.  

 

Another piece of evidence for the significant role that enhanced charge carrier trapping plays 

in the decrease in JSC after photodegradation is a consideration of the effect of active layer 
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thickness. In a thin device, charge carriers are more likely to be extracted prior to trapping.[44] 

In a thicker device, however, the average distance charges must travel before reaching the 

contacts increases, thus more charge carrier localisation would occur prior to extraction. After 

light-soaking such a thick device, the enhancement in charge carrier trapping that occurs 

suggests that charge extraction would be even more strongly inhibited. In this thicker device 

case, the JSC – and efficiency – would be expected to decrease more strongly and indeed this is 

what has been observed (Figure 11). This observation is also a clear indication that the 

photodegradation impacts primarily on the active layer rather than the contacts. Furthermore, 

P3HT:PCBM reference devices constructed with the same contacts, HIL, and EIL show quite 

different (slower) photodegradation behaviour. Thus it can be presumed that light soaking has 

a minimal effect on the contacts under these conditions, and that it is predominantly the active 

layer that undergoes the changes in trapping induced by light soaking. This conclusion is 

supported by the TAS results, where identical results were observed upon light soaking with 

both devices and simple films coated onto glass (encapsulated, but with no contacts or 

interlayers).       

  

Charge carrier trapping is typically associated with a concomitant decrease in charge carrier 

mobility, which is not observed here.[45-47] This is possibly due to the inability of the photo-

CELIV technique to monitor all trapped charges present in this device under these 

experimental conditions. Extraction of deeply trapped charges is not observed as a peak with a 

clearly defined tmax: a long tail of extracted charge carriers is present instead, which is 

truncated by the end of the applied voltage pulse. Thus the low mobilities of deeply trapped 

charges are not able to be measured using this technique. Any differences in charge carrier 

mobility after photodegradation would be expected to arise from those carriers trapped in the 

deepest states.         
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The higher extracted charge density and longer charge carrier lifetime present at long times 

after photodegradation appears to be inconsistent with the reduction in JSC. There are two 

possible reasons why this is not the case. Firstly, the crossover in charge density at 2 µs 

consistently observed in the TAS, TRCE and photocurrent decay measurements may imply 

that the charge carrier density is lower after photodegradation at much earlier times (prior to 

the resolution of the techniques employed here). In this scenario, fast charge carrier extraction 

on the sub-microsecond timescale would be an important contributor to the JSC. Secondly, it 

must be recalled that these transient techniques are usually more reminiscent of VOC 

conditions (where bimolecular recombination dominates[48]) rather than JSC. Since the deeper, 

broader trap states present after photodegradation enhance charge carrier trapping, 

bimolecular recombination of these trapped charges at VOC  is inhibited. However, the 

consequently higher charge carrier density at long times after photodegradation will not 

necessarily be present under JSC conditions, where bimolecular recombination is less 

prevalent. Instead, it has been suggested that close to JSC, the low charge densities lead to 

monomolecular trap-induced recombination, which could be the primary loss mechanism.[49] 

It is probable, therefore, that the deeper, broader trap states present after photodegradation 

slow down bimolecular recombination under open circuit conditions (boosting charge density 

at long times), but under the low charge density conditions of JSC actually promote 

recombination. A higher level of trap-induced recombination at short circuit, thereby reducing 

the efficiency of charge extraction, would account for the loss of JSC after photodegradation.  

 

Short circuit conditions are difficult to probe experimentally using transient techniques, 

particularly in these types of solar cells which have relatively high external quantum 

efficiencies (>70 %). The efficient charge extraction that occurs under the applied electric 

field at JSC allows only low charge densities to remain, which can be difficult to measure with 

any level of sensitivity. Another issue is the difference between transient and steady-state 
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techniques. In a transient measurement, a high number of photons are incident on the solar 

cell for a very short period of time (8 ns in the above results), and all charge carriers 

recombine or are extracted before the second pulse occurs; the system is allowed to return to 

equilibrium (its ground state). Steady state measurements, on the other hand, rely on a 

constant light source that induces a steady state population of charge. Results can vary 

because of this: the charge carrier lifetime measured by transient photovoltage (which, as a 

small perturbation technique, approximates steady-state) may differ substantially from that 

measured by photo-CELIV, for instance.  

 

However, despite these issues of JSC versus VOC and transient versus steady state conditions, 

the deeper, broader density of trap states that lead to enhanced charge carrier trapping after 

light soaking have been observed here using several different experimental techniques and 

conditions. The detrimental effect this enhanced charge carrier trapping has on JSC is also 

supported by the thickness dependent light soaking results, where charge carrier trapping is 

expected to have a greater effect in thicker devices, as confirmed by the larger 

photodegradation effect. Furthermore, the observation in the JV curves that the photocurrent 

of the light soaked cell approaches that of the control device at high negative bias is also 

indicative of a trapping effect. At such high driving forces, the extraction time is very fast and 

thus extraction occurs before any trap-assisted recombination takes place: the control and 

light soaked solar cells therefore produce the same photocurrent. At JSC a smaller driving 

force is present, therefore the trap-assisted recombination mechanism competes more 

effectively with charge extraction after light soaking. 

 

Relatively little is known about the nature of these localised trap states and the exact chemical 

reaction pathways and structural or conformational changes that are required to induce charge 

carrier trapping. The fullerene or impurities may also play an important role in trap formation. 
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Furthermore, it is likely that the mechanism of trap formation, resultant nature of the localised 

states, and consequent effect on device performance is highly dependent on chemical structure. 

For example, the PCDTBT photodegradation mechanism (in air) has been reported to involve 

photo-oxidative scission of a C-N bond in the carbazole unit.[7] KP115 has a very different 

chemical structure and its specific photodegradation mechanism needs to be examined in 

detail in order to ascertain the best methodology to inhibit these detrimental photodegradation 

effects. Photodegradation, even in encapsulated devices, and charge carrier trapping are 

clearly significant issues that need further research and must be addressed for successful 

commercialisation.  

 

 

4. Conclusions 

A photodegradation study has been performed on KP115:PCBM photovoltaic devices. This 

process induces a significant decrease in power conversion efficiency, primarily as a result of 

a loss in JSC. The initial stage of this photodegradation process, the burn-in phase, has been 

examined using a combination of transient absorption spectroscopy and charge extraction 

measurements. It appears that the main reason for the loss in JSC upon photodegradation is 

related to the efficiency of charge transport and extraction, although a decrease in charge 

carrier density at early times may also contribute. The bimodal polymer polaron population 

evident from TAS has both delocalised and localised, trapped polarons. After light soaking, 

the distribution of charge carrier trap states becomes broader with consequently energetically 

deeper traps. As such, after photodegradation the proportion of charge carriers influenced by 

thermalisation into these sub-bandgap states increases.  

 

Under short laser pulse and VOC conditions this enhanced trapping means that charge carriers 

are able to postpone bimolecular recombination for longer, leading to higher charge densities 
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at long times. Under the low charge density and constant illumination conditions of JSC, 

however, bimolecular recombination is less dominant and the primary recombination 

mechanism appears to be trap-induced recombination. After light soaking this loss mechanism 

competes more effectively with charge extraction due to the deeper, broader trap states 

present. The JSC decreases as a result of this reduction in charge extraction efficiency. This 

conclusion is supported by the observation that photodegradation effects are greater for 

thicker active layers. In thicker devices more charge carrier localisation would occur prior to 

extraction. After light soaking, therefore, the enhanced charge carrier trapping causes charge 

carrier extraction to be impeded more strongly and thus JSC decreases by a larger fraction.  

 

In conclusion, therefore, an in-depth photodegradation study of KP115:PCBM has shown that 

light soaking induces a deeper, broader density of localised (trapped) states. The enhanced 

charge carrier trapping influences the recombination characteristics of the active layer, 

reducing the efficiency of charge extraction under short circuit conditions.  

 

 

5. Experimental section 

Devices:  Devices of KP115:PCBM (1:2 by weight) were fabricated using the same method as 

Peet et al.
[7] with an inverted Ag/hole-injecting layer (HIL)/active layer/ electron-injecting 

layer (EIL)/ITO structure, where the HIL and EIL are Konarka proprietary materials. The 

active layer thickness was 140 nm with an active area of ~ 5 mm2. Devices were fabricated in 

air, then transferred to a glovebox for glass encapsulation.   

 

Photo-degradation: The long-term photodegradation was accomplished on non-encapsulated 

devices inside a glove box using a cold LED array set to 1 sun. The short-term burn-in 

photodegradation for the TAS and charge extraction measurements was done on encapsulated 
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devices in ambient air using a solar simulator set to 1 sun and fitted with a water filter to 

absorb heat. 

 

Nanosecond transient absorption spectroscopy: The third harmonic (355 nm) of a Nd:YAG 

laser after pulse compression (Ekspla, SL311) was employed for excitation. The repetition 

rate of the laser was 10 Hz and the pulse duration was about 150 ps. A Xe flash lamp 

(Hamamatsu, L4642, 2-ls pulse duration) was used as a probe light source. The probe light 

was directed into a Si photodiode (New Focus, 1601). For near-infrared wavelength 

measurements, an InGaAs photodetector (New Focus, 1611) was used. The signal from the 

detector was introduced into a digital oscilloscope (LeCroy, 6200 A). With this system, we 

could measure a small absorbance change (<10-3) after 100 pulses, on average. The rise time 

of the overall system was about 400 ps. The intensity of the laser pulse was measured with a 

pyroelectric energy meter (OPHIR, PE25-SH-V2). All measurements were carried out at 

room temperature. 

 

Microsecond-millisecond transient absorption spectroscopy: The encapsulated devices were 

excited in transmission mode by a laser pulse (6 ns, 532 nm, repetition rate 10 Hz) from a 

Nd:YAG laser (Spectra-Physics, INDI-40-10) with a pump wavelength of 532 nm, using 

pump intensities from 0.03 to 10 µJ.cm-2 and a repetition frequency of 1 Hz. The Xe probe 

lamp (Edinburgh Instruments, Xe900) with a stabilised power supply, with a typical probe 

wavelengths of 720 and 1000 nm, adjustable using a monochromator. The probe light passing 

through the device was detected with a silicon (Femto, HCA-S-200M-SI) or an InGaAs 

photodiode (Femto, HCA-S-200M-IN). The signal from the photodiode was amplified (Femto, 

DHPVA-200) and collected with a digital oscilloscope (Tektronics, DPO4054), which was 

synchronised with a trigger signal of the pump laser pulse from a photodiode (Newport, 818-
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BB-40). To reduce stray light, scattered light, and sample emission, appropriate optical cut-off 

and bandpass filters were placed before and after the sample. 

 

Photo-CELIV measurements: The device was illuminated by the laser pulse as above, but in 

reflection mode. After an adjustable delay time controlled by a digital delay generator 

(Stanford Research DG535), photo-generated charges were extracted using a linearly 

increasing voltage pulse applied by a function generator. The current transients were recorded 

using an oscilloscope (50 Ohm input impedance). The time resolution of the setup is around 5 

ns, and the calculated RC constant was ~ 250 ns. 

 

Time-resolved charge extraction: The device, held at open circuit, was illuminated by the 

laser pulse as above. After an adjustable delay time, extraction of the photogenerated charges 

under the built-in field was accomplished by switching to short circuit using a nanosecond 

time-resolved switch. The photocurrent was then integrated to ascertain the charge density at 

each delay time.   

 

Photovoltage decays: The device, held at open circuit, was illuminated by the laser pulse and 

then the decay of photogenerated voltage was monitored over time.  
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Figure 1. Long time degradation behaviour of KP115:PCBM photovoltaic devices under 

continuous white light (one sun equivalent) illumination in a glove-box, showing the initial 

burn-in phase prior to 100 hours and an approximately linear decay thereafter. The solid lines 

are guides for the eye. The inset shows the structure of KP115.   

 

 

Figure 2.  JV curves of the encapsulated KP115:PCBM (1:2) photovoltaic device before and 

after 72 hours of light soaking (LS) at 1 sun. 
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Figure 3.  The ground state absorbance spectrum of the encapsulated KP115:PCBM (1:2) 

photovoltaic blend film before and after 72 hours of light soaking (LS). 
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Figure 4.  a) The transient absorption spectra of the non-degraded KP115:PC60BM device on 

the early nanosecond timescale. The microsecond-timescale transient absorption spectra of (b) 

KP115:PC60BM at 1 µs before and after 72 hours of light soaking (LS) and (c) 

KP115:PC70BM encapsulated films in transmission, all using 10 µJ.cm-2 532 nm excitation. 

These results were reproducible over several samples and almost identical results were 

measured for devices. 
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Figure 5.  The transient absorption decays before and after 72 hours of light soaking (LS) of 

the encapsulated KP115:PCBM (1:2) photovoltaic device using 10 µJ.cm-2 532 nm excitation 

with probe wavelengths of a) 720 nm and b) 1000 nm.  
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Figure 6.  (a) Charge density decay with time of the encapsulated KP115:PCBM (1:2) 

photovoltaic device before and after light soaking (LS) (λexc = 532 nm, 0.3 µJ cm-2), measured 

using a nanosecond switch. (b) The bimolecular recombination coefficient β as a function of 

charge carrier density before and after light-soaking. 
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Figure 7.  (a) The decay of photovoltage over time before and after light soaking (LS). (b) 

The dependence of the photovoltage on the charge density of the same device before and after 

light soaking. 
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Figure 8.  The photo-CELIV curves of the encapsulated KP115:PCBM (1:2) photovoltaic 

device before and after light soaking (LS), measured using a nanosecond time-resolved switch 

and a 532 nm 0.3 µJ.cm-2 excitation pulse followed, after a delay time of 100 µs, by a 4 V 

voltage pulse with a width of 5 µs. The dark CELIV traces are also shown. The inset shows 

the mobility values over delay times from 10 µs to 10 ms, prior to light-soaking with and 

without the switch, and after light soaking with the switch.   

 

 

Figure 9.  Photocurrent decays of the encapsulated KP115:PCBM (1:2) photovoltaic device 

before and after light soaking (LS), measured using a 50 Ω resistance, 0.4 V constant reverse 

bias and a 1 µJ.cm-2 532 nm laser pulse. 
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Figure 10.  Schematic representation illustrating the effect of light soaking on the density of 

states of the KP115 HOMO. After light soaking, the bimodal distribution of free (grey curve) 

and localised (black curve) charge carriers changes, with the distribution of localised states 

becoming both deeper and broader.  The horizontal lines represent the centre of each gaussian.   

 

 

                    

Figure 11.  The differences in light soaking behaviour between devices with thick (~ 150 nm) 

and thin (~ 70 nm) active layers. 
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Figure S1.  The ground state absorbance spectrum of the encapsulated KP115:PCBM (1:2) 
photovoltaic blend film before and after 72 hours of light soaking (LS), with the inset 
highlighting the PCBM area of the spectrum.  
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Figure S2.  The transient absorption decays as a function of excitation density of the 
KP115:PCBM (1:2) photovoltaic device before light soaking, using 532 nm excitation with a 
probe wavelength of 1000 nm.   

 
Figure S3.  The transient absorption decays as a function of excitation density of the 
KP115:PCBM (1:2) photovoltaic device before light soaking, using 532 nm excitation with a 
probe wavelength of 720 nm.  
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Figure S4.  The excitation density dependence of the ∆OD at 1 µs for both probe wavelengths 
of 720 nm and 1000 nm, prior to light soaking of the KP115:PCBM (1:2) photovoltaic device.  
 

 
Figure S5.  The transient absorption decays as a function of excitation density of the 
KP115:PCBM (1:2) photovoltaic device after light soaking, using 532 nm excitation with a 
probe wavelength of 1000 nm.   
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Figure S6.  The transient absorption decays as a function of excitation density of the 
KP115:PCBM (1:2) photovoltaic device after light soaking, using 532 nm excitation with a 
probe wavelength of 720 nm.  
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