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Abstract 

The effects of membrane fouling on the performance of nanofiltration and reverse osmosis 

membranes with respect to boron rejection and permeate flux were investigated in this study. 

A nanofiltration (NF270) membrane and a reverse osmosis (BW30) membrane were used in 

this investigation. Four typical membrane fouling conditions were simulated under controlled 

laboratory conditions in a cross-flow membrane system using four model foulants including 

humic acid, sodium alginate, colloidal silica and CaSO4. Among these model foulants, humic 

acid was found to increase boron rejection whereas the other foulants led to a decrease in 

boron rejection. Properties of foulants were found to be an important factor that determined 

the transport of boron through the fouling layer. Results reported in this study also indicate 

that the extent of flux decline caused by different model foulants differed substantially from 

one another. The impact of membrane fouling on permeate flux decline was found to be 

dependent on the initial permeate flux and hydrophobicity of the foulant. On the other hand, 

membrane scaling was found to be governed by the salt rejection efficiency of the membrane. 

Cake-enhanced concentration polarisation appears to be a major mechanism that affects 

boron rejection efficiency of fouled membranes. 

Keywords: boron, cake-enhanced concentration polarisation, fouling, scaling, 

nanofiltration, reverse osmosis. 

1. Introduction 

The rejection of boron by nanofiltration (NF) and reverse osmosis (RO) membranes has been 

extensively investigated in recent years due to a growing interest in seawater desalination to 

supplement potable water supply [1-2]. However, most studies currently available in the open 

literature focus on the rejection of boron under virgin membrane conditions. A notable 

exception is a study by Huertas et al. [3] who reported a significant decrease in boron 

rejection by NF/RO membranes under biologically fouled conditions. This observation was 

later confirmed by a mathematical model developed by Oh et al. [4]. Given that membrane 

fouling is inevitable for any membrane desalination plant, it is essential to investigate the 

boron removal efficiency under fouled membrane conditions. 

Membrane fouling can substantially decrease permeability, increase operational cost and 

shorten membrane life [5-8]. Organic fouling typically exhibits a range of behaviour due to 
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the complex interactions between chemical functional groups of organic foulants and those of 

the polymeric membrane skin layer [9-11]. Alginate, a polysaccharide compound, was 

reported to be able to block the “valleys” made by roughness on the membrane surface, and 

also form a dense cake layer composed of cross-links between carboxylate functional groups 

on neighbouring alginate molecules by calcium ions bridging [12]. Therefore, severe flux 

decline is usually observed when the membrane is fouled by alginate substances. 

Physiochemical properties of membranes also play an important role in the extent of organic 

fouling. A study by Nghiem and Hawkes [13] revealed that permeate flux decline due to 

membrane fouling would be more severe with membranes having larger pore size. The 

authors also argued that pore blocking was the predominant fouling mechanism at the first 

stage of fouling, and the latter stage is governed by cake-enhanced mechanism. Several 

studies found that higher negative zeta potential and hydrophilicity of the membrane surface 

should lead to less fouling by organic macromolecules due to higher electrostatic repulsion 

and lower hydrophobic interactions between the foulant and membrane surface [12, 14]. In 

addition, it is reported that solution conditions such as pH and ionic strength also contribute 

to the extent of membrane fouling by organic molecules [7, 14-17]. 

The impact of colloidal fouling on permeate flux decline has been extensively reported in the 

literature [8, 18-20]. Cohen and Probstein [21] found a linear connection between permeate 

flux decline and foulant layer thickness during the initial stages of fouling. This observation 

was attributed to the enhanced osmotic pressure caused by colloidal cake layer which 

obstructs the back diffusion of salt ions from the membrane surface to the bulk solution [22-

24]. This phenomenon was also utilised to elucidate the increasing salt passage through the 

membrane which was usually observed when colloidal fouling occurred. Furthermore, Lee et 

al. [20] reported that the decrease in salt rejection of NF membranes was more severe than 

that of RO membranes because the cake layer could reduce the membrane charged exclusion 

which was more important in NF than RO membranes. The extent of colloidal deposition on 

the membrane surface was also found to be affected by properties of colloid (size and 

hydophobicity) [25] and of the membrane surface (membrane roughness and hydrophobicity) 

[26-28]. 

During the membrane filtration process, sparingly soluble salts such as CaCO3 and CaSO4 

may become supersaturated and precipitate on the membrane surface to cause membrane 

scaling. According to Lee et al. [29], the flux decline in cross-flow NF could be attributed to 
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not only surface crystallisation but also due to bulk crystallisation. In fact, in a similar study, 

Gilron and Hasson [30] attributed bulk rather than surface crystallisation to the observed flux 

decline. Pervov [31] described the scaling process as the crystal formation took place in the 

bulk solution due to strong oversaturation in the deadlocks, and then the crystals approached 

and precipitated on the membrane surface. The impact of membrane scaling on salt rejection 

has not been extensively investigated. Scaling of divalent cations such as Ca
2+

 may induce 

more positive charge to the membrane surface, and consequently reduce the rejection of 

charge solutes [32]. 

This study aims to investigate the effects of membrane fouling on the rejection of boron by 

NF/RO membranes. Four typical membrane fouling conditions were simulated under 

controlled chemical and physical conditions in a laboratory-scale cross-flow membrane 

system using four model foulants. Membrane fouling was systematically related to the 

membrane and foulant characteristics. The separation behaviours of boron under different 

solution pH were subsequently described and discussed in detail. 

2. Materials and methods 

2.1. Chemicals and reagents 

Unless otherwise stated, all experiments were conducted based on an electrolyte background 

that includes NaCl, CaCl2, and NaHCO3 at concentrations of 10 mM, 1 mM, and 1 mM, 

respectively. Boron in the form of boric acid (H3BO3) was spiked into the feed solution at a 

level of 0.43 mM (or 4.6 mgL
-1

 as boron) to represent the average boron concentration in 

seawater [33]. NaHCO3 was used as a buffer reagent. Adjustment of the feed water pH was 

carried out by adding an appropriate volume of 1M NaOH or 1M HCl. Humic acid, sodium 

alginate, colloidal silica and CaSO4 were used as model foulants and scalant to simulate 

organic substance, colloidal matter, and inorganic divalent salt that are ubiquitous in natural 

water sources. These model foulants were purchased from Sigma-Aldrich (Castle Hill, 

Australia) except CaSO4 which was purchased from Ajax Chemicals (Auburn, Australia). 

The Aldrich humic acid and alginate have molecular weights in the range of 12 – 80 kDa and 

4 – 100 kDa, respectively. Colloidal silica (Ludox HS30) is monodispersed colloid particles 

which are negatively charged at neutral or high pH rendering them somewhat hydrophilic. 

The colloidal particle has an average hydrodynamic diameter of 18 nm [28] and was supplied 
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at 30% weight suspension in water and was stored at 4 
o
C. Suprapur grade nitric acid from 

Merck Co. (Darmstad, Germany) was used for dilution and sample preparation prior to 

inductively-coupled plasma mass spectrometry (ICP-MS) analysis. All other chemicals used 

in this study are of analytical grade. 

2.2. Membrane filtration system and experimental protocol 

A NF membrane (NF270) and a RO membrane (BW30) were used. Both membranes were 

supplied by Dow FilmTec
TM

 (Minneapolis, MN, USA) as flat sheet samples and were stored 

dry. 

A laboratory-scale NF/RO filtration system equipped with a cross-flow stainless steel 

membrane cell was used in this study. The cell could hold a flat sheet membrane sample with 

an effective membrane area of 40 cm
2
 (4 cm x 10 cm). The channel height of the cell was 2 

mm. The unit utilized a Hydra-Cell pump (Wanner Engineering Inc., Minneapolis, MN) 

capable of providing pressures up to 6,800 kPa and a flow rate of 4.2 Lmin
-1

. Feed pressure 

and cross-flow velocity were controlled by a bypass valve and a back-pressure regulator. The 

temperature of the test solution was kept constant using a chiller/heater (Neslab RTE 7) 

equipped with a stainless steel heat exchanger coil, which was submerged directly into a 

stainless steel reservoir. Permeate flow was measured by a digital flow meter (Optiflow 1000, 

Agilent Technologies, Palo Alto, CA) connected to a computer, and the cross-flow rate was 

monitored by a rotameter. Permeate and retentate flows were recycled back to the feed 

reservoir. 

The fouling and subsequent rejection test protocols were performed in three stages: 

compacting, fouling development, and rejection test. At first, the membrane was compacted 

using 9 L deionized water at a pressure of approximately 500 kPa higher than the rejection 

test pressure. Membrane compaction was conducted for at least 1 h until a stable baseline flux 

was obtained. The electrolyte solution was then added to the feed reservoir, and made up to 

the total feed volume of 10 L. The fouling layer was then allowed to develop by dosing one 

of the nominated model foulants (humic acid, sodium alginate, and colloidal silica) at a 

concentration of 20 mgL
-1

 (in total mass). Membrane scaling was simulated by adding CaSO4 

to the electrolyte solution to make up 1 gL
-1

 of CaSO4. The permeate flux was then adjusted 

to be 84 Lm
-2

h
-1

 for NF270 membrane and 60 Lm
-2

h
-1

 for the BW30 membrane. The fouling 

development was carried out for 18 h and the feed solution pH was kept at 8.2. After the 
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fouling development step, boric acid was spiked to the feed solution at the concentration of 

0.43 mM. The cross-flow velocity and permeate flux were then adjusted to be 30.4 cms
-1

 and 

40 Lm
-2

h
-1

, respectively. The temperature of the feed solution was kept constant at 20 ± 0.1 

o
C during the experiment. To assess the impact of solution pH on the rejection of boron, the 

solution pH was raised to 11 by adding an appropriate volume of 1M NaOH, and then the pH 

was incrementally dropped to pH 6 by adding 1M HCl. At each pH value, the system was 

stablised for 1 h prior to the collection of feed and permeate samples for electrical 

conductivity and ICP-MS analysis. The system was operated under a full recirculation mode 

where both permeate and retentate were re-circulated to the feed tank. The permeate flux was 

kept constant during the experiment to minimize the effect of flux on rejection. 

2.3. Zeta potential measurement 

The zeta potential of the membrane surface was measured by a SurPASS electrokinetic 

analyser (Anton Paar GmbH, Graz, Austria). The zeta potential of the membrane surface was 

calculated from the measured streaming potential using the Fairbrother-Mastin approach [34]. 

All streaming potential measurements were conducted in the background electrolyte which 

was previously described in Section 2.1. HCl (1 M) and KOH (1 M) solutions were used to 

adjust the pH by manual titration. The test solution was used to thoroughly flush the cell prior 

to the pH adjustment for each measurement. All streaming potential measurements were 

performed at room temperature of approximately 25 
o
C, which was monitored by the 

temperature probe of the instrument. 

2.4. Surface roughness morphology 

Surface roughness of the membranes was characterised by a multimode atomic force 

microscope (AFM) (Digital Instruments, Santa Barbara, CA). Imaging was taken in air in 

tapping mode operation using an oxide sharpened SiN probe. The membrane average surface 

roughness was determined in triplicate mode by AFM image analysis over a 2 µm × 2 µm 

surface area. 

2.5. Contact angle measurement 

Contact angle measurements were conducted by a Rame-Hart Goniometer (Model 250, 

Rame-Hart, Netcong, NJ) using the standard sessile drop method. Milli-Q water was used as 

the reference solvent. The membranes were dried in the air before the measurements. Contact 
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angles on both sides of the droplet were measured. At least 5 droplets on each membrane 

sample were measured, and twenty counts of each droplet were recorded. 

2.6. Scanning electron microscope 

The clean and fouled membranes were visually characterised with a JSM-6490LA (JEOL 

Japan) scanning electron microscope (SEM). Before introduction to the electron beam, the 

membrane sample was coated with a thin layer of carbon using a carbon sputter. SEM images 

were taken at a magnification of 2,500 fold at 20kV. The elemental analysis was determined 

using an integrated energy-dispersive spectrometer (EDS). 

2.7. Analytical methods 

The concentrations of boron, sodium and calcium were analysed using an Agilent 7500CS 

ICP-MS (Agilent Technologies, Wilmington, DE, USA). A lithium internal standard (BDH 

Spectrosol, Poole, U.K.) was spiked to all samples at the concentration of 40 µgL
-1

. Sample 

dilution was carried out with 5% Suprapur nitric acid with a dilution factor of up to 20. To 

avoid contamination, all apparatus related to preparing samples were plastic materials, and 

were soaked in 5% Suprapur nitric acid for at least 24 h before being used. Calibration was 

conducted prior to each batch of analysis. The linear regression coefficients for all calibration 

curves were greater than 0.99 for all elements. Prior to each batch of analyses, the ICP-MS 

was tuned by a multi-element tuning solution that contained 10 µgL
-1

 of Li, Y, Ce, Tl and Co. 

Each analysis was conducted in triplicate and the variation was always less than 5%. 

Conductivity and pH were measured using an Orion 4-Star Plus pH/conductivity meter 

(Thermo Scientific, Beverly, MA). 

3. Results and discussion 

3.1. Characterization of virgin and fouled membranes 

According to the manufacturer, the two membranes used in this study are made of an ultra 

thin polyamide skin layer on top of a microporous polysulfone supporting layer. The former 

governs the separation characteristics of the membrane whereas the later provides mechanical 

strength to the membrane. The NF270 membrane has an average pore diameter of 0.84 nm 

[35], whereas the BW30 is considered to have a non-porous active skin layer. The rejection 

of typical salts (sodium and calcium) and pure water permeability of the membranes directly 
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correspond to the membrane pore sizes (Table 1). The virgin NF270 membrane has a very 

smooth surface with a surface roughness of 4.1 nm compared to that of the virgin BW30 

membrane with a surface roughness of 62.6 nm (Table 1). The high surface roughness of the 

BW30 membrane could render this membrane more susceptible to fouling because foulant 

particles could accumulate in the valleys on the membrane surface due to higher local flux 

over valley regions [27]. Although the contact angle (which measures the hydrophobicity of 

the membrane surface) does not directly affect the rejection of solute, this parameter can 

determine the transport of water through membranes which governs the overall rejection of a 

membrane system [36]. 

Table 1. Properties of the membranes used in this study. 

Membrane 

Average pore 

diameter 

(nm) 

Na
+
 

rejection 
b 

(%) 

Ca
2+

 

rejection 
b
 

(%) 

Pure water 

permeability 

(Lm
-2

h
-1

bar
-1

) 

Contact 

angle 

(◦) 

Surface 

roughness 
c
 

(nm) 

NF270 0.84 
a
 35.8 57.5 14.0 28.8 ± 2.4 4.1 

BW30 not applicable 96.2 97.7 3.5 54.6 ± 3.0 62.6 

a
 Ref [35]. 

b 
Rejection data were recorded at pH 8. 

c 
Scanning area 2 µm × 2 µm. 

Because the polyamide layer that makes up the membrane active skin contains both 

carboxylic and amine functional groups that can ionize in an aqueous solution [14], the 

membrane surface zeta potential can vary as a function of the solution chemistry, such as pH 

and ionic strength. Schäfer et al. [37] reported that a more negative membrane zeta potential 

could lead to a higher salt rejection due to an enhanced electrostatic interaction between the 

negatively charged membrane surface and charged solutes. The membranes selected in this 

study have negative charge in the investigated pH range (Figure 1). In addition, their negative 

surface charge density increases as the solution pH increases. This phenomenon suggests that 

electrostatic interaction can be an important rejection mechanism of charged solutes, 

particularly for the NF membrane. 



9 

 

2 4 6 8 10 12

-30

-20

-10

0

10

Z
e

ta
 p

o
te

n
ti
a

l 
(m

V
)

pH

 BW30

 NF270

 

Figure 1. Zeta potential of the selected membranes (measured at 25 
o
C, in a background 

electrolyte solution containing NaCl, CaCl2, and NaHCO3 at concentrations of 10 mM, 1 

mM, and 1 mM, repectively; pH was adjusted using HCl or KOH solutions). 

 

The contact angle data which reflect the hydrophobicity of the virgin and fouled membranes 

are illustrated in Figure 2. The virgin BW30 membrane appeared to be more hydrophobic 

than the virgin NF270 membrane. Higher hydrophobicity could make the BW30 membrane 

become vulnerable to fouling due to hydrophobic interaction between membrane surface and 

hydrophobic foulants. However, despite having different hydrophobicity in virgin condition, 

these two membranes showed very similar contact angle values once they were fouled by the 

same foulant (Figure 2). This observation suggests that hydrophobicity, and probably other 

physiochemical properties of the fouled membranes are governed by the fouling layer rather 

than the aromatic polyamide active layer of the membrane surface.  
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Figure 2. Contact angle values of the investigated clean and fouled membranes. Milli-Q 

water was used as the reference solvent. The error bars show the standard deviation of five 

replicate measurements. 

SEM analysis confirmed that at the completion of the fouling development stage, the 

membrane surface was completely covered by the fouling layer (Figure 3). Because the 

model foulants are significantly larger than the pore size of the NF270 membrane, permeation 

of the organic and silica colloids through the membrane did not occur as could be confirmed 

by the low turbidity of the permeate samples. Surface morphology and composition of the 

virgin membrane (Figure 3a) differed distinctively from that of the fouled membranes (Figure 

3b, 3c, 3d, 3e). Humic acid, alginate and colloidal silica formed a dense and uniform cake 

layer on the membrane surface as a result of hydrophobic interactions between the foulants 

and membrane surfaces. On the other hand, CaSO4 crystallised and precipitated on the 

membrane surface to establish a spongy and coarse layer that highlighted the foulant-foulant 

interactions. This CaSO4 scaling layer is expected to affect the membrane permeate flux by a 

lesser extent than that by the humic, alginate and colloidal silica foulants. Elementary 

compositions of the fouling layer obtained from qualitative EDS analysis were consistent 

with key signature elements of the corresponding foulants (Figure 3). In addition to the model 

foulants, carbon, oxygen and sulfur were parts of the membrane polymeric composition and 

thus were detected in all samples, including the virgin membrane (Figure 3a). A high level of 

calcium was found in the alginate fouling layer (Figure 3c). This result is consistent with 
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previous studies that calcium could make cross-links with alginate molecules and accumulate 

in the alginate fouling layer [12]. Silica was the most abundant element of the colloidal silica 

fouling layer (Figure 3d). Similarly, the CaSO4 scaling could also be confirmed by the 

dominant presence of sulfur and calcium on the membrane surface (Figure 3e). 

 

Figure 3. SEM images and EDS data of the (a) virgin NF270 membrane, membrane surfaces 

fouled by (b) humic acid, (c) sodium alginate, (d) colloidal silica, and (e) CaSO4 scaling. The 

membrane samples were coated with a thin layer of carbon using a carbon sputter. 
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3.2. Membrane fouling behaviour 

Figure 4 shows the alteration of permeate flux as a function of fouling development time 

(Figure 4a) and as a function of accumulated mass of foulant on the membrane surface 

(Figure 4b). The latter was calculated based on a simple mass-balance assuming that the 

foulant was completely retained by the membrane and that tangential transport of the foulant 

away from the membrane surface was negligible. Membrane fouling of the BW30 was less 

severe in comparison to that of the NF270 membrane, with CaSO4 being the only exception 

(Figure 4). This proportional behaviour between the initial permeate flux decline rate and 

membrane pore size was reported previously [13]. The greater membrane fouling observed 

with the NF270 membrane could be attributed to the higher operational initial permeate flux 

(84 Lm
-2

h
-1

) in comparison to that (60 Lm
-2

h
-1

) of the BW30 membrane. The higher initial 

permeate flux introduced more foulant to the membrane surface, and subsequently 

encouraged fouling on the NF270 membrane (Figure 4b). It is noteworthy that the virgin 

NF270 membrane possesses a lesser surface roughness, lower hydrophobicity (Table 1) and 

higher negative zeta potential (Figure 1) which could subsequently lead to lower fouling 

potential compared to the BW30 membrane. The data reported here (Figure 4) suggest that 

the impact of surface roughness, hydrophobicity and zeta potential was overwhelmed by the 

high initial permeate flux
 
that makes the NF270 membrane more susceptible to fouling 

compared to the BW30 membrane. On the other hand, the BW30 membrane was more 

severely influenced by CaSO4 scaling than the NF270 membrane (Figure 4). In this case, 

higher salt rejection efficiency of the BW30 membrane compared to that of the NF270 

membrane generated a greater concentration polarisation at the membrane surface. 

Consequently, membrane scaling caused by the precipitation of CaSO4 was more severe for 

the BW30 than for the NF270 membrane. In addition, Figure 4b shows that at the same 

accumulated masses, different foulants caused different extent of flux decrease. This implies 

that the properties of foulants play the key role in governing the fouling extent. 
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Figure 4. Normalised permeate flux as a function of (a) time and (b) accumulated mass of 

foulant on the membrane surface. Initial permeate flux: 84 Lm
-2

h
-1

 for NF270 membrane and 

60 Lm
-2

h
-1

 for BW30 membrane, respectively. Feed solution: 10 mM NaCl, 1 mM CaCl2, 1 

mM NaHCO3, and 20 mgL
-1

 of each foulant, except CaSO4 was 1 gL
-1

. For data presentation 

purposes, the accumulated mass of CaSO4 shown in the figure has been divided by 50. 

Membrane fouling can occur in two successive stages where foulant-membrane interactions 

determine fouling mechanisms at the first stage, and the latter stage is governed by foulant-

foulant interactions [12-13, 38]. The rapid decrease in permeate flux at the first stage implied 

that foulant-membrane interactions played a dominant role in fouling development. This is 

the case of the NF270 membranes fouled by humic acid, sodium alginate and colloidal silica 

(Figure 4-1). A very sharp and substantial flux drop was observed with these fouled 

membranes within the first hour, and then the decrease rate became noticeably lower, even 

inconsiderable in case of the colloidal silica fouling. The foulant-membrane interactions 
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could be the hydrophobic interaction between the organic foulants and the membrane surface 

[12, 14] and the clogging impact of the foulant particles to the valleys on the membrane 

surface [12]. This phenomenon seemed not occur at the CaSO4 scaling membrane because of 

the large size of the CaSO4 crystals. The later stage of fouling development, which is 

governed by foulant-foulant interactions, caused less effect on permeate flux decline. In 

particular, the presence of Ca
2+

 in the feed solution could cause severe impact on the flux 

decline because Ca
2+

 could bridge carboxylate functional groups on neighbouring alginate 

molecules and so make the fouling layer thicker and denser [10, 12, 39-40]. This finding is 

verified by the high level of calcium found in the fouling layer (Figure 3c). In general, cake-

enhanced concentration polarisation may occur and reduce the permeate flux of all the fouled 

membranes. In this phenomenon, back diffusion of solutes at the membrane surface to bulk 

solution is hindered by the fouling layer, and results in a substantial increase in solute 

concentration at the membrane surface [23]. The increase in solute concentration led to an 

increase in osmotic pressure and subsequently a decrease in permeate flux [41]. 

3.3. Effects of fouling and pH on the rejection of boron and salts 

Boron rejection by both virgin and fouled membranes was greatly affected by solution pH 

(Figure 5). An increase in the solution pH could substantially increase boron rejection by 

NF/RO membranes, and the NF270 membrane was more sensitive to this effect than the 

BW30 membrane (Figure 5). In particular, boron rejection by the NF270 membrane under 

both virgin and fouled conditions was negligible at pH lower than 8, and the rejection 

increased up to 40 – 60% when the solution pH increased to 11. As a notable exception, the 

humic acid fouled NF270 membrane showed a rejection value of almost 30% below pH 8. 

This observation will be further discussed in a later section. On the other hand, boron 

rejection by the BW30 membrane in virgin and fouled conditions increased by only about 

35% when the solution pH increased from 6 to 11 (Figure 5). Mechanisms governing boron 

rejection by virgin NF/RO membranes have been elucidated in previous studies as size 

exclusion (at low pH) and charged repulsion (at high pH) [42-44]. The similar behaviour of 

the fouled and virgin membranes as solution pH increased (Figure 5) implied that 

mechanisms governing boron rejection by virgin membranes did not change substantially 

when the membranes were fouled, and therefore these mechanisms could be applied to 

explain boron rejection by fouled membranes. 
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Figure 5. Boron rejection by virgin and fouled NF270 and BW30 membranes as a function of 

solution pH. Feed solution: 10 mM NaCl, 1 mM CaCl2, 1 mM NaHCO3, 0.43 mM B(OH)3 

and 20 mgL
-1

 of each foulant, except CaSO4 was 1 gL
-1

; feed temperature = 20 
o
C; permeate 

flux = 40 Lm
-2

h
-1

; cross flow velocity = 30.4 cms
-1

. 

Fouled membranes responded to changes in solution pH at a lower degree than virgin 

membranes (Figure 5). In other words, the fouling layer seemed to reduce the impact of 

solution pH on boron rejection. For example, when the solution pH increased from 6 to 11, 

boron rejection by the virgin NF270 membrane increased 65%, whereas it was only 

approximately 45% for the membranes fouled by sodium alginate and by colloidal silica 

(Figure 5). In this case, the fouling layer acts as a physical barrier that shields the contact 

between the bulk solution and membrane surface. Consequently, the zeta potential and 

double-charged layer of the membrane would not be substantially affected by solution pH 

changes, and lower boron rejection attained by fouled membranes as a result. Indeed, Tang et 

al. [45] reported a constant zeta potential of the NF270 membrane fouled by Aldrich humic 

acid when solution pH varied in the range of 3.5 – 9.5. In addition, the colloidal silica and 

CaSO4 fouling layers could not only shield the contact between the membrane surface and the 

bulk solution, but also neutralise the membrane surface charge which explains the lower 

rejection of boron by membranes fouled by colloidal silica and CaSO4. The charged 

neutralisation feature of these two foulants has been reported in the literature [20, 32]. On the 

other hand, solution pH changes affected boron rejection more apparently at the fouled 

NF270 than at the fouled BW30 membrane. Size exclusion was thought to be the dominant 
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rejection mechanism of boron by the BW30 membrane and this rejection mechanism was not 

significantly affected by solution chemistry [42]. Indeed, the role of size exclusion and its 

relationship with solution pH apparently revealed in the rejection of conductivity and sodium 

(Figure 6). Conductivity and sodium rejection by the fouled NF270 membranes were almost 

invariable with increasing solution pH, whereas their rejection by the virgin NF270 

membrane significantly improved (Figure 6). Similar observations were reported by several 

previous studies [45-47]. 

6 7 8 9 10 11

0

20

40

60

80

100

6 7 8 9 10 11

0

20

40

60

80

100

6 7 8 9 10 11

0

20

40

60

80

100

6 7 8 9 10 11

0

20

40

60

80

100

C
o

n
d

u
c
ti
v
it
y
 r

e
je

c
ti
o

n
 (

%
)

pH

NF270

 Clean

 Humic acid
 Na alginate

 Colloidal silica
 CaSO

4

NF270

 Clean

 Humic acid

 Na alginate
 Colloidal silica

 CaSO
4

BW30

 Clean 

 Humic acid

 Na alginate
 Colloidal silica

 CaSO
4

BW30

 Clean 

 Humic acid
 Na alginate

 Colloidal silica
 CaSO

4

S
o

d
iu

m
 r

e
je

c
ti
o

n
 (

%
)

pHpH pH  

Figure 6. The rejection of conductivity and sodium by virgin and fouled NF270 and BW30 

membranes as a function of solution pH. Feed solution: 10 mM NaCl, 1 mM CaCl2, 1 mM 

NaHCO3, 0.43 mM B(OH)3 and 20 mgL
-1

 of each foulant, except CaSO4 was 1 gL
-1

; feed 

temperature = 20 
o
C; permeate flux = 40 Lm

-2
h

-1
; cross flow velocity = 30.4 cms

-1
. 

Under high pH conditions, the difference in boron rejection by virgin and fouled membranes 

was apparent. The boron rejection efficiency of virgin membranes was considerably higher 

than that of the CaSO4, alginate and colloid-fouled membranes. One possible explanation for 

the lower boron rejection observed with the membranes fouled by sodium alginate, colloidal 

silica and CaSO4 under high pH conditions is the impact of cake-enhanced concentration 

polarisation caused by fouling layers. Cake-enhanced concentration polarisation has been 

extensively reported as a major cause of decrease in solute rejection by NF/RO membranes 

[9, 20, 22-23].  In fact, colloidal fouling resulted in a severe drop in conductivity and sodium 

rejection by the NF270 membrane (Figure 6), which is in good agreement with previous 

studies [18, 20-22, 24, 26-28, 48]. The considerable increase in boron concentration at the 
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membrane surface coupled with the decline in permeate flux resulted in a significant decrease 

in boron rejection by the fouled membranes as observed in Figure 5. It is noteworthy that 

cake-enhanced concentration polarisation could occur and reduce boron rejection under either 

low or high pH conditions. However, because the boron rejection efficiency of the virgin 

NF270 membrane was negligible at low pH conditions, the effect of cake-enhanced 

concentration polarisation on boron rejection was not apparent at this low pH condition. The 

occurrence and influence of cake-enhanced concentration polarisation were further confirmed 

by the lower sodium rejection by the colloidal silica fouled membrane observed in Figure 6. 

The humic acid fouling layer could significantly increase boron rejection by both NF270 and 

BW30 membrane at all pH values within the investigated pH range (Figure 5). This 

phenomenon was more apparent at the NF270 membrane. At pH lower than 9, boron 

rejections by the humic acid fouled NF270 and BW30 membranes were 30% and 15% higher 

than for the virgin membranes, respectively. It was found that size exclusion is a dominant 

removal mechanism for the neutral boric acid species [42]. The data reported in Figure 5 

implied that the adsorption of humic acid on the membrane surface would enhance both size 

exclusion and charge repulsion mechanisms. The enhancement of size exclusion might be 

attributed to the phenomenon where the ‘hot spots’ on membrane surface with high local flux 

and low salt rejection were plugged by humic material [27, 45], which resulted in the increase 

in the steric-hindrance impact. For the BW30 membrane, the increase in size exclusion could 

also be driven by the clogged valleys on the rough surface of this membrane. In addition, the 

greatly negative charge of the humic layer resulted in a significant increase in boron rejection 

by charge repulsion mechanism under high pH conditions. The effect of the humic acid 

fouling layer to improve solute rejection was further confirmed by the higher conductivity 

and sodium rejection obtained by the humic acid fouled NF270 membrane as illustrated in 

Figure 6. This result is also consistent with several previous studies [7, 14, 49]. Cake-

enhanced concentration polarisation might occur and decrease boron rejection by the humic 

acid fouled NF270 and BW30 membranes. However, the decrease in boron rejection caused 

by this effect was probably compensated by the significant increase in boron rejection caused 

by the ‘hot spots’ clogging and membrane surface charge increasing as discussed above [27, 

45]. 
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4. Conclusion 

The impacts of four different model foulants on the performance of NF/RO membranes were 

investigated in this study. Organic foulants (humic acid and sodium alginate) caused the most 

severe drop in permeates flux and followed by colloidal silica and CaSO4 scaling. Various 

extents of flux decline caused by different model foulants implied different fouling 

mechanisms involved. All membrane fouling experiments investigated in this study, 

including with different foulants and membranes used, appeared to be subjected to the cake-

enhanced concentration polarisation phenomenon which not only caused severe permeate 

flux decline, but also decreased the rejection efficiency of boron and inorganic salts. In 

addition, the fouling layer could also play the role of a physical barrier that inhibited the 

impact of solution pH changes on membrane surface charged properties. Consequently, the 

effect of high solution pH to increase membrane surface negative charge that encouraged 

boron rejection was inhibited. In addition to cake-enhanced concentration polarisation, boron 

rejection efficiency could also be reduced by the membrane charge neutralisation effect of the 

fouling layer, particularly of colloidal silica and CaSO4 scaling layer. In contrast, boron 

rejection could be improved by the adsorption of humic acid on the membrane surface 

because of the highly negatively charge property of the humic substance. 
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