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The vortex pinning mechanisms of Ba0.72K0.28Fe2As2 single crystal have been studied systematically

as a function of temperature and magnetic field. The temperature dependence of the critical current

density, Jc(T), was analysed within the collective pinning model at different magnetic fields. It was

found that both the dl pinning mechanism, i.e., pinning associated with charge-carrier mean free path

fluctuation, and the dTc pinning mechanism, which is associated with spatial fluctuations of

the transition temperature, coexist in the Ba0.72K0.28Fe2As2 single crystal in fields smaller than 4 T.

Their contributions are strongly temperature and magnetic field dependent. At lower temperature and

B� 4 T, the dl pinning is the dominant mechanism, and its contributions decrease with increasing

temperature. At temperatures close to the critical temperature, however, there is evidence for dTc

pinning. At magnetic fields larger than 4 T, the dl pinning mechanism is the only effect. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4714543]

The main physical parameters of interest for using

superconducting materials are: a high superconducting tran-

sition temperature, Tc, high critical current density, Jc, high

upper critical field, Bc2, high irreversibility field, Birr, strong

magnetic-flux pinning, good grain connectivity, and a small

anisotropy. The layered cuprate superconductors have high

anisotropy, short coherence length, and high Tc. Therefore,

the vortices mainly behave as two-dimensional (2D) pancake

vortices at high temperatures and fields. Such vortices can

move easily, and their fluctuations are quite strong.1 Grain

boundaries of high-Tc superconductors have been a critical

issue in practical applications. It is well known that the criti-

cal current exhibits exponential decay in the weak-link re-

gime. In this regime, they have poor grain connectivity and

easy melting of the vortex lattice, leading to small Jc in high

magnetic fields at relatively high temperatures. For MgB2

superconductor with Tc¼ 39 K, Jc drops quickly with both

field and temperature. The Fe-based superconductors are a

new family of high-Tc superconductors and have Tc as high

as 56 K (Ref. 2) and Bc2 above 70–80 T,3 along with small

anisotropy of 5–6 for REFeAsO1�xFx (RE-1111 phase, with

RE a rare-earth element),4 but are almost isotropic for

(Ba,K)Fe2As2 (122 phase).5 These compounds show Jc over

1–3� 105–106 A/cm2 at 5 K for both B//ab and B//c6,7 (in

thin films and crystals with higher Jc). It was also found that

grain boundaries are not an important issue in iron pnictide

superconductors.8 These properties make the Fe-based super-

conductors extremely promising candidates for high mag-

netic field applications at relatively high temperatures. The

current-carrying ability of these superconductors at high

fields and temperatures is largely determined by the flux-

pinning strength, which is found to be very large, as much as

9100 K in Ba0.72K0.28Fe2As2 single crystal.9

At the irreversibility field, Hirr, vortices start to move

along the direction of the current flow, and hence the critical

current vanishes. The current-density decay behaviour is

governed by the pinning mechanism. The in-field Jc is

mainly controlled by the flux pinning mechanisms. There are

two basic pinning mechanisms in type-II superconductors.

The first is the pinning due to the randomly distributed spa-

tial variations in the transition temperature Tc, which is

called dTc pinning. The second pinning mechanism relates to

spatial fluctuation of the charge-carrier mean free path, the

so called dl pinning, mostly due to crystal lattice defects.1,10

It has been reported that the dTc pinning is the main flux pin-

ning mechanism in Pr-doped YBa2Cu3O7 (YBCO),11 and

pure MgB2 bulk and thin films.12–14 It was reported, how-

ever, that dl pinning is the important mechanism in stoichio-

metric Y-based high-Tc superconducting thin films.10 It was

also found that both mechanisms coexist in the nanoparticle

doped-MgB2 samples, depending on the temperature.15,16

Preliminary experimental results indicate that the vortex

dynamics in Fe-based superconductors may be understood

through the thermally activated flux motion model based on

collective vortex pinning.7,9,17–19 Fluctuation of mean free

path and transition temperature induced vortex pinning, how-

ever, as the flux pinning mechanism for the Fe-based super-

conductors has not been studied so far.

In this paper, the vortex pinning mechanisms of

Ba0.72 K0.28Fe2As2 single crystal have been studied systemati-

cally by magnetization loop measurements at different tem-

peratures. It was found that both the dl and the dTc pinning

mechanisms coexist in the Ba0.72K0.28Fe2As2 single crystal in

fields smaller than 4 T, while the dl pinning mechanism is the

only effect at higher magnetic fields. Their contributions are

strongly temperature and magnetic field dependent.

The Ba0.72K0.28Fe2As2 crystals used in the present work

were grown using a flux method. High purity elemental

Ba, K, Fe, As, and Sn were mixed in a molar ratio of

a)Author to whom correspondence should be addressed. Electronic mail:

xiaolin@uow.edu.au.

0003-6951/2012/100(21)/212601/4/$30.00 VC 2012 American Institute of Physics100, 212601-1
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Ba1�xKxFe2As2:Sn¼ 1:45–50 for the self-flux. A crucible

with a lid was used to minimize the evaporation loss of K as

well as that of As during growth. The crucible was sealed in

a quartz ampoule filled with Ar and loaded into a box fur-

nace. The details of the crystal growth are given in Ref. 20.

The as-grown single crystal was cleaved and cut into a rec-

tangular shape for measurements. The transport properties

were measured over a wide range of temperature and mag-

netic fields up to 6 T with applied current of 5 mA using a

physical properties measurement system (PPMS, Quantum

Design).

Magnetization loops were collected for a (Ba,K)Fe2As2

single crystal in different magnetic fields, which were per-

pendicular to the FeAs planes, B//c, and temperatures down

to 5 K. The critical current density Jc was obtained from the

width DM of the magnetization loop using the Bean model,

where for full sample penetration Jc¼ 20DM/Va(1�a/3b),

where a and b are the width and the length of the sample

perpendicular to the applied field, respectively, V is the sam-

ple volume, and DM is the height of the M-H hysteresis loop.

The resulting Jc versus applied field is plotted in Fig. 1. At

5 K, the Jc value is 3.3� 105 A/cm2 at B¼ 2 T, and it only

decreases to 6.2� 104 A/cm2 at B¼ 6 T. The weak depend-

ence of Jc on magnetic field and temperature suggests that

the (Ba,K)Fe2As2 single-crystal superconductor has superior

Jc behaviour, which is beneficial for potential applications in

high magnetic fields.

The temperature dependence of the normalised Jc at

magnetic fields of 1, 3, 4, and 5 T is presented in Fig. 2. The

normalised Jc has a linear dependence on temperature in the

low temperature region and a slight enhancement of the log

(normalised Jc) in the high temperature region. Actually,

similar behaviour was also reported for both single crystal

and polycrystalline cuprate superconductors.11,21 In order to

describe the current densities of high-Tc superconductors,

Thompson et al.21 explained the temperature dependence of

Jc in the framework of the thermally activated flux motion

model and the model of collective flux pinning and creep.

They found the following expression for the temperature

dependence of Jc:

JcðTÞ ¼
JdpðTÞn

1þ lkBTln t1
teff
þ 1

� �
=UcðTÞ

h io1=l
; (1)

where Jdp(T) is the depinning current density, Uc(T) is the

characteristic pinning potential, l is the glassy exponent, t1
is the time at which the data was recorded, and teff is the

effective attempt time for a flux segment/bundle to jump

over the potential barrier. The glassy exponent l gives the

influence on the current dependence of Uc(T), depending on

the flux creep regime.22 By assuming Uc(T)¼Uc(0) g(t) and

Jdp(T)¼ Jdp(0)J(t) with Uc(0), and Jdp(0) the corresponding

values at T¼ 0 K and t¼ T/Tc, the following temperature

dependence for Jc(T) can be obtained:

JcðTÞ ¼
Jdpð0ÞJðtÞ

f1þ ½lkBTC=gðtÞ�g1=l
(2)

with

C ¼ ln
t1

teff
þ 1

� �
=Ucð0Þ (3)

which is a temperature independent constant.

In the framework of the collective theory, Griessen

et al.10 pointed out that the dl and dTc pinning mechanisms

result in different temperature dependencies of J(t) and g(t).
They found:

JðtÞ ¼ ð1� t2Þ7=6ð1þ t2Þ5=6; (4)

gðtÞ ¼ ð1� t2Þ1=3ð1þ t2Þ5=3; (5)

for dTc pinning, and

JðtÞ ¼ ð1� t2Þ5=2ð1þ t2Þ�1=2; (6)

gðtÞ ¼ 1� t4 (7)

for dl pinning. One can easily find from Eqs. (1), (4), and (6)

that at T¼ 0 K, Jc(0)¼ Jdp(0), and therefore, we can fit the

critical current density data with Eq. (1) by adjusting only
FIG. 1. The Jc-field dependence obtained from the M-H loops at different

temperatures measured on a Ba0.72K0.28Fe2As2 single crystal.

FIG. 2. Temperature dependence of the normalised measured current den-

sity Jc at magnetic fields of 1, 3, 4, and 5 T. The solid lines are the theoretical

curves obtained based on the model of the dl (blue curves) pinning mecha-

nism, the model of the the dTc (black curves) pinning mechanism, and the

coexistence of both (red curves) pinning mechanisms.

212601-2 Wang et al. Appl. Phys. Lett. 100, 212601 (2012)
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two parameters, i.e., C and l. The theoretical curves obtained

based on the model of dl (blue curves) and dTc (black curves)

pinning are shown in Fig. 2. At magnetic field lower than 4 T,

one can see that the experimentally obtained critical current

density value resides in between the dl and dTc pinning.

Therefore, both the dl and the dTc pinning coexist, while for

B> 4 T, the temperature dependence of the Jc is found to be

in excellent agreement with the model of the dl pinning

mechanism, and the data cannot be explained by the model of

the dTc pinning.

To investigate further the real pinning mechanism of the

Ba0.72K0.28Fe2As2 single crystal samples, the Jc(T) data were

analysed by assuming the coexistence of both the dl and the

dTc pinning mechanisms within the following expression:

JcðTÞ ¼ P1Jl
sðTÞ þ P2JTc

s ðTÞ; (8)

where Jl
cðTÞ and JTc

c ðTÞ are the expression for the dl and the

dTc pinning, respectively. P1 and P2 are fitting parameters.

The Jc(T) data were well described by Eq. (8) at magnetic

fields lower than 5 T, as shown by the red solid curves in

Fig. 2. The best-fitted value of l is 0.38 6 0.0.1 for the

Ba0.72K0.28Fe2As2 single crystal. The l value is in good

agreement with l¼ 0.45, which was estimated from studies

of E-J curves for Ba(Fe1�xCox)As2 at B¼ 0.5 T.19 Therefore,

a positive l indicates elastic vortex motion for the

Ba0.72K0.28Fe2As2 single crystal. This is because from stud-

ies of E-J curves, it was suggested that a negative l value

corresponds to plastic vortex motion, while a positive l indi-

cates elastic vortex motion.20

The value of 0.5 6 0.1 was obtained for parameter C,

which is roughly magnetic field independent. This parameter

may depend on magnetic field through the ln(t/teffþ 1) factor

and the temperature independent pinning potential Uc in Eq.

(3). For the Ba0.72K0.28Fe2As2 single crystal, U0 is magnetic

field independent in the magnetic field range studied here.9 It

was found21 that ln(t/teffþ 1)¼ ln[2v0B/a(dB/dt)], where v0

is the attempt velocity, which is expected to be field depend-

ent, since single-vortex hopping occurs at low fields, while

flux-bundle motion is expected at high fields. a is the lateral

dimension of the sample and dB/dt is the sweep rate of mag-

netic field B. Therefore, the variation of C with magnetic

field through the ln(t/teffþ 1) factor is logarithmic and for the

field range under examination could be roughly constant.

In order to compare the effects of the dl and the dTc

pinning mechanisms, the P parameter was defined as

Pl ¼ P1Jl
cðTÞ=JcðTÞ and PTc

¼ P2JTc
c ðTÞ=JcðTÞ, which repre-

sent the dl and the dTc pinning effects, respectively, with

Pl þ PTc
¼ 1. The results of both pinning effect contribu-

tions are shown in Fig. 3. As can be seen in Fig. 3, the pin-

ning mechanism strongly depends on the temperature.

Between 20 and 23 K and for B� 4 T, the two pinning mech-

anisms have roughly equal effects, while above these tem-

peratures, dTc pinning is dominant. For temperatures close to

Tc and B� 4 T, the Tc fluctuation increases, and therefore,

the dl pinning is suppressed completely. When the tempera-

ture is far below Tc, the Tc fluctuation disappears, and the dl
pinning is dominant.

The magnetic field dependences of both the dl and the

dTc pinning mechanisms are shown in Fig. 4. Both dl and

dTc pinning coexist at magnetic fields lower than 4 T. The dl
pinning is dominant at high magnetic fields and low tempera-

tures; it decreases with decreasing field and increasing tem-

perature, while the dTc pinning shows the opposite trend

up to B¼ 4 T and is suppressed completely at B¼ 5 T.

Therefore, at higher magnetic field, the dl is the only effec-

tive pinning mechanism.

In conclusion, from the temperature dependence of the

critical current density within the collective pinning model at

different magnetic fields, we have found that the dl pinning

due to spatial fluctuations of the charge-carrier mean free

path is strongly dominant at low temperature and low mag-

netic fields in Ba0.72K0.28Fe2As2 single crystal. At tempera-

tures close to the critical temperature, however, there is

evidence for the dTc pinning, while at higher magnetic fields,

the dl pinning mechanism is the only effect.

This work was supported by the Australian Research

Council through Discovery projects DP1094073 and

DP120100095.
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Knupfer, E. Arushanov, H. Rosner, B. Buchner, and L. Schultz, New J.

Phys. 11, 075007 (2009).

FIG. 3. dl and dTc pinning contributions as functions of temperature in

Ba0.72K0.28Fe2As2 single crystal at different magnetic fields.

FIG. 4. Magnetic field dependences of the dl and the dTc pinning contribu-

tions in Ba0.72K0.28Fe2As2 single crystal at different temperatures.

212601-3 Wang et al. Appl. Phys. Lett. 100, 212601 (2012)

Downloaded 28 Aug 2012 to 130.130.37.84. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1209/0295-5075/83/67006
http://dx.doi.org/10.1088/1367-2630/11/7/075007
http://dx.doi.org/10.1088/1367-2630/11/7/075007


4J. Jaroszynski, F. Hunte, L. Balicas, Y.-J. Jo, I. Raičević, A. Gurevich,
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