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Abstract— Conducting polymer actuators are biocompatible with a small foot-print, and operate in air 

or liquid media under low actuation voltages. This makes them excellent actuators for macro- and 

micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by 

their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis 

model for conducting polymer actuators, based on a rate-independent hysteresis model known as the 

Duhem model. The hysteresis model is experimentally identified and integrated with the linear 

dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer 

actuators considered in this study, without using any external feedback. The inversion requires an 

inverse hysteresis model which was experimentally identified using an inverse neural network model. 

Experimental results show that the position tracking errors are reduced by more than 50% when the 

hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the 

potential of the proposed method in enabling wider use of such smart actuators. 

Keywords—Conducting polymer actuators; hysteresis model; Duhem model; system identification; 

inversion-based feedforward control. 

1 Introduction 

Conducting polymer actuators have received significant attention [1]-[4] in the past 

decade due to their low operating voltage, inherent biocompatibility, high force output to 

weight ratio, noiseless operation with a small footprint, and insensitivity to magnetic fields. 

These actuators could be engineered as bending actuators like a cantilever beam, which are 

suitable for activating micro-pumps, micro-switches, micro-grippers and micro-cantilevers, to 

move, position or hold micro devices and objects, and manipulate biological samples. 

Mathematical models have previously been developed to understand their quasi-static and 

dynamic behaviors and establish feedback control strategies [5]-[7]. Feedback control and 

open-loop control (using an inverse model of the actuator) techniques can be employed to 

control the actuator’s bending displacement or bending angle [8]-[10]. In particular, 

open-loop control techniques are desirable for such smart actuators since it is not practical to 

use an external sensor for feedback in most of the applications envisioned. With this in mind, 

it is crucial to model non-linear effects such as hysteresis to enhance the accuracy of the 

actuator model and hence increase the positioning ability of these actuators without using an 

external sensor.  

When conducting polymer actuators are influenced by their hysteresis non-linearity, the 

whole system usually exhibits undesirable inaccuracies. The hysteresis phenomenon occurs in 



 

 

almost all smart material-based actuators [11]-[15]. Researchers have proposed various 

methods for hysteresis modeling, however, hysteresis modeling has not been reported for 

tri-layer conducting polymer actuators. The Preisach model and various other hysteresis 

models are widely used [16]-[18], but these operators are typically difficult to identify and 

invert [19]-[20]. On the other hand, the Duhem hysteresis model is simpler to construct and 

experimentally identify [21, 28]. Over the years, various control techniques have been 

developed to mitigate the effects of hysteresis. Much of this renewed interest is a direct 

consequence of the importance of smart materials in numerous current applications. The 

interest in studying dynamic systems with actuator hysteresis is also motivated by the fact that 

they are non-linear systems with non-smooth non-linearities for which traditional control 

methods are insufficient and thus require the development of alternative approaches. 

In this paper, we develop a method for building a hysteresis model for tri-layer 

conducting polymer actuators. The model consists of two sub-systems, a rate-independent 

Duhem hysteresis model and a linear dynamic model. The efficacy of the model is 

demonstrated with experimental results obtained from the actuators controlled through an 

inversion-based feedforward controller. It must be noted the success of the feedforward 

control depends on the accuracy of the mathematical model describing the dynamic behaviour 

of the actuators. As reported before [5,10,23,24,29], it is virtually impossible to have a 

mathematical model accounting for a wide range of frequencies and the variations in the 

electrical, chemical and mechanical parameters of these tri-layer actuators including their 

nonlinear behaviour such as creep and hysteresis. We have previously reported on a hysteresis 

model to be used in the feedforward control of these actuators [28], and other smart actuators 

whose dynamic behaviour and hysteretic behaviour can similarly be modelled and identified, 

and subsequently it can be used in a feedforward controller in order to control the 

displacement output of these actuators. This paper incorporates this hysteresis model into the 

linear model of the actuator to establish a more accurate mathematical model, for the 

sensorless position control of these actuators. 

2. Experimental Setup 

Figure 1 shows the structure of the bending-type trilayer polymer actuators considered in 

this study. It consists of two outer polypyrrole (PPy) layers that are the active components 

(serving as electrodes), an inner porous separator of PVDF that holds the liquid electrolyte, 

and two sputter-coated gold layers with negligible thickness for electrochemically growing 

the polymer layers on the PVDF layer. The bending actuator with the desired length and 

width is cut from the bulk sheet. This composite structure exhibits a simple bending motion 

like a bi-layer cantilever. When a potential difference or current is passed between the 

polymer (PPy) electrodes via the clamp, the polymer actuator bends and outputs a mechanical 

motion at its tip, due to an electrochemical reaction. We have presented the procedure for the 

synthesis of the actuators in our previous study [22]. Such bending actuators are suitable for 

moving, positioning or holding micro devices, objects and biological samples. In particular, 

due to their compliance, they can be used as a cell-tapper to mechanically stimulate a single 

cell [25, 26]. 



 

 

 

Figure 1. Geometry of the conducting polymer actuator. 

Figure 2 shows the experimental set-up for model identification and control. The input 

voltage applied to the actuator is first generated by the software and then transmitted to an NI 

USB-6251 DAQ board and to an eDAQ potentiostat (eDAQ, model EA161) operating in the 

two-electrode mode. A non-contact laser sensor (Micro-epsilon, model NCDT-1700-10) is 

used to measure the tip displacement of the actuator. The data is sent to the computer via a 

data logger (e-Corder, model ED821). The control system is built in MATLAB which is 

connected to the experimental hardware through object linking. 

 
Figure 2. Schematic representation of the experimental set-up. 

It is usually difficult to build accurate analytical or physical models due to non-linearities 

and multi-physics (electro-chemo-mechanical) phenomena associated with the actuator. It is 

feasible, however, to build a system model empirically that is adequate for control system 

design, analysis, and implementation. 

3. Actuator Model  

    To identify the mathematical model of a tri-layer PPy actuator, several sinusoidal 

voltages were applied to a 15mm-long, 5mm-wide, 0.17 mm-thick actuator. The input voltage 

signal of    sinu t t , with a range of frequencies,  (rad/sec) = 0.5 , 1.0 , 2.0 , 

was chosen. The relationship between the input voltage and output displacement  y t
 

can 

be used to obtain a transfer function model of the actuator. 

3.1 Identifying Discrete-Time Transfer Function 

By ignoring non-linearities [10], the actuator can be first modeled as a linear system 

which can be represented by a discrete-time transfer function 1( )G z  shown in Figure 3. 

Considering the relationship between the input  u k  and output  y k to be a “black box”, 

one can experimentally identify the transfer function in a straightforward manner.  



 

 

 

 
Figure 3. Transfer function representation of the actuator.  

We can employ offline identification techniques to identify the discrete-time transfer function. 

Here a least-square estimation method is used. As we reported previously [8, 10, 23, 24], 

although the dynamics of conducting polymer actuators is of high order, it can be 

approximated with a second-order system; 

  10 11
1 2

11 12

b z b
G z

z a z a




 
                  (1) 

Eq. (1) implies 

         A z y t B z u t                     (2) 

With   1 2
11 121A z a z a z     

  1 2
10 11B z b z b z    

The term 
1z
is the unit delay operator，and  1 ( 1)z y t y t    

We employ the least-square method to identify the parameters of the actuator system. 

The parameter vector   is defined as 

                11 12 10 11, ; ,T a a b b          (3) 

The regression vector is described as 
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According to the least squares criterion, the estimated value of parameter vector   is 

  

   1ˆ T T
t t t tH H H y


                  (6) 

 

This linear model can be used to simulate the bending displacement under a voltage 

input. The model identification errors are shown in Figure 4. The error  e t  is the error 



 

 

between the real output  y t  and the predicted output y1(t). We see that the output predicted 

through the linear transfer function model deviates significantly from the experimental output. 

One reason for modeling errors is the unmodelled non-linearities such as the hysteresis, which 

has generally been neglected in previously reported models.  

The dynamics of conducting polymer actuators can accurately be represented by a high 

model (at least 4th order, [10], [24]) for an acceptable bandwidth (~38 Hz). The numerical 

values of the parameters for the second-order model in Eq.l are experimentally identified and 

provided in Table 1. It must also be noted that the magnitude of the input displacement is kept 

low such that the actuator can show a linear dynamic behavior [8,10], which can be identified 

by using linear system modeling and identification techniques. 

 

Table 1. The numerical values of the model parameters of Eq.1 

10b  11b  11a  12a  

0.0352 -0.0318 -1.0831 0.0859 
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(a) Input    sin 0.5u t t  
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(b) Input    sinu t t  
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(c) Input    sin 2u t t  

Figure 4. Comparison of the predicted actuator displacement output with the experimental 

displacement output under sinusoidal inputs with different frequencies. 

3.2 Hysteresis model incorporated into actuator model  

To improve the accuracy of the actuator model, the influence of the hysteresis 

non-linearity needs to be modeled. We consider a transfer function  2G z  connected in 

cascade to a hysteresis model  H t , as shown in Figure 5.  

 

Figure 5. The block diagram of the actuator containing hysteresis non-linearities.  

The time shift between the fundamental frequency component of the displacement output 

 y t  and input voltage  u t  is t , which is determined by comparing the peaks of 

experimental displacement signal and the input voltage. To eliminate the effect of the phase 

shift introduced by the transfer function, the input signal needs to be given a backward phase 

shift [27]; in this case, the phase shift will be of   t    , which results in the input for 

the hysteresis model  

   sinv t t t                       (7) 

Note that, with (7), one ensures the output of the hysteresis reaches maximum (minimum, 

resp.) when the input reaches maximum (minimum, resp.), which is a necessary condition for 

a rate-independent, monotonic hysteresis operator. Also, to eliminate the 

frequency-dependent amplitude property of the linear part, the output data is normalized as 



 

 

follows;  

   y t
w t

k
                             (8) 

where   maxk y t . With (8), we ensure that the output w(t) of the hysteresis has the 

same range (namely, [˗1, 1], in this case) when its input is of different frequencies but of same 

amplitude, which is a necessary condition for the rate-independent hysteresis model.  
After adjusting the input and output signals, the hysteresis curves are obtained as shown in 

Figure 6, where ( )v t is the input signal and ( )w t  is the output signal. The hysteresis curves 
are frequency or rate-independent as they show very similar hysteresis behaviour under 
different input frequencies. The discrepancy between the hysteresis loops in Figure 6 is 
negligibly small. 

The hysteresis phenomenon occurs in almost all the smart material-based actuators, such 

as piezoceramics, MR and magnetostrictive materials. With this nonlinearity, the whole 

system usually exhibits undesirable inaccuracies, oscillations or even instability. Over many 

years, various control techniques had been developed to mitigate the effects of hysteresis and 

recently these have again attracted significant attention from both industry and academic 

research. Much of this renewed interest is a direct consequence of the importance of 

hysteresis in numerous applications. 
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Figure 6. Hysteresis loops of the actuator under different input frequencies. 

 3.2.1 Modeling the hysteresis 

We employ the Duhem hysteresis model to mathematically represent the hysteresis loops 

in Figure 6. The generalized Duhem model is given by [21,28]: 

  )()( vg
dt

dv
wvf

dt

dv

dt

dw
                      (9) 

where )(vf  and )(vg  are the characteristic functions of the hysteresis mode, ( )v t  is the 

input signal, and ( )w t  is the output signal. Eq. (9) can also be written as 

[ ( ) ] ( ), 0A
A

dw
f v w g v v

dv
                      (10) 



 

 

[ ( ) ] ( ), 0D
D

dw
f v w g v v

dv
                       (11) 

where, ( )Aw t and wD(t) are the mathematical functions describing the ascending and 

descending branches, respectively. It follows that the characteristic functions are obtained as 

 1 1
( )

2 2
A D

A D

dw dw
f v w w

dv dv
     
 

                 (12) 
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2 2
A D

A D

dw dw
g v w w

dv dv
     

 
                 (13) 

Based on Eq.(12) and Eq.(13), the functions )(vf  and )(vg  in the Duhem model can 

be identified from a set of experiment data. ( )Aw t  and ( )Dw t  as well as their derivatives 

are needed to identify )(vf  and )(vg .  

In equations (9)-(13),  , which is a positive number, can be regarded as a weighting 

factor. When identifying )(vf  and )(vg , a larger error arises in the evaluation of the 

derivative curves than in the ascending or descending branches of the hysteresis loop. With 

this in mind, a large value of 80   is selected to minimize the entire identification error. 

A neural network is employed to improve the accuracy of the identification functions )(vf  

and )(vg , and to identify the ascending branch ( )Aw t  and descending branch ( )Dw t  as 

shown in Figure 6.  

The neural network identification method is used to build )(vf  and )(vg . The 

hysteresis curves shown in Figure 7 are the simulated results calculated from the Duhem 

hysteresis model of Eq. (9), which is close to the experimental results shown in Figure 6 

(0.5Hz). It leads to the conclusion that the hysteresis modeling method is effective in 

representing the hysteresis of the conducting polymer actuators considered in this study. 
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Figure 7. Hysteresis loop of Duhem model 

3.2.2 Building the transfer function of the linear part for non-linear system 

In order to compensate for the hysteresis effect in the actuator, represented by the block 

diagram in Figure 5, the hysteresis inverse model must be established and experimentally 

identified. The Duhem hysteresis inverse model can be expressed as: 



 

 

   ( ) ( )
dq t dw dw

F w q t G w
dt dt dt

                   (14) 

where ( )F w and ( )G w  are the characteristic functions of the hysteresis inverse model, and 

( )q t  is the inverse function of ( )w t . In Figure 6, the ascending branch ( )Aw t  and 

descending branch ( )Dw t  are monotonic, so they are reversible. This suggests that Eq. (14) 

can be re-written as: 

[ ( ) ] ( ), 0A
A

dq
F w q G w w

dw
                       (15) 

[ ( ) ] ( ), 0D
D

dq
F w q G w w

dw
                      (16) 

where, ( )Aq t  is the inverse function of ( )Aw t and ( )Dq t  is the inverse function of ( )Dw t . 

From Eq. (15) and Eq.(16), we obtain the characteristic functions: 
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Similarly, ( )F w  and ( )G w can be estimated using the inverse neural network model. 

The transfer function 2 ( )G z of the nonlinear system can be identified according to Figure 8. 

It must be noted that the hysteresis inverse model must be obtained in order to negate the 

hysteresis non-linearities in the real system—the actuator, as shown in Figure 8. 

 

Figure 8. The block diagram of the actuator and the inverse hysteresis model to obtain a transfer 

function of the linear part for the actuator. 

The discrete transfer function of the actuator is described by:  

  20 21
2 2

21 22

b z b
G z

z a z a




 
                     (19) 

As shown in Figure 5, the transfer function given by Eq.(19) is cascaded with the Duhem 

hysteresis model to obtain the actuator model. Figure 9 shows the results of the hysteresis 

system model identification errors:  e t  is the error between the real actuator output  y t  

and the actuator system hysteresis model output  yh t . The numerical values of the 



 

 

parameters in our experimentally identified model are presented in Table 2. 

Table 2. The numerical values of the model parameters in Eq.19. 

20b  21b  21a  22a  

0.0976 -0.0922 -0.6491 -0.3453 
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(a) Input    sin 0.5u t t  
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(b) Input    sinu t t  
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(c) Input    sin 2u t t  

Figure 9. Comparison of the actuator + hysteresis model output and experimental actuator output under 

different frequencies. 

To demonstrate the significance of a hysteresis model, the actuator output is calculated 

according to the block diagram in Figure 8, where the hysteresis model is negated by the 

inverse hysteresis model in order to obtain a linear transfer function. The position tracking 

root-mean-square (RMS) errors of these two models (with a hysteresis model and without a 

hysteresis model) are calculated from Eq. 20 and shown in Table 3.  

 2

1

1 m

i d i
i

RMS y y
m 

                 (20) 

Table 3. The RMS errors of ( ) sin( )u t t . 

  0.5  1  2  

RMS errors of linear model  0.1528 0.0371 0.0451 

RMS errors of non-linear model 0.1026 0.0224 0.0262 

 

With reference to the results in Table 3, the hysteresis model has improved the accuracy 

of the actuator model significantly. The RMS errors of the actuator model including 

hysteresis model are much smaller than those of the linear model. It follows that the proposed 

hysteresis modeling approach is effective. We postulate that the linear dynamics represent the 

electrical dynamics and the viscoelastic dynamics, while the hysteresis capture the nonlinear 

relationship between the stress output and the strain change induced by ion transport in and 

out of the PPy layers. 

4 Inversion-based feedforward control: controlling actuator output without using 

feedback data 

For a given conducting polymer actuator,  dy t  is the desired input and  y t  is the 

real output. A desired input can be realized if the inverse actuator model compensates for the 

actuator dynamics and non-linearities. The two different actuator models obtained in Section 



 

 

3 will be used to develop the inverse model for the feedforward control system. 

4.1 Linear inverse model feedforward control 

Figure 10 shows the schematic of the linear inverse model 1
1 ( )G z  feedforward 

controller. This model does not contain the hysteresis model. The output is given by 

       1
1 1dy t y t G z G z          （21） 

 

Figure 10. Schematic of the linear inverse model for the feedforward controller. 

The desired output is    sindy t t , with a range of frequencies:  (rad/sec) = 

0.5 , 1.0 , 2.0 . Based on the desired displacement, the actuator voltage signals are 

calculated from the inverse model. Figure 11 shows the real output  y t  of the actuator, the 

desired output  yd t  and the associated tracking errors  e t .  
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(a) Input    sin 0.5dy t t  
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(b) Input    sindy t t  
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(c) Input    sin 2dy t t  

Figure 11. The real actuator output under the inverse model feedforward controller and associated 

tracking errors. 

4.2 Hysteresis inverse model feedforward control 

In order to control the actuator system with hysteresis, a hysteresis inverse model 

 1H t  cascades the inverse plant model  1
2G z  to obtain the actuator inverse model. 

The schematic of this inverse model feedforward controller is shown in Figure 12. The output 

is given by: 

           1 1
2 2dy t y t H t G z G z H t           （22） 

 
Figure 12. Schematic of the hysteresis inverse model for the feedforward controller. 

    The desired output is    sindy t t , with a range of frequencies:  (rad/sec) = 

0.5 , 1.0 , 2.0 . Figure 13 shows the real output  y t  of the actuator, the desired 

output  yd t  and the associated tracking error  e t . The comparison of the RMS errors of 

the two inverse model feedforward controllers is shown in Table 4.  
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(a) Input    sin 0.5dy t t  
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(b) Input    sindy t t  
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(c) Input    sin 2dy t t  

Figure 13. The real actuator output under the hysteresis inverse model feedforward controller and 

associated tracking errors. 

Table 4. The RMS errors of ( ) sin( )dy t t . 

  0.5  1  2  

RMS errors of linear inverse model control 0.0933 0.0898 0.0731 

RMS errors of hysteresis inverse model control 0.0417 0.0390 0.0344 

Compared with the linear inverse model control results, the performance of the inverse 

model control based on the proposed hysteresis model is better. The results show that the 

tracking errors are reduced by at least 50% if the hysteresis inverse model compensation is 

added to the feedforward controller. These results further demonstrate that the hysteresis 

modeling approach based on Duhem hysteresis model is effective for obtaining a reasonably 

accurate hysteresis model, and therefore an actuator model. 

5. Conclusions 



 

 

We have employed identification techniques to establish the discrete-time transfer 

function models for trilayer conducting polymer actuators which can both operate in dry and 

wet media, but the accuracy of such linear models is limited due to unmodeled non-linearities. 

A linear transfer function in cascade with the Duhem hysteresis model has been successfully 

used to generate a non-linear model of the actuator which has improved the command 

tracking performance of the actuators. The performance of the model including the hysteresis 

model was tested against the linear model. The experimental results presented show that 

improved performance can be obtained under different frequencies. It should be noted that 

after a long operation time (> 2 hours), the solvent evaporation can significantly change the 

performance of the actuator, as reported in [10]. With this in mind, the proposed 

inversion-based feedforward method will not function satisfactorily over extended periods of 

time unless the actuator is encapsulated to make sure that solvent evaporation does not occur. 

Otherwise, operation time-dependent dynamic models should be identified and, depending on 

the duration of the operation, a suitable dynamic model should be used in the feedforward 

controller. 

 

Based on two identified actuator models, we implemented inversion-based feedforward 

control strategies and compared their tracking errors. The experimental results presented 

demonstrate that the hysteresis inverse model feedforward controller is the more successful 

control strategy. Comparing the tracking results in [24] (in particular, Figs. 18 and 19 in [24]) 

with those in the current work, one can see that the (open-loop) feedforward control used in 

this paper results in significantly lower errors. Specifically, the maximum tracking errors 

reported in this paper are about 5% of the amplitudes of the reference trajectories, while the 

maximum errors reported in [24] are 15-20% of the amplitudes of the references. This 

comparison shows the importance of capturing the hysteresis non-linearity in the model. The 

strength of the approach in [24], however, is that the (linear) model there incorporates 

material physics, while the linear dynamics in this work is an empirical model. A promising 

direction for future work, therefore, is to merge the hysteresis model presented in this work 

with the physics-based model in [24]. 

 

The hysteresis inverse model feedforward control strategy will help widen the 

implementation of smart-materials based actuators like electroactive polymer actuators in new 

real-world applications where external sensory feedback is impossible or costly. 
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