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Public key encryption with keyword search secure against keyword
guessing attacks without random oracle

Abstract
The notion of public key encryption with keyword search (PEKS) was put forth by Boneh et al. to enable a
server to search from a collection of encrypted emails given a “trapdoor” (i.e., an encrypted keyword)
provided by the receiver. The nice property in this scheme allows the server to search for a keyword, given the
trapdoor. Hence, the verifier can merely use an untrusted server, which makes this notion very practical.
Following Boneh et al.’s work, there have been subsequent works that have been proposed to enhance this
notion. Two important notions include the so-called keyword guessing attack and secure channel free,
proposed by Byun et al. and Baek et al., respectively. The former realizes the fact that in practice, the space of
the keywords used is very limited, while the latter considers the removal of secure channel between the
receiver and the server to make PEKS practical. Unfortunately, the existing construction of PEKS secure
against keyword guessing attack is only secure under the random oracle model, which does not reflect its
security in the real world. Furthermore, there is no complete definition that captures secure channel free
PEKS schemes that are secure against chosen keyword attack, chosen ciphertext attack, and against keyword
guessing attacks, even though these notions seem to be the most practical application of PEKS primitives. In
this paper, we make the following contributions. First, we define the strongest model of PEKS which is secure
channel free and secure against chosen keyword attack, chosen ciphertext attack, and keyword guessing attack.
In particular, we present two important security notions namely IND-SCF-CKCA and IND-KGA. The former
is to capture an inside adversary, while the latter is to capture an outside adversary. Intuitively, it should be
clear that IND-SCF-CKCA captures a more stringent attack compared to IND-KGA. Second, we present a
secure channel free PEKS scheme secure without random oracle under the well known assumptions, namely
DLP, DBDH, SXDH and truncated q-ABDHE assumption. Our contributions fill the gap in the literature and
hence, making the notion of PEKS
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Abstract

The notion of public key encryption with keyword search (PEKS) was put forth by
Boneh et al. to enable a server to search from a collection of encrypted emails given
a “trapdoor” (i.e., an encrypted keyword) provided by the receiver. The nice prop-
erty in this scheme allows the server to search for a keyword, given the trapdoor.
Hence, the verifier can merely use an untrusted server, which makes this notion
very practical. Following Boneh et al.’s work, there have been subsequent works
that have been proposed to enhance this notion. Two important notions include the
so-called keyword guessing attack and secure channel free, proposed by Byun et al.
and Baek et al., respectively. The former realizes the fact that in practice, the space
of the keywords used is very limited, while the latter considers the removal of secure
channel between the receiver and the server to make PEKS practical. Unfortunately,
the existing construction of PEKS secure against keyword guessing attack is only
secure under the random oracle model, which does not reflect its security in the real
world. Furthermore, there is no complete definition that captures secure channel
free PEKS schemes that are secure against chosen keyword attack, chosen cipher-
text attack, and against keyword guessing attacks, even though these notions seem
to be the most practical application of PEKS primitives. In this paper, we make
the following contributions. First, we define the strongest model of PEKS which
is secure channel free and secure against chosen keyword attack, chosen ciphertext
attack, and keyword guessing attack. In particular, we present two important secu-
rity notions namely IND-SCF-CKCA and IND-KGA. The former is to capture an
inside adversary, while the latter is to capture an outside adversary. Intuitively, it
should be clear that IND-SCF-CKCA captures a more stringent attack compared to
IND-KGA. Second, we present a secure channel free PEKS scheme secure without
random oracle under the well known assumptions, namely DLP, DBDH, SXDH and
truncated q-ABDHE assumption. Our contributions fill the gap in the literature
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and hence, making the notion of PEKS very practical. We shall highlight that our
scheme is IND-SCF-CKCA secure.

Key words: public key encryption with keyword search, keyword guessing attack,
without random oracle

1 Introduction

Boneh et al. [4] put forward the notion of public key encryption scheme with
keyword search (PEKS scheme), which has a very practical application in an
encrypted email system. The basic idea is as follows. Bob sends a ciphertext C̃,
C̃ = (CPKE ‖ CPEKS) = (PKE(pkA,m) ‖ PEKS(pkA, w)), to Alice where
pkA is Alice’s public key, CPKE is an encrypted version of Bob’s message under
pkA and w is the keyword that Bob wants to attach to the email (for example
“urgent”). Alice can provide the server with a certain trapdoor Tw (which
is a trapdoor constructed by Alice on a keyword w) through a secure chan-
nel that enables the server to test whether the encrypted keyword associated
with the message (CPEKS) is equal to the keyword w selected by Alice. Given

PEKS(pkA, w
′) and Tw, the server can test whether w

?
= w′. If w = w′, then

the server learns nothing more about w′. In short, PEKS provides a mecha-
nism that allows Alice to have the email server extract emails that contain
a particular keyword by providing a trapdoor corresponding to the keyword,
while the email server and other parties other than Alice will not learn any-
thing else about the email. The construction of Boneh et al.’s PEKS makes
use of the construction of Identity-based encryption (IBE) in a very clever
way. Following Boneh et al.’s pioneering work [4], Waters et al. [34] demon-
strated that the PEKS scheme based on the bilinear pairing could be applied
to build encrypted and searchable audit logs. Furthermore, Golle et al. [15],
Park et al. [25] and Zhang et al. [36] proposed schemes that allowed conjunc-
tive keyword queries on encrypted data. Subsequently, Boneh and Waters [5]
extended PEKS to support conjunctive, subset, and range comparisons over
the keywords. Moreover, the subsequent papers [3,12,19,37] investigated the
secure combination of public key encryption with keyword search (PEKS) with
public key encryption (PKE). Rhee et al. [28] presented two generic transfor-
mations to construct a designated tester public-key encryption with keyword
search scheme using two identity-based encryption schemes. Recently, Shao
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et al. [31] presented the notion of proxy re-encryption with keyword search
scheme that combined the public key encryption with keyword search (PEKS)
with proxy re-encryption (PRE).

Baek et al. [2] noticed that Boneh et al.’s [4] scheme required a secure channel
between the receiver, Alice, and the email server. This makes PEKS scheme
impractical, since the original idea of PEKS is to allow Alice to selectively
download her emails that contain a particular keyword while she is away.
Requiring a secure channel between the receiver and the email server means
that the receiver cannot use a regular “untrusted” channel, such as 3G or a
public WiFi hot-spot, or at least requiring a secure SSL connection which is
quite expensive (and impractical considering the verifier may just use a PDA or
an iPhone to download the emails). Subsequently, Baek et al. [2] proposed the
notion of PEKS scheme without requiring a secure channel, which is referred
to as a secure channel-free PEKS (SCF-PEKS), or sometimes also referred to
as the PEKS scheme with a designated tester [27]. The construction provided
by Baek et al. relies on the random oracle model, which does not really reflect
its security in the real world. In 2007, Gu et al. [14] proposed a more efficient
SCF-PEKS scheme in the random oracle model. Recently Fang et al. [10]
proposed an SCF-PEKS scheme without random oracle. In SCF-PEKS, only
the server (a designated tester) chosen by the receiver is able to perform a test
to check the relationship between a ciphertext and a trapdoor. Further, Rhee
et al. [27] enhanced Baek et al.’s security model [2] for SCF-PEKS in which
an attacker was also allowed to obtain the relationship between non-challenge
ciphertexts and a trapdoor. They presented a SCF-PEKS scheme secure in
the enhanced security model in the random oracle model.

In practice, everyone will use well-known keywords (with low entropy), such
as “urgent”, to be attached in the encrypted emails (otherwise the emails
cannot be found if the keywords are very unusual). This observation raises
the possibility of an important attack to PEKS, namely “keyword guessing
attacks”, where a malicious attacker can successfully guess some candidates
of the keywords and verify the accuracy of this guess in an off-line manner.
By performing this off-line keyword guessing attack, the malicious attacker
can obtain relevant information from the encrypted emails, and hence, the
keyword. This observation was firstly made by Byun et al. [6] who observed
that Merriam-Webseter’s collegiate dictionary contained only 225,000 keyword
definitions. Furthermore, Byun et al. also pointed out that Boneh et al.’s
scheme [4] was susceptible to keyword guessing attack. If keyword guessing
attack can be launched successfully on a PEKS scheme, the attacker can learn
which keyword is used by the sender and the receiver. Thus, the attacker
breaks the security of the PEKS scheme. Inspired by the work in Byun et
al.[6], Yau et al. [35] presented an off-line keyword guessing attack on the
SCF-PEKS [2] and PKE/PEKS [3] schemes.
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Two Types of Attackers in SCF-PEKS
We note that there are essentially two types of attackers: (1) the server; and
(2) neither the server nor the receiver (i.e., an outsider). As observed by
Jeong et al. [20], in the case when the attacker is the server, SCF-PEKS
consistency implies insecurity against keyword guessing attacks. To highlight
this observation, let us consider the work presented in [29]. In their work,
an SCF-PEKS scheme secure against keyword attacks in the random oracle
model is presented. If the attacker under consideration is the server, the server
knows α, which is the server’s private key. Henceforth, the server can perform
the test: dTest(C, Tw, α). The keyword guessing attack is performed by the
server as follows.

• Step 1: The server captures a valid trapdoor Tw and his main goal is to find
out the keyword w from the trapdoor Tw.

• Step 2: The server guesses an appropriate keyword w′, and computes a
PEKS ciphertext C under keyword w′.

• Step 3: The server tests if dTest(C, Tw, α)
?
= 1. If the equality holds, then

the guessed keyword w′ is valid. Otherwise, go to Step 2.

Based on this observation, it is not possible to construct an SCF-PEKS scheme
secure against keyword guessing attacks, where the attacker is the server.
Thereafter, in this work (and also the work by [29]), we do not consider this
type of attack. Rather, we focus on analyzing the scheme based on the possible
attacks by an outsider (which is neither the server nor the receiver)).

For clarity, we consider an attacker A, neither the server nor the receiver,
who conducts off-line keyword guessing attacks on Baek et al.’s SCF-PEKS
scheme. For brevity, we will not review Baek et al.’s scheme in this section,
but we refer the readers to [2] for more detailed account. As in [29,35], an
attacker A, who is neither the server nor the receiver, can perform an off-line
keyword attack as follows:

• Step 1: A first captures a valid trapdoor Tw = yH1(w).
• Step 2: A guesses an appropriate keyword w′, and computes H1(w

′).
• Step 3: A takes the receiver’s public key Y and the hash of the guessed
keyword H1(w

′), and checks if e(Y,H1(w
′)) = e(P, Tw). If so, the guessed

keyword w′ is a valid keyword. Otherwise, go to Step 2.

The equation holds for w′ = w, i.e.,

e(Y,H1(w
′)) = e(yP,H1(w)) = e(P, yH1(w)) = e(P, Tw).

We note that in the keyword guessing attack, we do not need to compute the
PEKS ciphertext. We also note that this attack is plausible, since the purpose
of SCF-PEKS scheme is to allow the receiver to send a trapdoor via a public
channel, and hence, an adversary can also obtain the trapdoor and perform
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the attack as outlined above.

Byun et al. [6] also left an open problem on how to construct PEKS schemes
secure against keyword guessing attacks. This problem was answered by Rhee
et al. [29] by constructing a new secure SCF-PEKS scheme against keyword
guessing attacks in the random oracle model. Nevertheless, its security in the
real life is questionable, since the random oracle model is required in this
scheme.

1.1 Security Vulnerability in Existing Concrete Schemes

Keyword Guessing Attack
We consider two existing schemes namely Baek et al. [2] and Fang et al. [10]
as follows.

• (Baek et al.[2].) It is clear that Baek et al.’s scheme [2] is vulnerable to
keyword guessing attacks as outlined earlier.

• (Fang et al. [10].) An attacker A, who is neither the server nor the receiver,
can perform an off-line keyword attack as follows:
· Step 1: A first captures a valid trapdoor Tw = (dw, sw) where dw =
(hg−sw)1/(y−w).

· Step 2: A guesses an appropriate keyword w′.
· Step 3: A takes the receiver’s public key Y and the guessed keyword w′,
and checks if e(dw, Y g−w′

) = e(g, hg−sw). If so, the guessed keyword w′ is
a valid keyword. Otherwise, go to Step 2.
The equation holds for w′ = w, i.e.,

e(dw, Y g−w′
) = e((hg−sw)1/(y−w), gy−w) = e(g, hg−sw).

Chosen ciphertext Attack
Amalicious receiver can generate the trapdoor Tw0 corresponding to a keyword
w0 using his secret key. Then, the malicious receiver can obtain the relation
between the modified chanllenge ciphertext CT ′ under keyword wb where wb ∈
{w0, w1} and the trapdoor Tw0 through interacting with the email server in
real environment.

• (Fang et al. [10].) The malicious receiver A can modify the ciphertext C∗ =
(C∗

1 , C
∗
2 , C

∗
3 , C

∗
4) = (gs, (Y g−wb)r/t, e(g, g)r, e(g, h)r) to a new valid cipher-

text C ′ = (C∗
1 , (C

∗
2)

r′ , (C∗
3)

r′ , (C∗
4)

r′) = (gs, (Y g−wb)rr
′/t, e(g, g)rr

′
, e(g, h)rr

′
)

without knowing the keyword wb. Then, the malicious receiver can compute
the trapdoor Tw0 = (dw0 , sw0) since he knows the private key of receiver.
The malicious receiver can obtain the relation between the modified chal-
lenge ciphertext C ′ and the trapdoor Tw0 through interacting with the email
server in real environment.
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• (Rhee et al. [30].) In [30], firstly let us observe that the ciphertext C∗ =
(A∗, B∗) = (pkr

R,1, H2(e(pkS,1, H1(wb)
r))) under receiver R where pkR,1 = gβ

is known. Let us assume that adversary A (i.e., a malicious receiver R)
collude with another receiver R′. Since the adversary A (including the ma-
licious receiver) knows the private key skR,1 = β of receiver R, then, with
the help of receiver R′ , A can modify the ciphertext to a new valid cipher-
text C ′ = ((A∗)β

′/β, B∗) = (pkr
R′,1, H2(e(pkS,1, H1(wb)

r))) under receiver R′

where pkR′,1 = gβ
′
without knowing the keyword wb. This can be done by

receiver R′ by computing A′ = (A∗)β
′
and sending to A, and then, A com-

putes (A′)1/β(i.e. (A∗)β
′/β). Then, the adversary A can compute the trap-

door Tw0 = (T1, T2) = (gr
′
, H1(w0)

1/β′ · H(pkr′
S,1)) with the help of receiver

R′. We note that actually the adversary A can easily obtain the trapdoor
Tw0 since it is disclosed in the public channel. The adversary A can obtain
the relation between the modified challenge ciphertext C ′ under receiver
R′ and the trapdoor Tw0 of receiver R′ through interacting with the email
server in real environment. Clearly, the ciphertext in [29] is similar to that
[30], and hence, it is also susceptible to the chosen ciphertext attack.

• (Rhee et al. [27].) Rhee et al. introduced the test query in their security
model to avoid chosen ciphertext attack in [30], but the ciphertext is of the
same form as above, and therefore, it also suffers from the chosen cipher-
text attack. That means A also can modify the ciphertext C∗ = (A∗, B∗) =
(pkr

R,1, H2(e(pkS,1, H1(wb)
r))) under receiver R to create a new valid cipher-

text C ′ = ((A∗)skR′,1/skR,1 , B∗) = (pkr
R′,1, H2(e(pkS,1, H1(wb)

r))) under re-
ceiver R′ without knowing the keyword wb. Actually, in their security model,
they defined a weaker model that “a malicious outside attacker (including
receiver) should not be able to distinguish between the ciphertext of two
challenge keywords of its choice under the situation that it is allowed to
obtain the relation between a ciphertext C = (A,B) and a trapdoor Tw,
where A �= A∗ and B �= B∗ (the ciphertext query is selected among only
the ciphertext C = (A,B) not containing the same corresponding element
of challenged ciphertext C∗ = (A∗, B∗) and Tw is a trapdoor for any non-
challenge keywords w �= w0, w1”.

1.2 Our Contributions

Although Rhee et al.’s schemes [29,30] designed against keyword guessing
attacks PEKS is elegant, there remain some important issues to consider:

• (Random Oracle Model.) The schemes presented in [29,30] are only proven
secure in the random oracle model. Unfortunately, a proof in the random
oracle model can only serve as a heuristic argument and admittedly using
quite contrived constructions, it has been shown to possibly lead to insecure
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schemes when the random oracles are implemented in the standard model
[7]. Therefore, it is desirable to construct a secure scheme that does not
depend on the random oracle model.

• (Incomplete Security Definition.) The solution provided by Rhee et al.[29]
lacks of the formal security definition to capture the keyword guessing at-
tacks. Reference Rhee et al. [30] introduced the concept of “trapdoor indis-
tinguishability” and showed that trapdoor indistinguishability is a sufficient
condition for thwarting keyword-guessing attacks. The drawback of the se-
curity model in [30] is that there is no Test query. We add a stronger Test
query, which only restriction if 〈C,w〉 = 〈C∗, w0〉 or 〈C,w〉 = 〈C∗, w1〉.

Based on the above motivations, in this paper, we make the following con-
tributions. First, we provide a complete model, which means that we provide
the definition of indistinguishability of secure channel free PEKS against cho-
sen keyword and ciphertext attack (IND-SCF-CKCA) in which we added the
test query in IND-SCF-CKA. We also provide the definition of SCF-PEKS
secure against keyword guessing attack. Second, we present an efficient SCF-
PEKS secure against keyword guessing attacks without requiring the ran-
dom oracle model. Based on the DLP, DBDH, SXDH and the truncated q-
ABDHE assumption, we first prove its indistinguishability of secure channel
free PEKS against chosen keyword and ciphertext attack (IND-SCF-CKCA)
security without random oracle. Then, we also analyze the computational con-
sistency and security against keyword guessing attacks of our scheme.

In short, this paper fills the gap in the literature by providing the strongest
model in SCF-PEKS that is secure against chosen keyword and ciphertext
attack (IND-SCF-CKCA) and against keyword guessing attack. Furthermore,
our scheme is proven secure under the standard model. To highlight our con-
tribution, we provide the following summary as follows. We selected three
schemes from [2,10,29] to represent the state-of-the-art of SCF-PEKS con-
structions.

Baek et al. [2] Fang et al. [10] Rhee et al. [29] Our scheme

Without ROM × � × �
Keyword Guessing Attack × × � �
Chosen Ciphertext Security × × × �

Assumption BDH DBDH, BDH, DBDH, SXDH

q-ABDHE q-BDHI q-ABDHE

Table 1. Comparison Among Various SCF-PEKS Schemes

Paper Organization

The rest of this paper is organized as follows. In the next section, we will
present some definitions and notations that will be used throughout this pa-
per. In Section 3, we present the formal definition of SCF-PEKS secure against
keyword guessing attack. In Section 4, we present our new and efficient scheme
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and analyze its security. In Section 5, we give a performance comparison of our
scheme with the existing schemes in the literature. In Section 6, for complete-
ness, we provide an application where SCF-PEKS is applicable in practice.
Finally, Section 7 concludes the paper.

2 Definitions

In this section, we first review the complexity assumption required in our
schemes, and then provide the definition and security of a public key encryp-
tion with keyword search scheme.

2.1 Negligible Function

A function ε(n) : N → R is negligible in n if 1/ε(n) is a non-polynomially-
bounded quantity in n.

2.2 Bilinear Maps

Let BMsetup(λ) be an algorithm that, on input λ, outputs the parameters
for a bilinear mapping as (p,G1,G2,GT , e, g, g̃), where G1, G2 and GT be
multiplicative cyclic groups of prime order p, and g be a generator of G1 and
g̃ be a generator of G2. (By G

∗
1 and Z

∗
p, we denote G1\{1} where 1 is the

identity element of G1, and Zp\{0}, respectively). We say e : G1 ×G2 → GT

is a bilinear map, if the following conditions hold.

• e(ga, g̃b) = e(g, g̃)ab for all a, b ∈ Zp.
• e(g, g̃) �= 1.
• There is an efficient algorithm to compute e(g1, g̃2) for all g1 ∈ G1 and
g̃2 ∈ G2.

2.3 The SXDH Assumption

Let e : G1 × G2 → GT be a bilinear map, and (p,G1,G2,GT , e, g, g̃) be
the parameters for a bilinear mapping. We define the advantage function
AdvSXDH

G1,B (λ) of an adversary B as

|Pr[B(g, ga, gb, gab) = 1]− Pr[B(g, ga, gb, gr) = 1]|
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where a, b, r ∈ Zp are randomly chosen. The advantage function AdvSXDH
G2,B (λ)

of an adversary B is defined as

|Pr[B(g̃, g̃a, g̃b, g̃ab) = 1]− Pr[B(g̃, g̃a, g̃b, g̃r) = 1]|

where a, b, r ∈ Zp are randomly chosen. We say that the symmetric external
Diffie-Hellman assumption [16,17] holds if both AdvSXDH

G1,B (λ) and AdvSXDH
G2,B (λ)

are negligible for all PPT B.

2.4 Discrete Logarithm Problem (DLP) [24]

Let G be multiplicative cyclic groups of prime order p, and g be a generator
of G. We define the advantage function AdvDLP

B (λ) of an adversary B as

Pr[B(g, ga) = a]

where a ∈ Zp is randomly chosen. We say that the discrete logarithm prob-
lem(DLP) assumption holds if AdvDLP

B (λ) is negligible for all PPT B.

2.5 The DBDH Assumption

Let e : G1 × G2 → GT be a bilinear map, and (p,G1,G2,GT , e, g, g̃) be
the parameters for a bilinear mapping. We define the advantage function
AdvDBDH

G1,B (λ) of an adversary B as

|Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃c, e(g, g̃)abc) = 1]

−Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃c, e(g, g̃)r) = 1]|
where a, b, c, r ∈ Zp are randomly chosen. We say that the decisional bilinear
Diffie Hellman assumption holds if AdvDBDH

G1,B (λ) is negligible for all PPT B.

2.6 The Truncated (Decisional) q-ABDHE Assumption

Let e : G1×G2 → GT be a bilinear map. (p,G1,G2,GT , e, g, g̃) be the parame-
ters for a bilinear mapping. We define the advantage function Advq−ABDHE

G1,B (λ)
of an adversary B as

|Pr[B(g, gx, gx2

, · · · , gxq

, g̃, g̃x, g̃x
2

, · · · , g̃xq

, g̃z, g̃zx
q+2

, e(g, g̃)zx
q+1

) = 1]

−Pr[B(g, gx, gx2

, · · · , gxq

, g̃, g̃x, g̃x
2

, · · · , g̃xq

, g̃z, g̃zx
q+2

, e(g, g̃)r) = 1]|
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where x, z, r ∈ Zp are randomly chosen. We say that the truncated deci-
sional augmented bilinear Diffie-Hellman exponent (q-ABDHE) assumption
[13] holds if Advq−ABDHE

G1,B (λ) is negligible for all PPT B.

2.7 One-Time Signatures

A one-time signature [8] comprises a triple of algorithms Sig = (G,S,V)
such that, on input of a security parameter λ, G generates a one-time key
pair (ssk, svk) while, for any message M , V(svk, σ,M) outputs 1 whenever
σ = S(ssk,M) and 0, otherwise. We need strongly unforgeable one-time sig-
natures, which means that no PPT adversary can create a new signature for
a previously signed message.

Sig = (G,S,V) is a strongly unforgeable one-time signature if the probability

AdvOTS = Pr[(ssk, svk) ← G(λ); (M,St) ← F (svk); σ ← S(ssk,M);

(M ′, σ′) ← F (M,σ, svk, St) : V(svk, σ′,M ′) = 1 ∧ (M ′, σ′) �= (M,σ)]

where St denotes the state information maintained by F between stages, is
negligible for any PPT forger F .

3 Formal Definition of SCF-PEKS Secure Against Keyword Guess-
ing Attacks

3.1 Definition of SCF-PEKS

In the following, we will provide the definition of a SCF-PEKS scheme and
the game-based security definition model.

Definition 1 (SCF-PEKS) A secure channel free public key encryption with
keyword search scheme comprises the following algorithms:

• GlobalSetup(λ): Takes a security parameter λ, generates a global parameter
GP .

• KeyGenServer(GP ): Takes as input the global parameters GP . Outputs the
public/secret pair (pkS , skS) of server S.

• KeyGenReceiver(GP ): Takes as input GP , generates public/secret pair (pkR,
skR) of receiver R.

• PEKS(GP , pkS , pkR, w): Takes as input GP , a receiver’s public key pkR,
a server’s public key pkS , and a keyword w. Outputs a PEKS ciphertext C
under w.

10



• Trapdoor(GP, pkS , skR, w): Takes as input GP , a server’s public key pkS ,
a receiver’s secret key skR and a keyword w. Generates a Trapdoor Tw.

• Test(GP, Tw, pkS , skS , C): Takes as input a global parameter GP , a Trap-
door Tw, a server’s secret key skS and a PEKS ciphertext C = PEKS(GP, pkS , pkR, w′).
Outputs a symbol “Correct” if w = w′ and “Incorrect” otherwise.

We define the notion of consistency in a SCF-PEKS scheme, which is similar
to the notion of consistency in a PEKS scheme from [1].

Definition 2 (Consistency) Suppose there exists an adversary A that wants
to make consistency fail. The consistency is formally defined as follows:

ExpconsA (λ)

(pkR, skR) ← KeyGenReceiver(λ); (pkS , skS) ← KeyGenServer(λ)

(w,w′) ← A(pkR, pkS)

C ← PEKS(GP, pkS , pkR, w); Tw′ ← Trapdoor(GP, pkS , skR, w′)

if w �= w′ and Test(GP, Tw′ , pkS , skS , C) =“Correct”, then return 1, else
return 0.

We define the advantage of A as:

AdvconsA (λ) = Pr[ExpconsA (λ) = 1]

The scheme is said to be computationally consistent if it is negligible for prob-
abilistic polynomial adversary A to win the above experiment.

In the following, we provide the game-based security definition of SCF-PEKS,
which we call indistinguishability of secure channel free PEKS against chosen
keyword and ciphertext attack (IND-SCF-CKCA). In other words, IND-SCF-
CKCA guarantees that the server that has not obtained the Trapdoors for
given keywords cannot tell which PEKS ciphertext encrypts which keyword,
and the outside attacker that has not obtained the server’s private key cannot
make any decisions about the PEKS ciphertexts even though the attacker gets
all the trapdoors for the keywords that it holds. (That is, the attacker can see
all the trapdoors including the challenges that are sent via a public channel.)
Note that the attack model for these two types of attackers is described as
GameServer and GameReceiver, respectively, in the following definition.

Definition 3 (IND-SCF-CKCA game ) Let λ be the security parameter,
A be the adversary, B be the challenger, and KSw be the keyword space. We
consider the following two games.

11



GameServer: A is assumed to be a server.

(1) Setup: The global parameter generation algorithm GlobalSetup(λ), the
two key generation algorithms KeyGenServer(GP ) and KeyGenReceiver(GP )
are executed. A global parameter GP , private and public key pairs of the
receiver and the server, are denoted as (pkR, skR)and (pkS , skS) respec-
tively. Then, B sends (pkS , skS) and pkR to A.

(2) Query phase 1. A makes the queries:
• Trapdoor query 〈w〉: A can adaptively asks B for the trapdoor query

Tw for any keyword w ∈ KSw of his choice. B responds the trapdoor
Tw = Trapdoor(GP , pkS , skR, w) to A.

• Test query 〈C,w〉: A can adaptively asks B for the Test query for
any keyword w and any PEKS ciphertext of his choice. B first makes
a trapdoor query on 〈w〉 to get trapdoor Tw and responds the result
Test(GP , Tw, pkS , skS , C) to A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a challenge
keyword pair (w0, w1). (Notice that none of w0 nor w1 has been queried
for obtaining a corresponding trapdoor in Phase 1). Upon receiving this,
B responds by choosing a random γ ∈ {0, 1}, and creates a challenge
PEKS ciphertext C∗ = PEKS(GP , pkS , pkR, wγ) and sends it to A.

(4) Query phase 2. A issues a number of trapdoor and test queries as in
Phase 1. The restriction here is that w0 and w1 are not allowed to be
queried as trapdoor queries and 〈C,w〉 are not allowed to be queried as
test queries if 〈C,w〉 = 〈C∗, w0〉 or 〈C,w〉 = 〈C∗, w1〉.

(5) Guess. A outputs the guess γ′. The adversary wins if γ′ = γ.

We define A’s advantage in GameServer by AdvGameServer
A (λ) = |Pr[γ′ = γ] −

1/2|.

GameReceiver: A is assumed to be an outside attacker (including the receiver).

(1) Setup: The global parameter generation algorithm GlobalSetup(λ), the
two key generation algorithms KeyGenServer(GP ) and KeyGenReceiver(GP )
are executed. A global parameter GP , private and public key pairs of the
receiver and the server, are denoted as (pkR, skR)and (pkS , skS), respec-
tively. Then, B sends (pkR, skR) and pkS to A.

(2) Query phase 1. A makes the queries:
• Test query 〈C,w〉: A can adaptively asks B for the Test query for

any keyword w and any PEKS ciphertext of his choice. B first makes
a trapdoor query on 〈w〉 to get trapdoor Tw and responds the result
Test(GP , Tw, pkS , skS , C) to A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a challenge
keyword pair (w0, w1). Upon receiving this, B responds by choosing a ran-
dom γ ∈ {0, 1}, and creates a challenge PEKS ciphertext C∗ = PEKS(GP ,
pkS , pkR, wγ) and sends it to A.
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(4) Query phase 2. A issues a number of trapdoor and test queries as in
Phase 1. The restriction here is that 〈C,w〉 are not allowed to be queried
as test queries if 〈C,w〉 = 〈C∗, w0〉 or 〈C,w〉 = 〈C∗, w1〉. Differently from
GameServer that w0 and w1 are allowed to be queried as trapdoor queries.

(5) Guess. A outputs the guess γ′. The adversary wins if γ′ = γ.

We define A’s advantage in GameReceiver by Adv
GameReceiver
A (λ) = |Pr[γ′ = γ]−

1/2|. The PEKS scheme is said to be IND-SCF-CKCA secure if AdvGamei
A (λ),

where i is either Server or Receiver, is negligible.

3.2 SCF-PEKS Secure Against Keyword Guessing Attacks

In the following, we define the notion of indistinguishability of SCF-PEKS
against keyword guessing attack (IND-KGA). Specifically, IND-KGA ensures
that an outside adversary (neither the server nor the receiver), that has ob-
tained the trapdoor for challenge keyword cannot observe the relationship
between the trapdoor and any keywords.

Definition 4 (IND-KGA game) Let A be an outside adversary (neither
the server nor the receiver) that makes the KG attack. Let λ be the security
parameter, we consider the following game:

(1) Setup: The global parameter generation algorithm GlobalSetup(λ), the
two key generation algorithms KeyGenServer(GP ) and KeyGenReceiver(GP )
are executed. A global parameter GP , private and public key pairs of the
receiver and the server are denoted as (pkR, skR)and (pkS , skS) respec-
tively. B sends (pkR, pkS) to A.

(2) Query phase 1. A makes the queries:
• Trapdoor query 〈w〉: A can adaptively asks B for the trapdoor query

Tw for any keyword w ∈ KSw of his choice. B responds the trapdoor
Tw = Trapdoor(GP , pkS , skR, w) to A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a challenge
keyword pair (w0, w1). (Notice that none of w0 nor w1 has been queried
for obtaining a corresponding trapdoor in Phase 1). Upon receiving this,
B responds by choosing a random γ ∈ {0, 1}, and creates a challenge
Twγ = Trapdoor(GP , pkS , skR, wγ) and sends it to A.

(4) Query phase 2. A issues a number of trapdoor queries as in Phase 1. The
restriction here is that w0, w1 are not allowed to be queried as trapdoor
queries.

(5) Guess. A outputs the guess γ′. The adversary wins if γ′ = γ.

We define A’s advantage in IND-KGA game by AdvIND−KGA
A (λ) = |Pr[γ′ =

γ]−1/2|. The PEKS scheme is said to be IND-KGA attack secure if AdvIND−KGA
A (λ)

is negligible.
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Compared with [30], our IND-SCF-CKCA game is stronger than ciphertext
security in [30] because the test query is allowed in our game. Further, we also
note that our IND-KGA game is same as the trapdoor security in [30].

4 Efficient SCF-PEKS Scheme Secure Against Keyword Guessing
Attack

In this section, we will describe our SCF-PEKS scheme which is IND-SCF-
CKCA secure. Subsequently, we will also prove the IND-KGA security of our
scheme in the standard model.

4.1 Our Scheme

Prior to presenting our scheme, we first describe the intuition behind our
construction. We selected Gentry’s IBE scheme in [13] as our initial scheme.
After replacing the identity in Gentry’s IBE scheme in [13] with the keyword,
we obtained the ciphertext C2 = (Ỹ g̃−w)r, C3 = e(g, g̃)r, C4 = e(g, Z̃)r and the
trapdoor Tw = (dw = g(z−sw)/(y−w), sw). Then, we encrypted C2 using server’s
public key by C1 = gs, t = H ′(e(X, Q̃)s), C2 = (Ỹ g̃−w)r/t. We shall note that
the ciphertext is C1 = gs, C2 = (Ỹ g̃−w)r/t, C3 = e(g, g̃)r, C4 = e(g, Z̃)r, which
are the same as the ciphertext from [10]. However, we note that this scheme
is not secure against keyword guessing attack since the adversary can know
the keyword from the trapdoor. Concretely, an adversary A, who is neither
the server nor the receiver, can perform an off-line keyword attack as follows:

• Step 1: A first captures a valid trapdoor Tw = (dw, sw).
• Step 2: A guesses an appropriate keyword w′.
• Step 3: A takes the receiver’s public key Ỹ and the guessed keyword w′,
and checks if e(dw, Ỹ g̃−w′

) = e(g, Z̃g̃−sw). If so, the guessed keyword w′ is a
valid keyword. Otherwise, go to Step 2.

The equation holds for w′ = w, i.e.,

e(dw, Ỹ g̃−w′
) = e(g(z−sw)/(y−w), g̃y−w) = e(g, g̃(z−sw)) = e(g, Z̃g̃−sw).

To ensure the anonymity of the keyword in the trapdoor, let dw = (g(z−sw)/(y−w))x =
X(z−sw)/(y−w). That means the keyword in the exponent is protected by the
combination of the server and receiver’s private key (x, y, z). However, the ad-
versary A can also learn the keyword by testing e(dw, Ỹ g̃−w′

) = e(X, Z̃g̃−sw).
Next, we will introduce Waters’ hash function. We review the hash function
H : {0, 1}n → G1 used in Waters’ identity based encryption schemes [33].
Choose n + 1 random group elements e0, e1, · · · , en ∈ Zp, compute hi = gei ,
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and h = (h0, h1, · · · , hn) ∈ G
n+1
1 as the public description of the hash func-

tion. The algebraic hash function H : {0, 1}n → G1 is evaluated on a keyword
string w = (w1, · · · , wn) ∈ {0, 1}n as the product

h(w) = e0 +
n∑
i=1

(ei · wi) , H(w) = h0

n∏
i=1

(hwi
i ) = gh(w).

We can view the part h(w) as the private key, and use this to protect the
keyword, and thus we change the trapdoor to dw = (X(z−sw)/(y−w))h(w). As a
result, the ciphertext is

CT = (C1, C2, C3, C4) = (gs, (Ỹ g̃−w)r/t, e(H(w), g̃)r, e(H(w), Z̃)r).

The drawback of this ciphertext is that the adversary A can modify the ci-
phertext CT to produce a new valid ciphertext CT ′ without knowing the
plaintext. Further, a malicious receiver can generate the trapdoor Tw′ cor-
responding to a guessed keyword w′ using his secret key. Then, the mali-
cious receiver can obtain the relation between the modified challenge cipher-
text CT ′ and the trapdoor Tw′ through interacting with the email server in
real environment. This is why we need a Test query in the security model.
To address this issue, we introduce the strongly unforgeable one-time signa-
tures σ = S(ssk, (C1, C2, C3, C4, C5)) on the pair (C1, C2, C3, C4, C5) where
C5 = (ũsvkṽ)s.

We will now present our scheme in detail. Our scheme is defined as follows.

• GlobalSetup(λ): Let λ be the security parameter and γ = (p,G1,G2,GT ,
e, g, g̃) be the bilinear map parameters. Specify a cryptographically secure
pseudorandom number generator (PRNG)[32,26,11] H ′ : GT → Z

∗
p. Gener-

ators ũ, ṽ ∈ G2 and a strongly unforgeable one-time signature scheme sig =
(G,S,V). The global parameters are GP = (p, g,G1,G2,GT , e, ũ, ṽ, sig,H

′).
• KeyGenServer(GP ): Selects x ∈ Zp uniformly at random and compute X =
gx. Selects Q̃ ∈ G

∗
2 uniformly at random. Outputs pkS = (Q̃,X) and skS = x

as the server’s public and private key, respectively.
• KeyGenReceiver(GP ): Let the keyword space be KSw = {0, 1}n where 2n �
p. Chooses n + 1 random group elements e0, e1, · · · , en ∈ Zp, computes
hi = gei , and h = (h0, h1, · · · , hn) ∈ G

n+1
1 as the public description of the

hash function. The algebraic hash function H : {0, 1}n → G1 is evaluated
on a keyword string w = (w1, · · · , wn) ∈ {0, 1}n as the product

h(w) = e0 +
n∑
i=1

(ei · wi) , H(w) = h0

n∏
i=1

(hwi
i ) = gh(w)

Chooses y, z ∈ Z
∗
p uniformly at random and computes Ỹ = g̃y, Z̃ = g̃z.
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Outputs pkR = (Ỹ , Z̃, h0, h1, · · · , hn) and skR = (y, z, e0, e1, · · · , en) as
the receiver’s public and private key, respectively.

• PEKS(GP , pkS , pkR, w):
(1) Selects a one-time signature key pair (ssk, svk) ← G(λ) and sets C0 = svk.
(2) Picks s, r ∈ Z

∗
p and computes

C1 = gs, t = H ′(e(X, Q̃)s), C2 = (Ỹ g̃−w)r/t

C3 = e(H(w), g̃)r, C4 = e(H(w), Z̃)r,C5 = (ũsvkṽ)s.
(3) Generates a one-time signature σ = S(ssk, (C1, C2, C3, C4, C5)) on the

pair (C1, C2, C3, C4, C5).
(4) The PEKS ciphertext is C = (C0, C1, C2, C3, C4, C5, σ). Outputs C.
• Trapdoor(GP, pkS , skR, w): Chooses sw ∈ Z

∗
p and computes

dw = Xh(w)(z−sw)/(y−w)

Let the trapdoor be Tw = (dw, sw). Outputs Tw.
• Test(GP, Tw, pkS , skS , C): Tests if

V(C0, σ, (C1, C2, C3, C4, C5))= 1 (1)

e(C1, ũ
C0 ṽ)= e(g, C5) (2)

Computes t = H ′(e(C1, Q̃)x) and checks if

e(dw, C
t/x
2 )Csw

3 =C4 (3)

If all equations (1), (2) and (3) hold, then return “Correct”. Otherwise,
return “Incorrect”.

Correctness. Here we show that a correctly generated PEKS ciphertext can be
correctly tested by the server equipped with a correct trapdoor. In the follow-
ing, let C = (C1, C2, C3, C4) be a PEKS ciphertext associated with keyword
w under the public key pkS , pkR. Let the trapdoor be Tw = (dw, sw). We have

t=H ′(e(C1, Q̃)x)

=H ′(e(gs, Q̃)x)

=H ′(e(gx, Q̃)s)

=H ′(e(X, Q̃)s).

e(dw, C
t/x
2 )Csw

3 = e(Xh(w)(z−sw)/(y−w), ((Ỹ g̃−w)r/t)t/x)(e(H(w), g̃)r)sw

= e(g, g̃)h(w)(z−sw)re(g, g̃)h(w)rsw

= e(g, g̃)h(w)zr

=C4.

�
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4.2 Consistency of Our SCF-PEKS

In this subsection, we prove the computational consistency of our scheme.

Theorem 1 Our SCF-PEKS scheme is computationally consistent assuming
the discrete logarithm problem (DLP) assumption holds.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack
computational consistent of our scheme. We build a simulator B that can play
a DLP game. Simulator B inputs a DLP instance (g, gy) and has to compute y.
Let AdvDLP

B (λ) be the advantage function that B solves DLP in G1. Let (w,w
′)

denote the pair of keywords that A returns in the consistency experiment, and
assume without loss of generality that w �= w′.

Let s, r ∈ Z
∗
p denote the value chosen at random by PEKS(GP, pkS , pkR, w).

(ssk, svk) ← G(λ) be a one-time signature key pair and let C0 = svk, C1 = gs,
t = H(e(X, Q̃)s), C2 = (Ỹ g̃−w)r/t, C3 = e(H(w), g̃)r, C4 = e(H(w), Z̃)r,C5 =
(ũsvkṽ)s.

Let Tw′ = (dw′ , sw′) where dw′ = Xh(w′)(z−sw′ )/(y−w′) is the trapdoor of w′

Note that A wins exactly when w �= w′ and e(dw′ , C
t/x
2 )C

sw′
3 = C4.

e(dw′ , C
t/x
2 )C

sw′
3 = C4

⇐⇒ e(Xh(w′)(z−sw′ )/(y−w′), (Ỹ g̃−w)r/t·t/x)e(H(w), g̃)rsw′ = e(H(w), Z̃)r

⇐⇒ e(gh(w
′)(z−sw′ )/(y−w′), (g̃(y−w)r)e(g, g̃)h(w)sw′r = e(g, g̃)h(w)zr

⇐⇒ e(g(h(w
′)(y−w)/(y−w′))(z−sw′ )r, g̃)e(g, g̃)h(w)rsw′ = e(g, g̃)h(w)zr

⇐⇒ e(g((h(w
′)(y−w)/(y−w′))zr, g̃)e(g, g̃)−((h(w′)(y−w)/(y−w′))sw′re(g, g̃)h(w)rsw′

= e(g, g̃)h(w)zr

⇐⇒ (h(w′)(y − w)/(y − w′))zr − (h(w′)(y − w)/(y − w′))sw′r + h(w)rsw′ =
h(w)zr mod p

⇐⇒ (h(w′)(y−w)/(y−w′)−h(w))zr−(h(w′)(y−w)/(y−w′)−h(w))sw′r = 0
mod p

⇐⇒ [h(w′)(y − w) − h(w)(y − w′)]/(y − w′)zr − [h(w′)(y − w) − h(w)(y −
w′)]/(y − w′)sw′r = 0 mod p

⇐⇒ [h(w′)(y − w)− h(w)(y − w′)]/(y − w′)(z − sw′)r = 0 mod p
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Note that sw′ is randomly selected by receiver in Z
∗
p. Therefore, for a fixed

z ∈ Z
∗
p, Pr[sw′ = z mod p ] = 1

p−1
. Further, when h(w′) = h(w) �= 0 mod p,

since h(w′)(y − w) − h(w)(y − w′) = h(w)(w′ − w) �= 0 mod p, thus we have

y = w′ mod p. When h(w′) �= h(w) mod p, we have y = h(w′)w−h(w)w′
h(w′)−h(w)

mod p

or y = w′ mod p, and thus, we can solve the discrete logarithm problem as
claimed. Next, we will discuss that Pr[h(w) = 0] = 2n

p
. Since e0, e1, · · · , en

are randomly chosen in Zp, for fixed w, Pr[h(w) = 0 mod p ] = Pr[Σwi=1ei =
0 mod p ] = 1

p
. The total number of different w is 2n, and thus we have

Pr[h(w) = 0 mod p ] = 2n

p
. Actually, our hash function H(w) = h0

∏n
i=1 (h

wi
i )

is the same as Waters’ hash function H(ID) = h0
∏n

i=1 (hIDi
i ) in identity

based encryption schemes [33,23], since the private key of ID is constructed
as (gα2H(ID)r, gr), and if h(ID) = 0, it can compute the master key gα2 of the
Waters’ IBE scheme.

As described above, under the condition w �= w′ and Test(GP , Tw′ , pkS , skS , C)
= “Correct”

AdvconsA (λ) = Pr[ExpconsA (λ) = 1] ≤ 1

p− 1
+

2n

p
+ AdvDLP

B (λ).

�

4.3 Security of Our SCF-PEKS

In this subsection, we will prove the security of our SCF-PEKS scheme without
any random oracle. The analysis of GameServer and GameReceiver is as follows.

Theorem 2 The above scheme is IND-SCF-CKCA secure without random
oracle model assuming that H ′ is a cryptographically secure pseudorandom
number generator (PRNG) and that the DBDH problem and q-ABDHE prob-
lem are intractable.

Proof. The proof of this theorem will be provided in the following two lemmas,
for clarity. These lemmas represent GameServer and GameReceiver, respectively,
as defined in Definition 3.

Lemma 1. Let q ≥ qk + 1, where qk is the number of trapdoor queries. Our
scheme is semantically secure against a chosen keyword and ciphertext attacks
in GameServer without the random oracle model assuming q-ABDHE problem
is intractable.

Proof. Suppose there exists a polynomial-time adversary, A, in GameServer
that can attack our scheme in the standard model. Let qk is the number of
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trapdoor queries. We build a simulator B that can play a q-ABDHE game.
The simulation proceeds as follows:

We first let the challenger set the groups G1, G2 and GT with an efficient
bilinear map e and a generator g of G1. Simulator B inputs a q-ABDHE
instance

(g, gx, gx
2

, · · · , gxq

, g̃, g̃x, g̃x
2

, · · · , g̃xq

, g̃z, g̃zx
q+2

, T )

and has to distinguish T = e(g, g̃)zx
q+1

from a random element in GT .

(1) Setup: Let λ be the security parameter and (p,G1,G2,GT , e, g, g̃) be the
bilinear map parameters. Specify a cryptographically secure pseudoran-
dom number generator (PRNG) H ′ : GT → Z

∗
p. Generators ũ, ṽ ∈ G2

and a strongly unforgeable one-time signature scheme sig = (G,S,V).
The global parameters are GP = (p, g,G1,G2,GT , e, ũ, ṽ, sig,H

′).
Choose a ∈ Z

∗
p uniformly at random and computes X = ga. Chooses

Q̃ ∈ G
∗
2 uniformly at random. Output pkS = (Q̃,X) and skS = a as the

server’s public and private key, respectively.
Let the keyword space KSw = {0, 1}n. Choose n+1 random group ele-

ments e0, e1, · · · , en ∈ Zp, and compute hi = gei , and h = (h0, h1, · · · , hn) ∈
G

n+1
1 as the public description of the hash function. The algebraic hash

functionH : {0, 1}n → G1 is evaluated on a keyword string w = (w1, · · · , wn) ∈
{0, 1}n as the product

h(w) = e0 +
n∑
i=1

(ei · wi), H(w) = h0

n∏
i=1

(hwi
i ) = gh(w)

Pick a random degree q polynomials f(X), and define Ỹ = g̃x, Z̃ = g̃f(x).
The receiver’s public and private keys are pkR = (Ỹ , Z̃, h0, h1, · · · , hn),
skR = (x, f(x), e0, e1, · · · , en), respectively (Note that B cannot know x
and cannot compute f(x) as well), and (pkR, pkS , skS) is sent to A.

(2) Query phase 1. A makes the following queries:
• Trapdoor query 〈w〉: If A queries w to the trapdoor generation oracle,
then B sets sw = f(w), computes dw = (g(f(x)−f(w))/(x−w))ah(w), and
sends the trapdoor Tw = {dw, sw} to A. When q ≥ qk + 1, sw = f(w)
is a random value from A’s view, since f(X) is a random degree q
polynomial.

• Test query 〈C,w〉: A can adaptively asks B for the test query for any
keyword w and any PEKS ciphertext of his choice. B first query a
trapdoor query on 〈w〉 to get the trapdoor Tw and then responds by
sending the result Test(GP, Tw, pkS , skS , C) to A.

(3) Challenge. Once A decides that Phase 1 is over, it outputs a keyword
pair (w0, w1). B responds by choosing a random γ ∈ {0, 1}, let w∗ = wγ,
selects a one-time signature key pair (ssk∗, svk∗) ← G(λ), sets C∗

0 = svk∗
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and {sw∗ = f(w∗)}, then B computes

dw∗ = (g(f(x)−f(w∗))/(x−w∗))ah(w
∗)

B randomly chooses s∗ ∈ Z
∗
p and computes

C∗
1 = gs

∗
, t∗ = H ′(e(X, Q̃)s

∗
).

B defines the degree q + 1 polynomial

F ∗(X) = (Xq+2 − (w∗)q+2)/(X − w∗) =
q+1∑
i=0

(F ∗
i X

i).

B computes

C∗
2 =(g̃zx

q+2

(g̃z)−(w∗)q+2

)1/t
∗

C∗
3 =(T F ∗

q+1e(
q∏

i=0

(gx
i

)F
∗
i , g̃z))h(w

∗)

C∗
4 = e(dw∗ , (C∗

2)
t∗/a)(C∗

3)
sw∗

C∗
5 =(ũsvk∗ ṽ)s

∗

B generates a one-time signature σ∗ = S(ssk∗, (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 )).

B sends the challenge PEKS ciphertext C∗ = (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)
to A.
Let r∗ = zF ∗(x), if T = e(g, g̃)zx

q+1
, then

C∗
2 =(g̃zx

q+2

(g̃z)−(w∗)q+2

)1/t
∗

= g̃(x−w∗)(z(xq+2−(w∗)q+2)/(x−w∗))1/t∗

= g̃(x−w∗)r∗/t∗ = (Ỹ g̃−w∗
)r

∗/t∗

C∗
3 =(T F ∗

q+1e(
q∏

i=0

(gx
i

)F
∗
i , g̃z))h(w

∗)

= e(H(w∗), g̃)r
∗

C∗
4 = e(H(w∗), Z̃)r

∗

(4) Query phase 2. A continues making queries as in the Query phase 1.
The restriction here is that w0 and w1 are not allowed to be queried as
trapdoor queries and 〈C,w〉 are not allowed to be queried as test queries
if 〈C,w〉 = 〈C∗, w0〉 or 〈C,w〉 = 〈C∗, w1〉.

(5) Guess. A outputs the guess γ′, if γ′ = γ, then B outputs 1 meaning
T = e(g, g̃)zx

q+1
; else B outputs 0 meaning T = e(g, g̃)r.

Probability Analysis: If T = e(g, g̃)zx
q+1

, then the simulation is perfect, and
A will guess the bit γ correctly with probability 1/2 + ε. Else, T is uniformly
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random, and thus (C∗
2 , C

∗
3) is a uniformly random and independent element.

In this case, the inequality

C∗
3 �= e(g, (C∗

2)
t∗h(w∗

)1/(x−w∗)

holds with probability 1− 1/p. When the inequality holds, the value of

C∗
4 = e(dw∗ , (C∗

2)
t∗/a)(C∗

3)
sw∗

= e(Xh(w∗)(f(x)−sw∗ )/(x−w∗), (C∗
2)

t∗/a)(C∗
3)

sw∗

= e(gf(x)/(x−w∗), (C∗
2)

t∗h(w∗
)((C∗

3)/(e(g, (C
∗
2)

t∗h(w∗
)1/(x−w∗)))sw∗

is uniformly random and independent from A’s view (except for the value C∗
4),

since sw∗ is uniformly random (when q ≥ qk+1, sw∗ = f(w∗) are random values
from A’s view) and independent from A’s view (except for the value C∗

3).
Thus, C∗

4 is uniformly random and independent. Since s∗ ∈ Z
∗
p is randomly

chosen, C∗
1 = gs

∗
is uniformly random and independent from (C∗

2 , C
∗
3 , C

∗
4) and

(C∗
1 , C

∗
2 , C

∗
3 , C

∗
4) can reveal no information regarding the bit γ.

We now summarize the above statements into a bound on the advantage of
the adversary in the GameServer:

AdvGameServer
A (λ)≤Advq−ABDHE

G1,B (λ) + 1/p.

Lemma 2. Our scheme is semantically secure against a chosen keyword attack
in GameReceiver without random oracle model assuming DBDH problem is
intractable, Sig = (G,S,V) is a strongly unforgeable one-time signature and
H ′ is a cryptographically secure pseudorandom number generator (PRNG).

Proof. Suppose there exists a polynomial-time adversary, A, in GameReceiver

that can attack our scheme in the standard model. We build a simulator B
that can play a DBDH game.

We first let the challenger set the groups G1, G2 and GT with an efficient bilin-
ear map e and a generator g ofG1. B inputs a DBDH instance (g, ga, gb, gc, g̃, g̃a,
g̃b, g̃c, T ), and has to distinguish T = e(g, g̃)abc from a random element in GT .

Before describing B, we first define an event FOTS and bound its probability to
occur. Let C∗ = (svk∗, C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗) denote the challenge ciphertext
given to A in the game. Let FOTS be the event that A issues a test query for ci-
phertext C∗ = (svk∗, C1, C2, C3, C4, C5, σ) but V(svk∗, σ, (C1, C2, C3, C4, C5)) =
1. In the “phase 1” stage, A has simply no information on svk∗. Hence, the
probability of a pre-challenge occurrence of FOTS does not exceed qkθ if qk is
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the overall number of test oracle queries and θ denotes the maximal probabil-
ity (which by assumption does not exceed 1/p) that any one-time verification
key svk∗ is output by G. In the “phase 2” stage, FOTS clearly gives rise to
an algorithm breaking the strong unforgeability of the one-time signature.
Therefore, the probability Pr[FOTS] ≤ qk/p+AdvOTS, where the second term
accounts for the probability of definition one time signature, must be negligible
by assumption.

We now proceed with the description of B that simply halts and outputs a
random bit if FOTS occurs. In a preparation phase, B generates a one-time
signature key pair (ssk∗, svk∗) ← G(λ) and provides A with public param-
eters including ũ = (g̃b)α1 and ṽ = (g̃b)−α1svk∗ g̃α2 for random α1, α2 ∈ Z

∗
p.

Throughout the game, A’s environment is simulated as follows.

(1) Setup: Let λ be the security parameter and (p,G1,G2,GT , e, g, g̃) be the
bilinear map parameters. Specify a cryptographically secure pseudoran-
dom number generator (PRNG) H ′ : GT → Z

∗
p. B generates a strongly

unforgeable one-time signature scheme sig = (G,S,V). The global pa-
rameters are

GP = (p, g,G1,G2,GT , e, ũ, ṽ, sig,H
′).

Let X = ga and Q̃ = g̃b, the server’s public key is pkS = (Q̃,X).
Let the keyword spaceKSw = {0, 1}n. B chooses n+1 random group el-

ements e0, e1, · · · , en ∈ Zp, and computes hi = gei , and h = (h0, h1, · · · , hn) ∈
G

n+1
1 as the public description of the hash function. The algebraic hash

functionH : {0, 1}n → G1 is evaluated on a keyword string w = (w1, · · · , wn) ∈
{0, 1}n as the product

h(w) = e0 +
n∑

i=1

(ei · wi), H(w) = h0

n∏
i=1

(hwi
i ) = gh(w)

Chooses y, z ∈ Z
∗
p uniformly at random and computes Ỹ = g̃y, Z̃ = g̃z.

Outputs pkR = (Ỹ , Z̃, h0, h1, · · · , hn) and skR = (y, z, e0, e1, · · · , en) as
the receiver’s public and private key respectively, and sends (pkR, skR, pkS)
to A.

(2) Query phase 1. A makes trapdoor and test queries :
• Test query 〈C,w〉: A can adaptively ask B for the test query for any
keyword w and any PEKS ciphertext C = (C0, C1, C2, C3, C4, C5, σ) of
his choice. B tests if

V(C0, σ, (C1, C2, C3, C4, C5)) = 1

e(C1, ũ
C0 ṽ) = e(g, C5)

If the equality holds, then there are two cases:
· If C0 = svk ≡ svk∗ = C∗

0 , then

(C1, C2, C3, C4, C5, σ) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)
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B is faced with an occurrence of FOTS and halts ( an occurrence
of FOTS in phase 1 and phase 2 are different from that discussed
in the preparation phase).

· If C0 = svk �= svk∗ = C∗
0 , The validity of the ciphertext ensures

that

e(C1, ũ
C0 ṽ) = e(g, C5)

C5 = (ũsvkṽ)s = ((g̃b)α1svk(g̃b)−α1svk∗ g̃α2)s

= ((g̃bs)α1(svk−svk∗)g̃sα2)

and since C1 = gs, B can compute

e(ga, g̃bs) = (e(ga, C5)/e(C
α2
1 , g̃a))1/(α1(svk−svk∗)).

Then, B can compute

t = H ′(e(X, Q̃)s) = H ′(e(ga, g̃b)s) = H ′(e(ga, g̃bs))

= H ′((e(ga, C5)/(e(C
α2
1 , g̃a)))1/(α1(svk−svk∗))))

Then B chooses sw ∈ Z
∗
p and computes dw = Xh(w)(z−sw)/(y−w).

B checks if

e(dw, C
t/x
2 )Csw

3 = C4

If all equations hold, return “Correct”, and “Incorrect” otherwise.
(3) Challenge. Once A decides that phase 1 is over, it outputs a keyword

pair (w0, w1). B responds by choosing a random γ ∈ {0, 1}, let the chal-
lenge keyword w∗ = wγ, sets C∗

0 = svk∗, C∗
1 = gc and t∗ = H ′(T ),

chooses r∗ ∈ Z
∗
p, computes C∗

2 = (Ỹ g̃−w∗
)r

∗/t∗ , C∗
3 = e(H(w∗), g̃)r

∗
, C∗

4 =

e(H(w∗), Z̃)r
∗
, C∗

5 = (ũsvk∗ ṽ)c = ((g̃b)α1svk∗(g̃b)−α1svk∗ g̃α2)c = (g̃c)α2).
Generates a one-time signature σ∗ = S(ssk∗, (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5))

Sends the challenge PEKS ciphertext C∗ = (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , σ

∗)
to A.

(4) Query phase 2. A issues a number of trapdoor and test queries as in phase
1. The restriction here is that 〈C,w〉 are not allowed to be queried as test
queries if 〈C,w〉 = 〈C∗, w0〉 or 〈C,w〉 = 〈C∗, w1〉. Unlike GameServer,
here w0 and w1 are allowed to be queried as trapdoor queries.

(5) Guess. A outputs the guess γ′. If γ′ = γ, then B outputs 1 meaning
T = e(g, g̃)abc; else B outputs 0 meaning T = e(g, g̃)r.

Probability Analysis: Suppose there exists a polynomial-time adversary, A,
in GameReceiver that can attack our scheme in the standard model with an
advantage ε. Now we determine the probability of the simulator B:

If FOTS does not occur, when T = e(g, g̃)abc, then A must satisfy |Pr[γ′ =
γ] − 1/2| ≥ ε. When T is uniform in GT , then t∗ = H ′(T ) is uniform in
Z

∗
p, due to the fact that PRNG is cryptographically secure. r∗ is also uniform

in Z
∗
p from A’s view, then w∗ in C∗

2 = (Ỹ g̃−w∗
)r

∗/t∗ , C∗
3 = e(H(w∗), g̃)r

∗
,
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C∗
4 = e(H(w∗), Z̃)r

∗
is perfectly hidden, then |Pr[γ′ = γ] = 1/2. Therefore,

when a, b, c are uniform in Z
∗
p and T is uniform in GT , we have

|Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃c, e(g, g̃)abc) = 1]

−Pr[B(g, ga, gb, gc, g̃, g̃a, g̃b, g̃c, e(g, g̃)r) = 1]| ≥ |(1/2± ε)− 1/2| = ε

as required.

In the following, we summarize the above statements into a bound on the
advantage of the adversary in the GameReceiver:

AdvGameReceiver
A (λ)≤AdvBDDH

G1,B (λ) + qk/p+ AdvOTS.

This completes the proof of GameReceiver. �

4.4 Our SCF-PEKS Against KG Attack

Game 3(Keyword Guessing Attack): A is an outside attacker (neither the
server nor the receiver).

Theorem 3 The above scheme is IND-KGA secure without random oracle
model assuming that the SXDH problem is intractable.

Proof. Suppose there exists a polynomial-time adversary, A, in IND-KGA
Game that can attack our scheme in the standard model. We build a simulator
B that can play a DDH (SXDH problem in G1) game.

We first let the challenger set the groups G1, G2 and GT with an efficient
bilinear map e and a generator g of G1. B inputs a DDH instance (ga, gb, T ),
and has to distinguish T = gab from a random element in G1.

We will start by defining the first game to be the experiment which is described
in the definition of IND-KGA security.

• Game 1. Game 1 is merely the same game as the IND-KGA security exper-
iment. While describing the experiment, we will introduce several notations
and conventions to describe how the simulator selects the values that appear
in its simulation.
In the beginning of the game, the simulator selects some values a and b,

which are uniformly distributed over Z∗
p. The simulation proceeds according

to the value selected. In the subsequent games, the simulator will no longer
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use these values a and b, and instead, the simulator will only use ga, gb and
T = gab for its simulation of the security experiment. The values of a and b
are not used in any further action, as if they were “forgotten”, as these are
just part of the initialization.
At some point during the game the adversary chooses a challenge keyword,

we will refer to this keyword as w∗.
In the Guess Phase. The adversary continues to make its oracle queries,

and the subsequent trapdoor requests must be different from the target
keyword w∗. Finally, adversary A returns a guessing bit γ′ ∈ {0, 1}. If
γ′ = γ the simulator returns β′ = 1, else it returns β′ = 0. This completes
the description of the simulator. Note that the simulator behaves exactly as
in the original IND-KGA security experiment.
During its execution A may query the trapdoor oracle for some keyword

w. Let q be the total number of trapdoor queries that the adversary makes.
We collect all those keywords used to make queries to the trapdoor oracle in
the set W . Let W be the subset of queried keywords obtained by removing
fromW all multiples and the target keyword. We writeW = {w(1), ···, w(q0)}
for some q0 ≤ q such that w(i) �= w(j) for each 1 ≤ i �= j ≤ q0 and w∗ is not
in W . Furthermore, we define W ∗ = W ∪ {w∗}.
The proof of the theorem is obtained by considering subsequent games,

Game 1, Game 2, Game 3 and Game 4. These games will be quite similar to
Game 1. In every game. the simulator’s output bit β′ will be well-defined.
Let X1 be the event that A is successful in Game 1. Our goal is to put an
upper bound on AdvIND−KGA

A (λ) = |Pr[X1] − 1/2| = |Pr[β′ = 1] − 1/2|.
For each of the following experiments we will call Xi the event that the
adversary is successful in Game i.

• Game 2. Game 2 is essentially the same as Game 1 except for the following
changes:
· To generate (h0, h1, · · · , hn), the simulator the computes m = 2q, and
randomly chooses

k ∈{0, · · · , n} (4)

x′, x1, · · · , xn ∈{0, · · · , p− 1} (5)

y′, y1, · · · , yn ∈{0, · · · ,m− 1} (6)

Sets h0 = gx
′
(gb)p−km+y′ , for i ∈ {1, · · · , n}, hi = gxi(gb)yi .

· For any keyword w = (w1, · · · , wn) ∈ {0, 1}n, let

x(w)= x′ +
n∑
i=1

(xi · wi) (7)

y(w)= p− km+ y′ +
n∑
i=1

(yi · wi) (8)

h(w)= x(w) + by(w) (9)

Note that this change does not affect the distribution of the hash keys

25



(h0, h1, · · · , hn).
Let viewA be the adversary’s random tape, and the transcript of its

interactions with its oracles in the current run of the experiment of Game
2. Concretely, fix all the random variables that the adversary A gets to
see during its execution, including its random coin tosses: fix GP , pkR
and pkS , the challenge bit γ, and the randomness used in answering
the trapdoor queries. Now, the adversary can be seen as a determin-
istic algorithm, in particular the set of all queried (distinct) keywords
W ∗ = {w(1), · · · , w(q0), w∗} can be seen as fixed.
Let Y = (y′, y1, · · · , yn, k) where the random variables are distributed

as described above. Clearly, if we fix viewA and re-run the experiment, the
random variable Y has the same distribution as for a run of the experiment
without a fixed view of the adversary. This is true due to the random
“masks” xi.

· (FA: Forced abort) We call FA the event that one of the following condi-
tions is true. If FA occurs then the experiment is aborted and the outcome
is chosen randomly.
(1) The adversary asks a trapdoor query for a keyword w such that

y(w) = 0 mod p.
(2) The adversary chooses a challenge keyword w∗ such that y(w∗) �= 0

mod p.
We call this as ‘forced abort’ since in subsequent games, the simulator

is modified such that it always has to abort once this event happens. For
fixed viewA, we define η(viewA) = PrY [¬FA].
Let λlow and λup be the lower bound and upper bound on η(viewA).

The following lemma bounds η(viewA).
Lemma 3. For every fixed viewA, we have

λlow ≡ 1

4(n+ 1)q
≤ η(viewA) ≤ 1

2q
≡ λup

This lemma is the same as in [22] (cf. Lemma 6.2 in [22]) and also as
an extension of a lemma by Waters [33] that only proved the lower bound
on viewA. For completeness, we also provide the proof in Appendix A.
Compared to Game 1 we will make two step modifications to the ex-

periment in Game 2. Since adversary A has already terminated, we can
assume viewA to be fixed from now on.

· Step 1.(FA: Forced abort) After adversary A outputs his guess bit γ′, the
experiment checks if the event FA occurs. If yes, the experiment returns
a random bit as its output bit β′ and aborts. Otherwise, it continues as
before. To get rid of unwanted dependence the experiment adds some
artificial abort such that in total it always aborts with probability around
1− λlow, independent of the view of the adversary viewA.

· Step 2.(AA: Artificial Abort) After the adversary A outputs his guess bit
γ′, the experiment checks if the event FA occurs. If yes, the experiment
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returns a random bit as its output bit β′ and aborts. Otherwise, it con-
tinues as follows: first it samples an estimate η′(viewA) of the probability
η(viewA) that the event FA does not happen. We want to stress that
viewA is fixed at this point so sampling does not involve running adver-
sary A again. By definition, this estimate η′(viewA) is a random variable
that only depends on the queried keywords W ∗ (and the randomness used
to sample).
Depending on the estimate η′(viewA) the simulator distinguishes two

cases:
Case η′(viewA) ≤ λlow: the simulator continues as before.
Case η′(viewA) > λlow: With probability 1 − λlow

η′(viewA)
the simulator

aborts and outputs a random bit β′. With probability λlow

η′(viewA)
the simu-

lator does not abort and continues as before.
This concludes the description of Game 2. The following claim that is

related to the events X1 and X2 will be proved in Appendix B.
Claim 1. Set ρ(λ) ≡ AdvSXDH

G1,B (λ) · q(n+ 1) > 0. If the experiment takes

s(λ) = O(n2(ρ(λ))−2ln((nqρ(λ))−1))

samples when computing the estimate η′(viewA), then

|Pr[X1]− (
1

2
+ (Pr[X2]− 1

2
) · 4q(n+ 1))| ≤ ρ(λ)

This claim is similar to [22,21,23] (cf. Lemma 6.3 in [21]). We provide the
proof in Appendix B.

• Game 3. Game 3 is the same as Game 2 except that we change the way that
the public keys are generated, and trapdoors are computed. Let T = gab in
Game 3.

(1) Setup: Let λ be the security parameter and (p,G1,G2,GT , e, g, g̃) be the
bilinear map parameters. Specify a cryptographically secure pseudoran-
dom number generator (PRNG) H ′ : GT → Z

∗
p. Generators ũ = g̃α1 and

ṽ = g̃α2 for random α1, α2 ∈ Z
∗
p, and generators a strongly unforgeable

one-time signature scheme sig = (G,S,V). The global parameters are
GP = (p, g,G1,G2,GT , e, ũ, ṽ, sig,H

′).
The simulator choose c ∈ Z

∗
p uniformly at random and computes Q̃ = g̃c.

Let X = ga, the server’s public key is pkS = (Q̃,X) and private key
skS = (a, c) (Note that the simulator B cannot know the value a but can
know the value c).
The simulator B choose y, z ∈ Z

∗
p uniformly at random and computes

Ỹ = g̃y, Z̃ = g̃z.
The simulator B outputs pkR = (Ỹ , Z̃, h0, h1, · · · , hn) and skR = (y, z)

as the receiver’s public and private key respectively, and sends (pkR, skR, pkS)
to A.

(2) Query phase 1. A makes the following trapdoor queries:
· Trapdoor query 〈w〉: If A queries w (such that y(w) = 0 mod p) to
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the trapdoor generation oracle, then B chooses sw ∈ Z
∗
p and computes

dw = Xx(w)(z−sw)/(y−w). Let the trapdoor be Tw = (dw, sw). Sends Tw

to A.
(3) Challenge. Once A decides that phase 1 is over, it outputs a keyword

pair (w0, w1). B responds by choosing a random γ ∈ {0, 1}, and let the
challenge keyword w∗ = wγ. Choose sw∗ ∈ Z

∗
p and compute

dw∗ = (Xx(w∗)T y(w∗))(z−s∗w)/(y−w∗)

Let the trapdoor Tw∗ = (dw∗ , sw∗). Sends the challenge trapdoor Tw∗ to
A.
As in Game 2, y(w∗) �= 0 mod p, then H(w∗) = gx(w

∗)+by(w∗). We have

dw∗ = (Xx(w∗)T y(w∗))(z−s∗w)/(y−w∗)

= (Xx(w∗)Xby(w∗))(z−s∗w)/(y−w∗) = Xh(w∗)(z−s∗w)/(y−w∗)

(4) Query phase 2. A issues a number of trapdoor queries as in phase 1. The
restriction here is that w0 and w1 are not allowed to be queried as trapdoor
queries.

(5) Guess. A outputs the guess γ′.
Following a technical argument it is easy to check that the public key and

trapdoors in games 2 and 3 are distributed identically. Thus, the probabili-
ties of success in both games are equal:

Pr[X2] = Pr[X3]

• Game 4. Game 4 is the same as Game 3 except that the value T = gab is
replaced by a random value T ∈ G1 which is chosen at the beginning. Let
T = gab in Game 3.

Claim 2. |Pr[X3]− Pr[X4]| ≤ AdvSXDH
G1,B (λ)

Proof. The idea of the proof is the following. We are given g, ga, gb and T
which is either a random element of G1 or gab. We simulate the adversary.
When T = gab then we simulate the adversary perfectly in Game 3. When
T is uniform in G1 then we simulate the adversary in Game 4. Thus, if the
adversary distinguishes between games 3 and 4, then we distinguish between
the two possible values for T with the same probability.
Finally, since T is uniform in G1 then we have

Pr[X4] = 1/2.

Analysis. We now summarize the above statements into a bound on the ad-
vantage of the adversary in the IND-KGA game:
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AdvIND−KGA
A (λ) = |Pr[X1]− 1/2|

≤ |(Pr[X2]− 1/2) · 4q(n+ 1)|+ ρ(λ)

= |(Pr[X3]− 1/2)| · 4q(n+ 1) + ρ(λ)

≤ (|Pr[X4]− 1/2|+ AdvSXDH
G1,B (λ)) · 4q(n+ 1) + ρ(λ)

=AdvSXDH
G1,B (λ) · 4q(n+ 1) + ρ(λ)

Note that ρ(λ) ≡ AdvSXDH
G1,B (λ) · q(n+ 1) then we obtain

AdvIND−KGA
A (λ) ≤ AdvSXDH

G1,B (λ) · 5q(n+ 1)

�

5 Performance Comparison

In this section, we compare our scheme with the existing secure channel-free
public key encryption with keyword search schemes in [10,27,30]. Let |G1|,
|G2|, |GT |, |svk| and |σ| denote the bit-length of an element in groups G1, G2

and GT , the verification key and signature of one-time signature, respectively.
We denote tp, te, ts, and tv as the computational cost of a bilinear pairing
operation, an exponentiation over a bilinear group, a one-time signature and
verification, respectively. Let svk and σ be the one-time signatures public key
and signature. The result of the comparison is outlined in Table 2.

Scheme Rhee et al. [30] Rhee et al.[27] Fang et al. [10] Ours

Cost
PEKS tp + 2te 9tp + 2te 3tp + 4.5te 3tp + 6.5te + ts

Test tp + 2te tp + te 4tp + 3te + tv 4tp + 3te + tv

Length
PEKS |G1| + |GT | |G1| + |GT | 3|G1| + 2|GT | |svk| + |G1| + 2|G2| + 2|GT | + |σ|

Trapdoor 2|G1| |G1| |G1| + |Z∗
p| |G1| + |Z∗

p|
IND-CKA Yes Yes Yes Yes

IND-KGA Yes No No Yes

Without ROM No No Yes Yes

Test query No Weaker No Yes

Table 2. Performance Comparison Among Various SCF-PEKS Schemes

6 Applications of SCF-PEKS

In this section, for completeness, we provide some applications for SCF-PEKS
schemes. We specifically select an application to demonstrate how SCF-PEKS
schemes can be used to present solutions in these scenarios.
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Public-key Encryption with Keyword Search (PEKS) is a mechanism that
allows search by keywords on encrypted data. It aims at preserving the privacy
of the receiver of the data while providing a way that allows her to search
efficiently without the need of decrypting the ciphertext.

Thus, public key encryption with keyword Search (PEKS) has become more
important, as it has recently been applied to various applications, such as
storage and retrieval of encrypted sensitive data in cloud computing, privacy-
preserving online photo sharing, privacy-preserving location based sharing(LBS)
[9], Encrypted and Searchable Audit Log [34], Personal Health Record (PHR)
and intelligent email routing [1,5,2].

Server

Receiver

GP

pkS

w

Bob

Alice

w’

pkS

Email server

Tw’

Tw’

If w＝w’

CPEKS

CPEKS

CPEKS

skS

pkS skS

pkA

λ

pkA

skA

pkA skA

GP

Figure 1. Application in intelligent email routing

In Figure 1, Bob sends a ciphertext C̃, C̃ = (CPKE ‖ CPEKS) = (PKE(pkA,m) ‖
PEKS(pkA, w)), to Alice where pkA is Alice’s public key, CPKE is an en-
crypted version of Bob’s message under pkA and w is the keyword that Bob
wants to attach to the email (for example “urgent”). Alice can provide the
mail server with a certain trapdoor Tw (which is a trapdoor constructed by
Alice on a keyword w) through a public channel that enables the mail server
to test whether the encrypted keyword associated with the message (CPEKS)
is equal to the word w of Alice selected. Given PEKS(pkA, w

′) and Tw, the

server can test whether w
?
= w′. If w = w′, then the mail server learns nothing

more about w′.
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7 Conclusion

In this paper, we provide a formal model of SCF-PEKS secure against key-
word guessing attacks. Furthermore, we present an SCF-PEKS scheme se-
cure against chosen keyword and ciphertext attacks, and keyword guessing
attacks. Based on the DBDH assumption, SXDH assumption and the trun-
cated q-ABDHE assumption, we first proved its indistinguishability of secure
channel free PEKS against chosen keyword and ciphertext attack (IND-SCF-
CKCA) security without random oracle. We also analyzed the computational
consistency and security against keyword guessing attacks (IND-KGA) of our
scheme.

This work motivates a few interesting questions. First, how to achieve a more
efficient SCF-PEKS scheme without random oracle is desirable. We opened the
new direction on how to achieve this notion, but the more efficient variant is
certainly required. Second, how to construct SCF-PEKS scheme secure against
keyword guessing attacks without requiring bilinear pairing operations would
be very interesting.
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Appendix A: Proof of Lemma 3.

Fix viewA and hence the queried keywords W ∗ = {w(1), · · ·, w(q0), w∗}. We
abbreviate η = η(viewA). For an integer t, define the event

E(t) :
q0∧
i=1

(y(w(i)) �= 0 mod t) ∧ y(w∗) = 0 mod t.

With this notation recall that η = PrY [E(p)] and we intend to show that

λlow ≡ 1

4(n+ 1)q
≤ η ≤ 1

2q
≡ λup

(Also recall that Y = (y′, y1, · · · , yn, k), where the random variables (y′, y1, · · · , yn, k)
are distributed as in Eq. (6).). Over the integers we have y(w∗) = p − km +
y′ +

∑n
i=1(yi · w∗

i ) where 0 ≤ y′ +
∑n

i=1(yi · w∗
i ) < (n + 1)m < p. Sets

k∗ = �y′+
∑n

i=1
(yi·w∗

i )

m
�, then y(w∗) = p + (k∗ − k)m where 0 ≤ k, k∗ < n + 1,

i.e., 0 ≤ (k∗ − k)m < (n + 1)m < p. This shows that if y(w∗) = 0 mod m,
then there is a unique 0 ≤ k < n + 1 such that y(w∗) = 0 mod p. If k∗ = k
and y(w∗) = 0 mod m, then clearly y(w∗) = 0 mod p. On the other hand, if
y(w∗) �= 0 mod m then y(w∗) �= 0 mod p. Hence,

η = PrY [E(p)]≥Pr[k = k∗]PrY [E(p) | k = k∗]

=
1

n+ 1
PrY [E(p) | k = k∗]

≥ 1

n+ 1
PrY [E(m) | k = k∗]

=
1

n+ 1
PrY ′ [E(m) | k = k∗]

where the probability space Y ′ contains the random variables (y′, y1, · · · , yn)
distributed according to Eq. (6), for fixed k, i.e., from now on we consider k
to be fixed. Define PrY ′ [E(m)] = ηm. Since trivially ηm ≥ η, we obtain

1

n+ 1
ηm ≤ η ≤ ηm

Next, we will compute an upper and lower bound on ηm. Let w �= w′ and
a, b ∈ Z. We collect some simple observations on function y(·) which essentially
show that the y(·) mod m are pairwise independent:

PrY ′ [y(w) = b mod m] =
1

m
(10)

PrY ′ [y(w) = a mod m | y(w′) = b mod m] =
1

m
(11)
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Eq. (10) follows since for any choice of (y′, y1, · · · , yn, k) there is a single choice
of y′ that will make the condition hold. To show Eq. (11) assume there exists
an index 1 ≤ i ≤ n such that wi = 1 and w′

i = 0. Then fix all yj’s for j �= i
except yi so that y(w′) = b. Therefore PrY ′ [y(w) = a | y(w′) = b] = 1

m
. If

there is no such i then we can use Bayes to reverse roles of w and w′.

We continue to bound ηm with

ηm =PrY ′ [
q0∧
i=1

(y(w(i)) �= 0 mod m) | y(w∗) = 0 mod m]PrY ′ [y(w
∗) = 0 mod m]

=
1

m
PrY ′ [

q0∧
i=1

(y(w(i)) �= 0 mod m) | y(w∗) = 0 mod m]

=
1

m
(1− PrY ′ [

q0∨
i=1

(y(w(i)) �= 0 mod m) | y(w∗) = 0 mod m])

≥ 1

m
(1−

q0∑
i=1

PrY ′ [(y(w
(i)) �= 0 mod m) | y(w∗) = 0 mod m])

=
1

m
(1−

q0∑
i=1

1

m
)

≥ 1

m
(1− q

m
)

=
1

4q

ηm =
1

m
(1− PrY ′ [

q0∨
i=1

(y(w(i)) �= 0 mod m) | y(w∗) = 0 mod m])

≤ 1

m
=

1

2q

where the last equation follows by our choice of m = 2q which minimizes the
term. Thus, we obtain

1

4(n+ 1)q
≤ 1

n+ 1
ηm ≤ η ≤ ηm ≤ 1

2q

�
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Appendix B: Proof of Claim 1.

Let AA be the event that the experiment artificially aborts at the end of
the simulation. Let total abort TA = FA

∨
AA be the event that it aborts

artificially or forced. We abbreviate ρ = ρ(λ) and s = s(λ). First we claim

Claim 2. For any fixed viewA, |Pr[¬TA]− λlow| ≤ λlowρ
2

The proof of the claim is postponed until later. Since the claim holds for any
fixed viewA it also remains true for random viewA, conditioned on γ′ = γ and
γ′ �= γ:

|Pr[¬TA | γ′ = γ]− λlow| ≤ λlowρ

2
(12)

|Pr[¬TA | γ′ �= γ]− λlow| ≤ λlowρ

2
(13)

We continue computing Pr[X2]:

Pr[X2] =Pr[β′ = 1 ∧ TA] + Pr[β′ = 1 ∧ ¬TA]
=Pr[β′ = 1 | TA](1− Pr[¬TA]) + Pr[β′ = 1 ∧ ¬TA]

In case of abort the simulator outputs a random bit β′. If the simulator does
not abort then it outputs β′ = 1 if γ′ = γ. Therefore we can continue with

Pr[X2] =Pr[β′ = 1 | TA](1− Pr[¬TA]) + Pr[β′ = 1 ∧ ¬TA]
=

1

2
(1− Pr[¬TA]) + Pr[γ′ = γ ∧ ¬TA]

=
1

2
(1− (Pr[γ′ �= γ ∧ ¬TA] + Pr[γ′ = γ ∧ ¬TA])) + Pr[γ′ = γ ∧ ¬TA]

=
1

2
+

1

2
(Pr[γ′ = γ ∧ ¬TA]− Pr[γ′ �= γ ∧ ¬TA])

=
1

2
+

1

2
(Pr[¬TA | γ′ = γ]Pr[γ′ = γ]− Pr[¬TA | γ′ �= γ]Pr[γ′ �= γ])

Since Pr[γ′ = γ] = Pr[X1] we obtain

Pr[X2]− 1

2
=

1

2
(Pr[¬TA | γ′ = γ]Pr[X1]− Pr[¬TA | γ′ �= γ](1− Pr[X1]))

=
1

2
Pr[X1](Pr[¬TA | γ′ = γ] + Pr[¬TA | γ′ �= γ])− 1

2
Pr[¬TA | γ′ �= γ].
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Combining this with Eqn. (12) and (13) , we obtain

Pr[X2] − 1
2
− λlow(Pr[X1] − 1

2
) = 1

2
Pr[X1]((Pr[¬TA | γ′ = γ] − λlow) +

(Pr[¬TA | γ′ �= γ]− λlow))− 1
2
(Pr[¬TA | γ′ �= γ]− λlow).

|Pr[X2]− 1

2
− λlow(Pr[X1]− 1

2
)| ≤ 1

2
Pr[X1](

λlowρ

2
+

λlowρ

2
) +

λlowρ

2
≤λlowρ

where the last inequality stems from 0 ≤ Pr[X1] ≤ 1. To prove the Claim 1 it
leaves to prove Claim 2.

Lemma 4. (Hoeffding’s Bound [18]). LetX1, X2, ···Xs be independent random
variables with a ≤ Xi ≤ b and define X = 1

s

∑s
i=1 Xi. Then, for any t > 0, we

have the inequality

Pr[|X − E(X)| ≥ t]≤ 2e−2s( t
b−a )2

where E(X) denotes the expected values of X.

Proof of Claim 2. We abbreviate ρ = ρ(λ), η = η(viewA) and η′ =
η′(viewA). By construction the two events AA and FA are independent and
consequently we have

Pr[¬TA] = Pr[¬FA]Pr[¬AA] = ηPr[¬AA]

Set 0 < ρ′ = 1
8
ρ ≤ 1

8
. We make

s(λ) = 8q−2(ρλlow)
−2ln((

1

16
ρλlow)

−1) = O(n2(ρ(λ))−2ln((nqρ(λ))−1))

samples to compute an approximation η′ of η. For each sample we pick in-
dependently according to the distribution Y from Eq. (6), each indicator
variable Xi is defined as: If FA, Xi = 0 and otherwise Xi = 1.

By construction, λlow ≤ Pr[Xi = 1] ≤ λup. Finally, we make a majority

decision over allXi by computing η′ = 1
s(λ)

∑s(λ)
i=1(Xi). By construction, E(η′) =

η ≥ λlow. Using Hoeffding’s Bound (cf. Lemma 6.8, [22]) for the estimation η′

of η, with t = ηρ′ and b− a ≤ λup − λlow ≤ 1
2q
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Pr[|η′ − η| ≥ ηρ′]≤ 2e−2s( ηρ·2·q
8 )2

≤ 2e−2s(
λlowρq

4
)2

≤ 2e−2·8q−2(ρλlow)−2ln(( 1
16

ρλlow)−1)(
λlowρq

4
)2

≤ λlowρ

8
.

Since ρ′ = ρ
8
. We call the approximation η′ as “GOOD” if |η′ − η| ≤ ηρ

8
and

“BAD” otherwise. Then the above establishes

Pr[η′BAD] ≤ λlowρ
′.

For every fixed good η′ we have η(1 − ρ′) ≤ max{λlow, η
′} ≤ η(1 + ρ′). Since

Pr[¬AA] = λlow

max{λlow,η′} , we have

λlow

η(1 + ρ′)
≤ Pr[¬AA | η′GOOD] ≤ λlow

η(1− ρ′)
.

We provide an upper bound on Pr[¬TA].

Pr[¬TA] = η(Pr[¬AA | η′GOOD]Pr[η′GOOD] + Pr[¬AA | η′BAD]Pr[η′BAD])

≤ η(
λlow

η(1− ρ′)
+ λlowρ

′)

≤λlow(
1

η(1− ρ′)
+ ρ′)

≤λlow(1 + 4ρ′) = λlow(1 +
1

2
ρ).

This completes the proof. �
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