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Abstract—Metamorphic testing (MT) is a property-based au-
tomated software testing method. It alleviates the oracle problem
by testing programs against metamorphic relations (MRs), which
are necessary properties among multiple executions of the target
program. For a given problem, usually more than one MR
can be identified. It is therefore of practical importance for
testers to know the nature of good MRs, that is, which MRs
are likely to have higher chances of revealing failures. To
address this issue we investigate the correlation between the fault-
detection effectiveness of MRs and the dissimilarity (distance) of
test case execution profiles. Empirical study results reveal that
there is a strong and statistically significant positive correlation
between the fault-detection effectiveness and the distance. The
findings of this research can help to develop automated meansof
selecting/prioritizing MRs for cost-effective metamorphic testing.

Keywords: Software testing, metamorphic testing, meta-
morphic relation, fault-detection effectiveness, execution dis-
similarity, distance measurement, initial execution, follow-up
execution.

I. I NTRODUCTION

In the literature of software testing, it is generally assumed
that a test oracle exists, which is known as theoracle as-
sumption. This assumption, however, does not always hold.
In some situations, it is very expensive or even impossible to
decide whether an output of a test case execution is correct,
which is known as theoracle problem; in other situations,
even if an oracle is available, if it cannot be automated, the
manual predictions and verifications of outputs can often be
time consuming and error prone [1].

A metamorphic testing(MT) method has been proposed to
alleviate the oracle problem [2], [3]. MT is both a technique
for automated test case generation and a mechanism for
automated result verification, through the use of some expected
properties of the target program. These properties are known
asmetamorphic relations(MRs), which are necessary relations
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of Computer Science and Software Engineering, University of Wollongong,
Wollongong, NSW 2522, Australia. Email: zhiquan@uow.edu.au. Telephone:
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among the inputs and outcomes of multiple executions of
the target program. For the sine function, for instance, many
MRs can be identified using the domain knowledge about
trigonometric functions, such as

i) sin(x) = sin(x+360)
ii) sin(x) = -sin(x+180)
iii) sin(x) = -sin(-x)
iv) sin(x) = sin(180-x)

. . .

To test a programp(x) that implements sine function, a
test suiteT = t1, t2, . . . , tn, where n ≥ 1, is generated
using certain strategies such as branch coverage testing,
category-partition testing, or just random testing. If no failure
is detected after running every element ofT , T is said to
be a set ofsuccessful test cases, which is normally retained
for future regression testing only. MT, however, proposes
that, T (which is called a set ofinitial test cases) can in
fact be exploited to generate a set offollow-up test cases
and hence the program can be automatically further tested.
To do so, MT needs to refer to a metamorphic relation
(MR). Without loss of generality, let us say the selected
MR is “sin(x) = -sin(x + 180)”. Then a follow-up test suite
T ′ = {t′

1
, t′

2
, . . . , t′n} can be generated, wheret′i = ti + 180,

i = 1, 2, . . . , n. The program can then be tested onT ′ and
the outputs can be verified automatically against the MR. If,
after taking into consideration the acceptable rounding errors
in floating-point arithmetic,p(t) 6= p(t′i) for somei, then a
failure is immediately revealed.

Note 1: A metamorphic test involves the executions of
the initial and the follow-up test cases, hence running the
program under test more than once.

Note 2: An MR is a necessary property identified from
the problem domain, and is usually not sufficient for program
correctness. This is, however, the limitation of all testing
methods.



Note 3: There are related techniques known as program
checker [4] and self-testing/correcting [5], [6], which make
intensive use of expected identity relations of the target
functions to test programs and check outputs automatically
and probabilistically. MRs, however, are not limited to
identity relations. For example, Zhou et al. [7] identified aset
of non-identity MRs to alleviate the oracle problem in testing
Web search engines. MRs are also used for debugging [8],
[9] and for fault-based testing [10].

Note 4: In the sine example, the value of the follow-up
test caseonly depends on the value of the initial test case.
In other situations, the input values may also depend on the
outputvalues. For example, consider a programq(x, y) that
calculatesx × y. To test this program, the associative law
(a × b) × c = a × (b × c) can be identified as an MR. Using
this MR, a metamorphic test will execute programq 4 times;
the test cases (input values) of these 4 executions not only
relate to each other but also relate to the output values of the
other executions.

For a given problem, normally more than one MR can
be identified. It would be ideal if all MRs can be used for
testing. However, since resources are always limited, testers
need practical guidance to know which MRs should be given
priority for use in testing. Therefore, selection of effective
MRs that have higher chances of detecting failures is a key
focus of MT research. A pilot study on the effectiveness
of MRs [11] shows that MRs whoseinitial execution (that
is, execution on an initial test case) andfollow-up execution
(that is, execution on a follow-up test case) are very different
are likely to have a higher chance of detecting failures than
those whose initial and follow-up executions are similar. The
concept of “difference” or “dissimilarity” between executions,
however, is not clearly defined in Chen et al. [11]; this could
include, for example, execution paths, data flows, coverages,
etc.

Recently, Zhou et al. [12], [13] proposed to measure the
distance (or difference) between test cases using the concepts
of coverage Manhattan distance(CMD), frequency Manhattan
distance(FMD), and frequency Hamming distance(FHD) in
order to conductadaptive random testing(ART). Among the
investigated metrics, they found that the CMD metric based on
branch coverage execution profiles had the best fault-detection
effectiveness. Zhou et al.’s work [12], [13] was limited to ART
and did not include any study on metamorphic testing.

The research questions of this paper is stated below:Can
the distance metrics based on execution profiles ([12], [13])
also be used to quantitatively measure the dissimilarity of
test case executions in metamorphic testing? If yes, is there
a strong correlation between the distance measures and the
fault-detection effectiveness of metamorphic relations?

A positive answer to the above research question will help to
reveal the nature of “good” MRs, which will provide a hint for
practicing software testers to better select and prioritize MRs.
Answers to the research question may also help to develop

automated means for the selection and prioritization of MRs.
The rest of this paper is organized as follows: Section II

introduces the ideas and some basic concepts of this paper.
Section III describes the designs of experiments. Section IV
reports the experimental results, and Section V further com-
pares with related work. Section VI discusses future research
topics such as applications of the findings of this research to
software testing in practice and concludes the paper.

II. BASIC IDEAS AND CONCEPTS

A. The dissimilarity between initial and follow-up test case
executions in metamorphic testing

Consider the selection of effective MRs in metamorphic
testing from a white-box perspective. First, we wish to discuss
why some MRs are not effective, that is, why failures cannot
be detected using some MRs. Letp be a faulty program under
test, which purportedly implements functionf . Let t be a test
case and suppose thatp(t) did not reveal a failure. Note that
it may not necessarily mean thatp(t) = f(t) because it is
possible thatp(t) 6= f(t) but the tester is unable to identify
this failure owing to the lack of a test oracle. Without the need
of an ideal oracle, let us testp against a metamorphic relation
R1. There are many kinds of MRs, and in this paper we focus
on identity relations for ease of presentation. For example, let
R1 have the following simplest form:f(x) = f(x′) (such as
sin(x) = sin(180-x)). For more comprehensive MRs and those
involving more than two executions, the discussion is similar.
Let t′ be the follow-up test case corresponding to the initial test
caset, according toR1. Suppose that this metamorphic test
(which involves an “initial execution”p(t) and a “follow-up
execution”p(t′)) did not reveal a failure, that is,p(t) = p(t′).
Then there are 3 possible causes for this phenomenon: (1) Both
the initial execution and the follow-up execution did not touch
the defective part of the code and, therefore, both outputs are
correct. (2) Only one of the two executions, sayp(t), touched
the defective part of the code but the output happened to be
correct, that is,p(t) = f(t) coincidentally. (3) Both executions
touched the defective code, butp(t) still equalsp(t′), that is,
although both outputs may be wrong, the identity relation still
holds.

Case (1) suggests that if the faulty programp executest and
t′ in a similar fashion (for example, botht andt′ execute the
same path), then the chance for the two outputs to agree with
each other (hence, no failure can be detected) will be higher
than that wheret andt′ are executed differently. This analysis
also applies to case (3): if the two executions have been done
in a similar fashion then, intuitively, the chance of producing
consistent outputs will be higher than that for very different
executions. With regard to case (2), it is by chance and will
not be discussed in this paper.

Note that MRs are used to generate follow-up test cases.
Therefore, if an MR, sayR2, can make thefollow-up execution
more different from theinitial executionthan couldR1, then,
intuitively, R2 could have a better fault-detection capability
thanR1. Now the key issue is: how to measure the “difference”
between the initial and the follow-up executions? People (such



as the designer, programmer or tester) who are familiar with
the specification or algorithm of the program under test should
have some idea about this difference because they normally
have some general idea about how the program will be run
(e.g. how the program’s control flow will be exercised) on
different kinds of inputs. In this paper, however, we are more
interested in quantitative rather than qualitative approaches.

B. Execution profiles: abstraction of test case executions

An execution profile records some aspects of a program’s
execution. For example, a branch profile records the execution
coverage or frequency of each branch in a run. In the software
engineering literature, the concept of execution profiles has
been widely used, such as in observation-based testing [14],
[15] and regression testing [16], [17]. Many aspects of pro-
gram execution can be profiled, such as the control flow, data
flow, variable values and event sequences. In this research,
we focus on thestatement profileand the branch profile.
A statement profile records the number of times that each
statement is executed during an execution run, which consists
of a vector of counts, with one count per statement in the
program. A branch profile records the number of times that
each branch is executed during an execution run, which also
consists of a vector of counts, with one count per branch in
the program. In a program, at each decision point, there are
two branches, namely, a true and a false branch.

C. Distance metrics: a proposal to measure the dissimilarity
between initial and follow-up executions in MT

We propose to quantitatively measure the dissimilarity be-
tween initial and follow-up executions of MT by calculating
the distance between their execution profiles. We hypothesize
that the larger the distance between the initial and the follow-
up execution profiles, the more capable the MR will be in
detecting failures. If this hypothesis is found to be valid,then
we will be able to provide practitioners with a quantitative
approach to measuring MRs for metamorphic testing and even
for reliability estimate (which will be briefly discussed in
Section VI).

We will study the correlation between distance metrics and
the fault-detection effectiveness of MRs. The following 3
distance metrics are adopted to measure the distance (or dif-
ference) between the initial and follow-up executions in MT:
the coverage Manhattan distance(CMD) [12], the frequency
Manhattan distance(FMD) [13] and thefrequency Hamming
distance(FHD) [13].

The CMD metric only concerns whether a statement or a
branch has been covered without counting the frequency. If a
statement or branch has been executed at least once, the flag
for that statement or branch in the execution profile is set to
1; otherwise it is set to 0. Letx and x′ be an initial and a
follow-up test case, respectively. LetX = (x1, x2, . . . , xn)
andX ′ = (x′

1
, x′

2
, . . . , x′

n) be the execution profiles ofx and
x′, respectively. The CMD betweenX and X ′ is calculated

as: CMD(X, X ′) =
n
∑

i=1

|xi − x′

i|, wheren is the number

of statements or branches, and the values ofxi and x′

i (i =
1, 2, . . . , n) are either 1 or 0. When branches are considered,
it is written as BCMD; when statements are considered, it is
written as SCMD.

The FMD metric concerns frequency. LetX =
(x1, x2, . . . , xn) and X ′ = (x′

1
, x′

2
, . . . , x′

n) be the execu-
tion profiles of the initial test casex and the follow-up test
casex′, respectively, wherexi andx′

i (i = 1, 2, . . . , n) are the
number of times (that is, frequency) that statement or branch
i has been exercised by the corresponding test case. FMD
compares each(xi, x′

i) pair (i = 1, 2, . . . , n) and sums up

the differences:FMD(X, X ′) =
n
∑

i=1

|xi −x′

i|. When branches

are considered, it is written as BFMD; when statements are
considered, it is written as SFMD.

The FHD metric is also based on frequency. It concerns
how many (xi, x′

i) pairs are not identical regardless of how

large the difference is:FHD(X, X ′) =
n
∑

i=1

ki, whereki =

0, if xi = x′

i, otherwiseki = 1, andxi andx′

i are the number
of times that statement or branchi has been exercised by
the corresponding test case,i = 1, 2, . . . , n. When branches
are considered, it is written as BFHD; when statements are
considered, it is written as SFHD.

III. D ESIGN OFEXPERIMENTS

A series of experiments with 7 subject packages have been
conducted to answer the research question stated in SectionI.
This section descries the experimental design including depen-
dent and independent variables, subject programs, the coverage
monitoring tool, and the experimental procedure.

A. A summary of dependent and independent variables in the
experiments

Independent variables of the experiments include:
1) Distance metric, which has the following values: SCMD,
SFHD, SFMD, BCMD, BFHD, and BFMD (that is, CMD,
FHD and FMD for statements and branches).

2) Program under test, test case, and MR. A total of 7
subject packages are used, namely,spWiki, cpWiki, spStudent,
bigInt, grep, sed, and bash. Each package contains a set of
faulty programs (which include real or seeded faults), a test
suite and a set of MRs. ThespStudentand bigInt packages
contain small programs with real faults;spWikiandcpWikiare
packages containing small programs with seeded faults;grep
and sed are packages containing medium to large programs
with seeded or real faults.bashis a package containing large
programs with seeded faults.

Dependent variables of the experiments include:
1) Distance, which has a non-negative value. For each faulty
program under test and each of the 6 distance metrics and
each MR, a distance value will be calculated after each
metamorphic test (which involves initial and follow-up
executions) and, after all the metamorphic tests against the
given MR have been completed, a mean distance will be



calculated with respect to the given faulty program, the given
distance metric and the given MR.

2) Failure-detection rate, which has a real value in the
range of[0, 1]. For each faulty program and each MR, after
all the metamorphic tests have been completed, a failure-
detection rater is calculated to indicate the fault-detection
effectiveness of the given MR for the given faulty program.
For example, if, out of a total of 100 metamorphic tests
(where each metamorphic test involves one initial and one or
more follow-up test case executions), 2 violations of the MR
are detected, then the failure-detection rate (which meansthe
violation rate) is 0.02. Note that different MRs may have
different failure-detection rates.r = 0 means that no violation
of the MR can be detected;r = 1 means that each and every
metamorphic test can detect a violation.

3) Correlation coefficient between mean distance and
failure-detection rate, which has a real value in the range of
[−1, 1]. For each faulty program and each of the 6 distance
metrics, a correlation coefficient is calculated to measure
the correlation between the fault-detection effectiveness
(measured by the failure-detection rates of different MRs)
and the dissimilarities of initial and follow-up executions
(measured by the mean distances of different MRs). As a
result, for each faulty program, after all the metamorphic
tests have been completed, 6 correlation coefficients will
be calculated, corresponding to the 6 distance metrics. An
example of calculating such a correlation coefficient will be
given later in the paper.

B. Subject programs, MRs, and test cases

Subject programs are summarized in Table I. There is a total
of 7 packages classified into 3 groups according to their sizes.
Each package contains a set of faulty programs, a set of MRs,
and a set of metamorphic test cases.

1) spWiki: The first program,spWiki, implements Dijkstra’s
shortest path algorithm to find the shortest path between a
source vertexa and a destination vertexb in graphG, where
G is an undirected graph with positive edge weights. For
nontrivial input, it is not easy to verify the output. The program
was written by a master’s student based on the pseudocode
available inhttp://en.wikipedia.org/wiki/Dijkstra’salgorithm. Here
Wikipedia was not used as a rigorous information source, but
was used for creating programs to test. After creating the
program, the student was asked to manually seed faults into
the code in such a way that the faults should be as realistic
as possible. Faulty versions that easily crash were excluded
from the experiments. Finally, 19 faultyspWikiprograms were
collected.

The main data structure of the program is the input graph
G with n vertices represented by ann × n adjacency matrix.
The matrix is symmetric and has 0’s on its diagonal.

We first generated an initial set of 1,000 random test cases.
This was achieved by randomly generating 50 undirected 10-
vertex graphs, where the maximum edge weight was 50. For

each graph, 20 different pairs of source and destination ver-
tices were randomly chosen where the source and destination
vertices were not the same. For two different verticesa and
b, if (a, b) is chosen, then(b, a) will not be selected again.
In this way, we obtained20 × 50 = 1, 000 test cases. This is
the set ofinitial test casesfor all MRs.

To test the program without the need of an ideal oracle,
MT can be applied. It is not difficult to identify MRs using
the knowledge of the problem domain [11]. These MRs are
listed below:

i) reverse: The follow-up test case is generated by
reversing the source and destination vertices while
the graph remains the same. The expected rela-
tion is that the lengths of the paths returned by
the initial and follow-up executions should be the
same. That is, ShoretestPath(G, a, b).length =
ShortestPath(G, b, a).length.

ii) exchange: Letπ(G) be a transposition of graphG ob-
tained by exchanging two and only two vertices inG.
Hence,G and π(G) are isomorphic but have different
adjacency matrices. Leta′ and b′ be the vertices in
π(G) corresponding to the verticesa and b in G, re-
spectively. The MR is:ShortestPath(G, a, b).length =
ShortestPath(π(G), a′, b′).length. We definea to be
vertex 0 of graphG. Thus, we have got 9 MRs, denoted
by exchange(0, 1), exchange(0, 2), . . . , exchange(0, 9).

iii) shift: This MR is similar to “exchange” in that both of
them apply a kind of permutation to the vertex vector of
G and check whether the returned lengths are equal. The
MR “shift” circularly shifts left this vector to generate
an isomorphic graphG′ that has a different adjacency
matrix. SinceG has 10 vertices, we have got 9 different
MRs, namely,shift1, shift2, . . . , shift9, which means
circularly shifting left the vertices ofG once, twice, . . . ,
9 times, respectively. Note thatshift10 is equivalent to
the original vector and therefore is not included.

iv) scale: In the follow-up test case, we double the weight of
each edge. The expected relation is that the length of the
returned path should also be doubled.

2) cpWiki: The second program,cpWiki, finds thecritical
path in a directed graphG [11]. The algorithm is often
used in project planning and scheduling to find the most
time-consuming chain of activities. The set of activities and
the scheduling constraints are represented using a weighted
directed acyclic graph. The weights can be either on the
vertices or on the edges. In our experiment we used edge-
weighted graphs. Although such a graph must be acyclic, the
programs under test can receive cyclic graphs. When the input
graph G is cyclic, the program will return a special value,
−1, to indicate this situation. The program development and
fault injection process was similar to that ofspWiki. Note that,
althoughcpWiki is also a graph theory program, its algorithm
is different from that ofspWiki. Further, instead of using
the adjacency matrix, the input graph is represented using a
dynamic structure, namely, the adjacency list.



TABLE I
BASIC INFORMATION OF SUBJECT PROGRAMS

group package programming
language

fault type # of faulty
programs

source lines
of code

origin # of MRs

small

spWiki C seeded 19 95 adapted from wikipedia 20
cpWiki C seeded 18 125 adapted from wikipedia 20
spStudent C++ real 10 avg 200 university assignments 20
bigInt C++ real 21 avg 500 university assignments 43

medium to large grep C seeded 5 10068 SIR 10
sed C real, seeded 7 14427 SIR 33

large bash C seeded 6 59846 SIR 10

The identified MRs and the generation of test cases are very
similar to those ofspWiki. When “reverse” is applied tocp-
Wiki, it means “change direction,” that is, the directions of all
edges of the initial graphG are reversed. Other MRs include
exchange, shift and scale, as explained in Section III-B1.

3) spStudent:The third program,spStudent, refers to a
collection of programming assignments. The assignments were
submitted by university students in their second year who
were doing a programming subject for their 3-year bachelor of
computer science degree. The program attempts to find both
the shortest and the second shortest path between two vertices
in a graph. A total of 10 C++ assignments at a pass grade or
higher were collected. The average size is about 200 SLOC
(that is, source lines of code excluding comments and blanks).

The identified MRs and the generation of test cases are very
similar to those ofspWikias explained in Section III-B1. Note
that there were no manually seeded faults in the programs.

4) bigInt: The fourth program is namedbigInt, which im-
plements multiple precision arithmetic, that is, it is a calculator
for very large integers. The subject programs were collected
from year 2 assignments of university students who were
doing a software engineering subject. ThebigInt program is
run in the command line, where the user enters a simple
mathematical expression, and the evaluated result is printed.
A “simple mathematical expression” includes integers (which
can be either positive or negative),+, −, × and / (integer
division). The length of a valid expression is between 1 and
50 characters. A total of 21 students’ C++ assignments (at
a pass grade or higher) were collected. The average size is
about 500 SLOC. When performing MT on these 21 programs,
failures (violations of MRs) were detected for each and every
program. Note that there were no manually seeded faults in
the programs and, hence, all faults were real. Details of test
case generation and MRs are described below.

To construct a set of initial test cases that can be used
for all MRs, we first generated a setS that contains
1,000 pairs of randomly generated multiple precision in-
tegers (to serve as operands for all MRs), that is,S =
{(a1, b1), (a2, b2), . . . , (a1000, b1000)}. A rule is that for
any pair(ai, bi) in S, the following pairs willnot appear in
S: (bi, ai), (−ai, − bi), and(−bi, − ai).

It is not difficult to identify some MRs forbigInt, which
are given below:

i) a + b = b + a.

ii) a × b = b × a.
iii) (a+b)+x = (x+b)+a, where(a, b) are from setS and

x is taken fromX , andX is a set containing 20 randomly
generated multiple precision integers with unique values.
Because there are 20 different values forx, this MR has
20 different sub-MRs.

iv) x× (a+b) = (a×x)+(b×x), where(a, b) are from set
S andx is taken fromX . Because there are 20 different
values forx, this MR has 20 different sub-MRs.

v) a + b = −((−a) + (−b)).

As a result, there is a total of 43 MRs (including the sub-
MRs).

5) grep: Grep is a command-line utility that searches the
input file(s) for lines containing a match to the given pattern
in the form of a regular expression. By default, grep prints the
matching lines. Grep was originally developed for Unix but
now is available for all Unix-like systems. Thegrep package
we used was downloaded from the Software-artifact Infras-
tructure Repository (SIR,http://sir.unl.edu) [18]. The package
includes both base versions and faulty versions together with
test suites. The size of the program is about 10,068 SLOC.
A total of 5 faulty programs were used in our experiment,
corresponding to the followinggrepversions: v2.2, v2.3, v2.4,
v2.4.1, and v2.4.2. We used the default faults already activated
when the package was downloaded.

We constructed a set of 10,000 initial test cases as follows:
We first extracted the regular expressions from 870 test cases
included in thegreppackage, and then added another group of
randomly generated regular expressions to get a total of 1,000
regular expressions. Then, we used the source code files of
10 large programs as input files (3 are included in thegrep
package, and 7 are downloaded from SIR includingbash,
flex, sed, space, vim, gzip, make). In this way, we obtained
a total of 1, 000 × 10 = 10, 000 initial test cases. Each of
these 10,000 test cases includes all the necessary components
required by the identified MRs. These MRs were identified
using knowledge of regular expressions, as explained below.
Note that in real-world systems different grep versions may
vary in the types of regular expressions that they support. All
the MRs listed below (as well as those for thesedand bash
programs that will be introduced later) have been validated
against the base version programs in the package.

i) MR1: The range operator (such as [0-9]) is equivalent to
an expression that enumerates all its elements (such as



[0123456789]).
ii) MR2: The range operator (such as [0-9]) is equivalent to

an expression that enumerates all its elements separated
by \| (such as [0\|1\|2\|3\|4\|5\|6\|7\|8\|9]).

iii) MR3: Some range operators are equivalent to certain
predefined classes of characters. For example, [0-9] is
equivalent to [[:digit:]].

iv) MR4: In this MR, the initial execution involves a range
operator, such as [0-9]; and there are two follow-up
executions connected by a pipe (|) operator where the
first follow-up execution makes use of the [∧ ] expression
that means “to match any one character except those
enclosed in [ ].” For example, the following (initial)
execution
grep '[0-9]' myFile.txt
and the following (follow-up) executions
grep '[ ∧[:alpha:]]' myFile.txt | grep
'[[:alnum:]]'
should be equivalent. Another example is:
grep '[a-zA-Z]' myFile.txt
and
grep '[ ∧[:digit:]]' myFile.txt | grep
'[[:alnum:]]'
should be equivalent. Two examples (instances) of this
MR are shown in Figure 1. Because each metamorphic
test involves 3 executions ofgrep, there can be 3
execution profile distances, namely,d(exe1, exe2),
d(exe1, exe3), and d(exe2, exe3). The maximum of
these 3 distances is recorded.

v) MR5: The symbols “\|” can be inserted into a
range expression to create an equivalent expres-
sion. For example, [0123456789] is equivalent to
[0\|1\|2\|3\|4\|5\|6\|7\|8\|9].

vi) MR6: Certain predefined classes of characters are equiva-
lent to a range expression that enumerates all its elements.
For example, [[:digit:]] and [0123456789] are equivalent.

vii) MR7: Same as MR4, except that the range operator (such
as [0-9]) is changed to a range expression that enumerates
all its elements (such as [0123456789]).

viii) MR8: Certain predefined classes of characters are equiva-
lent to a range expression that enumerates all its elements
involving the symbols “\|.” For example, [[:digit:]] and
[0\|1\|2\|3\|4\|5\|6\|7\|8\|9] are equivalent.

Fig. 1. Linux screenshot: two instances (examples) ofgrep’s MR4

ix) MR9: Same as MR4, except that the range operator (such
as [0-9]) is changed to a range expression involving the
symbols “\|” (such as [0\|1\|2\|3\|4\|5\|6\|7\|8\|9]).

x) MR10: Same as MR4, except that the range operator
(such as [0-9]) is changed to certain predefined classes
of characters (such as [[:digit:]]).

6) sed: Sed is another popular Unix utility often used as
a subject program in software engineering empirical studies.
It is a stream editor that performs text transformations on an
input stream.

The sed package used in our experiment was also down-
loaded from the SIR site [18]. The package includes both
base versions and faulty versions together with test suites.
The size of the program is about 14,427 SLOC. A total of
7 faulty programs were used in the experiment, corresponding
to the following sed versions: v1.18, v2.05, v3.01, v3.02,
v4.0.6, v4.0.7 and v4.1.5. According to the SIR site, the
faulty versions include both real and seeded faults. We used
the default faults already activated when the package was
downloaded.

Using a method similar to that ofgrep, we obtained a set of
4,333 initial test cases and a set of 33 MRs. The 4,333 initial
test cases are valid for all the 33 MRs. All of the MRs make
use of equivalence relations between different forms of regular
expressions. Because these MRs are similar to those ofgrep,
they are not listed in this paper to avoid undue lengthiness.

7) bash: The 7th subject program isbash, a large program
that has about 59,846 SLOC. Bash is an sh-compatible shell, or
command language interpreter, of the GNU operating system.
Bash incorporates useful features from the Korn shell and C
shell, and offers functional improvements over sh for both the
programming interface and the interactive user interface.Most
sh scripts can be run directly by Bash. All test cases in our
experiment are shell scripts.

Our bashpackage was downloaded from the SIR site [18].
A total of 6 faulty programs were used, corresponding to the
following bashversions: v2.01, v2.01.1, v2.02, v2.03, v2.04
and v2.05. We used the default faults already activated when
the package was downloaded.

We designed 50 different if-then-else statements, 50 differ-
ent loop statements, and 4 different select statements. There-
fore, we obtained a total of50× 50 × 4 = 10, 000 test cases.

A total of 10 MRs are designed as follows:
i) MR1: “if (condition) {do A} else{do B}” is equivalent

to “if (not(condition)){do B} else{do A}.”
ii) MR2: This MR converts “if” conditions to a different but

equivalent form. For example, the following code:
a = 6
if (a > 5)
should be equivalent to
a = 6
if (a > 1 && a > 5)

iii) MR3: This MR replaces a block of statements by a
function. For example, “if (condition){block 1 of state-
ments} else{block 2 of statements}” is equivalent to “if
(condition){call function a} else{call function b}” where



functions a and b are equivalent to blocks 1 and 2 of
statements, respectively.

iv) MR4: Similar to MR2. For example, the following code:
a = 1
if (a > 5)
should be equivalent to:
a = 1
if (a > 4 && a > 5)
The difference between MR2 and MR4 is in their follow-
up test cases: in MR2’s follow-up test case, all conditions
inside “if ()” will be evaluated; in MR4’s follow-up
test case, only the first condition inside “if ()” will be
evaluated because of the left-to-right evaluation order and
short-circuit evaluation of logical AND/OR expressions
(for example, when evaluating a Boolean expression “A
AND B,” B will not be evaluated when A is false).

v) MR5: bash supports different loop constructs such as
“for,” “until” and “while” loops. MR5 converts one type
of loop to another type by making use of the equivalence
relation among them.

vi) MR6: In the initial test case of MR6, a Linux utility is
called. In the follow-up test case, the utility is given an
alias and it is the alias, rather than the utility’s original
name, that is called.

vii) MR7: The follow-up test case is constructed by applyinga
code obfuscator to the initial test case. The code obfusca-
tor takes a shell script as input and generates an equivalent
shell script that is hard for humans to read/understand.
MR7 states that the original script and the obfuscated
script should be equivalent and, hence, should produce
the same outputs.

viii) MR8: In the initial test case of MR8, some system utilities
are called that read the standard input. In the follow-
up test case, these utilities are called by means of input
redirection to a file. The expected relation is that the
two executions should be equivalent (that is, they should
produce the same output).

ix) MR9: This MR makes use of the equivalence of some
predefined names and symbols. For example, $HOME is
equivalent to the symbol∼.

x) MR10: Inserting many blank spaces before a closing
bracket will not affect the output of the shell script. For
example:
“if (a > 5) . . .”
and
“if (a > 5 ) . . .”
should be equivalent.
We recognized that this MR might not be effective. The
purpose of this research, however, is exactly to study the
nature of effective and ineffective MRs.

C. Coverage monitoring

A test coverage program, namely, gcov, was used to collect
coverage and frequency information of test case executions.
The gcov tool is a utility to be used in concert with gcc. For
all programs, we collected the statement and branch profiles

for each execution on each single test case. Note that a
metamorphic test involves two or more executions.

D. Experimental procedure

The aim of the experiments is to find the correlation
(in terms of correlation coefficientr) between the distance
measure and the failure-detection rate of MRs. For ease of
presentation, let us use the subject programspWiki as an
example to illustrate the experimental procedure for collecting
r’s. A total of 6r’s are collected for each faulty program since
there are 6 different distance metrics.spWiki has 19 faulty
versions, namely,V1, V2, . . . , V19, and 20 MRs, namely,
R1, R2, . . . , R20. There is a set of 1,000 initial test cases,
namely,t1, t2, . . . , t1000. All of the 20 MRs use the same set
of initial test cases but different sets of follow-up test cases.
The experimental procedure forspWikiis depicted in Figure 2.
Treatments for other subject programs are similar.

Figure 2 shows that, for each faulty programVi under test
(i = 1, 2, . . . , 19), the following 6 correlation coefficients
are calculated:r(SCMD)i r(SFHD)i, r(SFMD)i, r(BCMD)i,
r(BFHD)i and r(BFMD)i. All the experimental data (for all
the 7 subject packages and all their faulty versions) followed
an uncorrelated bivariate normal distribution, and Pearson’s
correlation was calculated.

An example of such anr(BCMD)i, for certain faulty
versionVi of spWiki, is shown in Figure 3. In this example
r(BCMD)i = 0.927, p < 0.001, which means that there is a
significant strong positive correlation between the BCMD and
the failure-detection rate of MRs for programVi.

failure-detection rate
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Fig. 3. Scatter plot for a faulty version ofspWiki, where thex-axis represents
the failure-detection rate, and they-axis represents the mean Branch Coverage
Manhattan Distance. Each point in the figure corresponds to an MR. There
are 20 MRs (points), some of which overlap. The correlation coefficient r =

0.927, p < 0.001.

IV. EXPERIMENTAL RESULTS

The experiments involved a total of 86 programs from 7
subject packages. Failures (in terms of violations of MRs) have
been detected for 84 programs – there are 2spStudentversions
that did not reveal any failure. It is possible that these two
programs are indeed correct; therefore, they are excluded from



procedure EXPERIMENT

SetnbOfTestCasesto 1000;
SetnbOfVersionsto 19;
SetnbOfMRsto 20;
for each faulty versionVi do

for each MRRj do
SetnbOfFailuresto 0;
for each initial test casetk do /* The total number of initial test cases isnbOfTestCases. */

Run Vi(tk) and get execution profilesEPk of this run; /* EPk includes branch and statement profiles */
Generate a follow-up test caset′k according toRj , tk and possibly the output ofVi(tk);
Run Vi(t

′

k) and get execution profilesEP′

k of this run;
if the current MRRj is violatedthen

SetnbOfFailuresto nbOfFailures+ 1;
end if
Calculate distancesSCMDk, SFHDk, SFMDk, BCMDk, BFHDk andBFMDk usingEPk andEP′

k;
end for
/* Calculate the failure-detection rate and the 6 mean distances forVi andRj as follows: */

SetFailureDetectionRatei,j to nbOfFailures÷ nbOfTestCases;

SetSCMDi,j to
(

∑nbOfTestCases
k=1

SCMDk

)

÷ nbOfTestCases;

SetSFHDi,j to
(

∑nbOfTestCases
k=1

SFHDk

)

÷ nbOfTestCases;

SetSFMDi,j to
(

∑nbOfTestCases
k=1

SFMDk

)

÷ nbOfTestCases;

SetBCMDi,j to
(

∑nbOfTestCases
k=1

BCMDk

)

÷ nbOfTestCases;

SetBFHDi,j to
(

∑nbOfTestCases
k=1

BFHDk

)

÷ nbOfTestCases;

SetBFMDi,j to
(

∑nbOfTestCases
k=1

BFMDk

)

÷ nbOfTestCases;
end for

/* The following statement calculatesr(SCMD)i, which denotes the correlation coefficient between the failure-
detection rate and the meanSCMDof MRs for faulty versionVi. */

Calculate r(SCMD)i using the following points: (FailureDetectionRatei,1, SCMDi,1),
(FailureDetectionRatei,2, SCMDi,2), . . ., (FailureDetectionRatei,nbOfMRs, SCMDi,nbOfMRs);

Calculater(SFHD)i, r(SFMD)i, r(BCMD)i, r(BFHD)i andr(BFMD)i similarly.
end for

end procedure

Fig. 2. Experimental procedure for collecting correlationcoefficients between failure-detection rate and distance measure, usingspWiki as an example

experiments. Further, onebashversion had segmentation faults
on many follow-up test cases during metamorphic testing and,
as a result, execution profiles could not be collected. This
version of bash was also excluded from experiments. This
section, therefore, will report the experimental results of the
remaining 83 faulty programs.

Mean results of correlation coefficients and p-values are
summarized in Table II. Because a correlation coefficient
(Pearson’s r) greater than or equal to 0.50 indicates a strong
correlation [19], cells in Table II(a) are highlighted if their
values are 0.50 or higher, indicating that the corresponding
distance metric is strongly correlated to fault-detectioneffec-
tiveness. Several observations can be made. First, each of the
6 distance metrics has certain cells highlighted for certain
subject programs; however, the branch-based metrics are ob-
viously stronger than the statement-based metrics. Secondly,

BCMD appears to be the best among the 6 metrics as all its
cells are highlighted. The second best is BFMD, with one cell
(for grep) lower than 0.50. The above findings are consistent
with previous observations that branch-based metrics are often
more effective than statement-based metrics and that coverage-
based metrics are often more reliable than frequency-based
metrics [13]. The distributions of correlation coefficients are
shown in Figure 4.

Table II(b) summarizes mean p-values. Table cells whose
values are 0.05 or lower are highlighted to indicate that the
correlation is statistically significant. Similar observations can
be made, that is, while each of the 6 distance metrics has cer-
tain cells highlighted for certain subject programs, the branch-
based metrics are obviously more statistically significantthan
the statement-based metrics. Further, BCMD appears to be the
best as all its cells are highlighted. The second best is BFMD,
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Fig. 4. Distributions of correlation coefficients

with one cell (forgrep) higher than 0.50.
It can be concluded, therefore, that there is a significant

strong positive correlation between BCMD and the fault-
detection effectiveness of MRs, and this correlation is reliable
in the sense that it persists across all of the subject programs
studied. This finding strongly answers the research question
raised in Section I.

V. COMPARISON WITH RELATED WORK

Asrafi et al. [20] suggested that “there is a certain degree of
correlation between the code coverage achieved by a meta-
morphic relation and its fault-detection effectiveness.”The
code coverage they proposed is the “accumulative coverage

TABLE II
MEAN CORRELATION COEFFICIENTS AND P-VALUES

programID SCMD SFHD SFMD BCMD BFHD BFMD
spWiki 0.79 0.77 0.50 0.82 0.75 0.58
cpWiki 0.22 0.76 0.72 0.75 0.96 0.83
spStudent 0.22 0.37 0.33 0.66 0.71 0.76
bigInt -0.71 0.87 0.89 0.84 0.94 0.93
grep 0.41 -0.34 -0.01 0.54 -0.21 0.47
sed 1.00 0.52 -0.92 0.95 0.92 0.92
bash 0.06 -0.01 -0.26 0.72 -0.39 0.75
average 0.28 0.42 0.18 0.75 0.52 0.75

(a) mean correlation coefficient (Pearson's r)

programID SCMD SFHD SFMD BCMD BFHD BFMD
spWiki 0.00305 0.00200 0.07947 0.00011 0.00016 0.01437
cpWiki 0.00785 0.00155 0.00279 0.00127 0.00557 0.00346
spStudent 0.14378 0.27536 0.18523 0.00038 0.04329 0.03363
bigInt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
grep 0.25580 0.19700 0.86480 0.04280 0.39380 0.07820
sed 0.00000 0.00314 0.00000 0.03929 0.03400 0.00000
bash 0.86420 0.93160 0.36220 0.02620 0.26460 0.01240
average 0.18210 0.20152 0.21350 0.01572 0.10592 0.02029

(b) mean p-value

percentages,” which is achieved by accumulating the code
coverage of both the initial and follow-up executions of an
MR over the entire set of test cases. Two subject programs
were used in their empirical study, namely TCAS (173 lines
of C code) and KNASPSACK (780 lines of Java code).

We investigated the correlation coefficients between ac-
cumulative coverage percentage (for statement and branch
coverages) and failure-detection rate of MRs using all the 7
subject packages. A strong correlation is found only for the
small programsbigInt andcpWiki. For all the other programs,
the mean correlation coefficients are all below 0.35. This
finding suggests that the “distance” between initial and follow-
up test cases proposed in the present paper should be more
useful than “accumulative coverage,” especially for larger
programs.

In software testing literature there has been much work
on test case selection and prioritization techniques usingthe
concept of “similarity” of test cases [21]. The present research
is different from these techniques as our objective is to reveal
the nature of good MRs, rather than good individual test
cases. It should be noted, however, that a failure-causing
metamorphic test must involve at least one failure-causingtest
case (which could be the initial or the follow-up test case or
both). How to integrate similarity-based MR selection and test
case selection will be an important future research topic.

VI. D ISCUSSIONS ANDCONCLUSION

Metamorphic testing is a practical approach to alleviating
the oracle problem. For a given problem, normally more than
one MR can be identified. Because testing resources are always
limited, it is important to know which MRs should be given
priority for software testing.

In earlier work it was suggested that MRs whose initial
and follow-up executions have larger dissimilarities may have
higher chances of revealing failures. The concept of dissim-
ilarity, however, was not clearly defined. In this research we
proposed 6 metrics to measure the dissimilarity between initial
and follow-up executions, and conducted a series of empirical
studies to investigate the correlation between these metrics
and the fault-detection effectiveness of MRs. It is found that
the branch-based metrics have a stronger correlation and, in



particular, the BCMD metric constantly has a significant strong
positive correlation with the fault-detection effectiveness of
MRs across all of the subject programs. This finding gives an
affirmative answer to the research question raised in Section I.

With regard to the internal validity of this work, all the
code was carefully checked and the experimental data (both
intermediate results and final results) were carefully reviewed.
With regard to the conclusion validity, appropriate statistical
methods were used and the findings have a strong statistical
significance. With regard to the external validity, both small,
medium to large, and large subject programs were used in the
experiments, and both real and seeded faults were involved.
The external validity can be enhanced by considering more
types of MRs, especially non-identity relations, and by further
empirical studies.

There are several possible ways to employ the findings of
this research to conduct cost-effective metamorphic testing
in practice. First, the developers of the software often have
good knowledge of their algorithms and code and, therefore,
may be able to estimate or guess which MRs could give a
larger BCMD measure before running any test case. Secondly,
following the idea ofsoftware cybernetics[22], feedback-
based selection strategies can be developed to dynamically
select MRs based on their coverage information collected
online. We have developed such a framework with encouraging
preliminary empirical evaluation results. This frameworkwill
be reported in the near future. Thirdly, in the context of
regression testing and observation-based testing, test case
coverage data is available (either for the previous versions or
for the current version of the program under test). In these
situations MRs can be selected or prioritized directly using
the available coverage data. In addition to MRs, the pairs
(or tuples) of initial and follow-up test cases may also be
prioritized by globally considering the most dissimilar pairs
(or tuples) of test cases. It is also possible to make use of the
findings of this research to help with software reliability esti-
mation. For example, after a system has passed metamorphic
testing conducted by users, the initial and follow-up execution
distance data will become available. If the distances are large
then higher confidence could be established in the system’s
reliability because the MRs are expected to be effective in
detecting failures. Future research on this topic will involve
extensive empirical studies.
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