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ZAPPA-SZÉP PRODUCTS OF SEMIGROUPS AND THEIR C∗-ALGEBRAS

NATHAN BROWNLOWE, JACQUI RAMAGGE, DAVID ROBERTSON, AND MICHAEL F. WHITTAKER

Abstract. Zappa-Szép products of semigroups provide a rich class of examples of semigroups
that include the self-similar group actions of Nekrashevych. We use Li’s construction of semigroup
C∗-algebras to associate a C∗-algebra to Zappa-Szép products and give an explicit presentation
of the algebra. We then define a quotient C∗-algebra that generalises the Cuntz-Pimsner algebras
for self-similar actions. We indicate how known examples, previously viewed as distinct classes,
fit into our unifying framework. We specifically discuss the Baumslag-Solitar groups, the binary
adding machine, the semigroup No N×, and the ax + b-semigroup Z o Z×.

1. Introduction

Examples are crucial to progress in C∗-algebras. Operator-algebraists are therefore enthusiastic
to have ways of generating and analysing rich classes of examples. Semigroups feature in a number
of families of interesting examples. In this article we describe a new class of semigroup C∗-algebras.

The theory of C∗-algebras associated to semigroups can be traced back to Coburn’s Theorem [3],
which says that any two C∗-algebras generated by a non-unitary isometry are isomorphic. There
have been a number of generalisations of Coburn’s Theorem, including Douglas’s work [10] on
positive cones of ordered subgroups of R, and Murphy’s work [21] on positive cones in ordered
abelian groups. A major generalisation was developed by Nica [25] through his introduction of
quasi-lattice ordered groups (G,P ).

A quasi-lattice ordered group (G,P ) consists of a partially-ordered group G and a positive cone
P in G. Nica identified a class of covariant isometric representations of P , and introduced the
C∗-algebra C∗(G,P ) universal for such representations. Quasi-lattice ordered groups are rigid
enough in their structure to produce a tractable class of C∗-algebras C∗(G,P ), and yet they
include a wide range of interesting semigroups as examples. Indeed, quasi-lattice ordered groups
are still providing a rich source of interesting C∗-algebras, as evidenced by the recent work on the
C∗-algebras associated to No N× [15], and the Baumslag-Solitar groups [29].

A broad generalisation of Nica’s C∗-algebras associated to quasi-lattice ordered groups has
recently been introduced by Li [19]. He associates a number of C∗-algebras to discrete left
cancellative semigroups. This generality is possible because of the importance of the right ideal
structure of the semigroup; the full C∗-algebra C∗(P ) is generated by an isometric representation
of P and a family of projections associated to right ideals in P satisfying a set of relations. As
well as quasi-lattice ordered groups, Li’s construction caters for the ax + b-semigroups over the
rings of algebraic integers in number fields (see also [6]). We will examine the ax + b-semigroup
over Z, which is the ring of algebraic integers in Q.

2010 Mathematics Subject Classification. Primary: 46L05; Secondary: 20M30.
Key words and phrases. C∗-algebra, semigroup, Zappa–Szép product, self-similar group, Baumslag-Solitar

group, quasi-lattice ordered group.
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2 NATHAN BROWNLOWE, JACQUI RAMAGGE, DAVID ROBERTSON, AND MICHAEL F. WHITTAKER

A seemingly unrelated class of C∗-algebras has recently been discovered by Nekrashevych
[22, 24], namely those associated with self-similar group actions. The first example of a self-
similar action was given by Grigorchuk [11]. As an infinite finitely-generated torsion group with
intermediate growth, Grigorchuk’s example solved a number of open problems, see [23, p.14].
Since then a large number of interesting group actions have been shown to be self-similar and we
refer the reader to Nekrashevych’s book [23] for further details.

A self-similar action (G,X) consists of a group G with a faithful action on the set X∗ of finite
words on a finite set X; the action is self-similar in the sense that for each g ∈ G and x ∈ X
there exists a unique g|x ∈ G such that g · (xw) = (g · x)(g|x · w) for all w ∈ X∗. Nekrashevych
associated a Cuntz-Pimsner C∗-algebra to a self-similar action (G,X) via generators and relations.
The algebra is generated by a unitary representation of G and a collection of isometries associated
to X, with commutation relations modelled on the self-similarity relations. The Cuntz-Pimsner
algebra contains copies of the full group C∗-algebra and the Cuntz algebra O|X|. Since then, a
universal Toeplitz-Cuntz-Pimsner algebra has been constructed that contains a generalised version
of Nekrashevych’s algebras as a quotient [16]. The self-similar commutation relations provide for
an extremely simple generating set in both cases, and make the algebras particularly tractable.
These commutation relations have been the inspiration for the results in this paper.

We identify a class of C∗-algebras that includes both those associated to quasi-lattice ordered
groups and those associated to self-similar actions. We do this using a construction that was
developed by G. Zappa in [33] and J. Szép in [30, 31, 32]. Given two groups, one can potentially
impose a number of group-theoretic structures on their Cartesian product. In a direct product,
both groups embed in the product as normal subgroups. In a semidirect product only one of the
groups need be normal in the product. In a Zappa-Szép product of two groups neither group need
be normal in the product. Zappa-Szép products of semigroups were first described by Kunze in
[14], and more recently Brin [1] has described Zappa-Szép products in much broader generality.
We examine a class of Zappa-Szép products of semigroups, and we associate two C∗-algebras to
these semigroups.

We start with the Zappa-Szép product of two left-cancellative semigroups with identities. Fol-
lowing Li’s construction from [19], we produce a full C∗-algebra. We give a new presentation of
this full C∗-algebra via generators and relations. We then introduce a boundary quotient C∗-
algebra, also with a presentation in terms of generators and relations. In some cases our results
reduce to known results (see Remark 4.4 for the quasi-lattice ordered group case). In other cases
our results provide new, and more tractable, presentations of known algebras. Our construction
also applies to new examples not covered by previous frameworks. As well as the C∗-algebras
associated to quasi-lattice ordered groups and self-similar actions, we describe an example of a
C∗-algebra associated to a self-similar action of a semigroup (see Sections 3.5 and 6.5) and to
products of self-similar actions.

The paper is organised as follows. Section 2 contains background material on the classes of
semigroups we consider, and on Li’s construction of the full C∗-algebra associated to discrete left-
cancellative semigroups. In Section 3 we recall the general Zappa-Szép product of semigroups, and
we examine the examples of interest to us. In Section 4 we give our alternative presentation of Li’s
full C∗-algebra via generators and relations. In Section 5 we introduce the boundary quotient.
We finish in Section 6 with an examination of the C∗-algebras associated to the examples of
Zappa-Szép products introduced in Sections 3.1–3.6.

We thank Marcelo Laca for several interesting and helpful conversations about this work.
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2. Background

In this section we present background material on semigroups and their C∗-algebras. Note that
we consider only discrete left-cancellative semigroups satisfying an additional property on right
common multiples as described in Definition 2.1. We also outline Li’s construction for associating
a C∗-algebra to a left-cancellative semigroup from [19].

2.1. Semigroups. All semigroups considered in this paper will have an identity, and hence are
monoids. For a semigroup P , we write P ∗ for the set of invertible elements. Recall that P is left
cancellative if pq = pr =⇒ q = r for all p, q, r ∈ P . We work with semigroups in which elements
have right least common multiples in the following sense.

Definition 2.1. Suppose P is a discrete left-cancellative semigroup. We say r ∈ P is a right
multiple of p ∈ P if there exists q ∈ P such that pq = r. An element r ∈ P is a right least
common multiple (or right LCM) of p and q in P if r is a right common multiple of p, q ∈ P , and
any other right common multiple of p and q is also a right multiple of r. We say P is a right LCM
semigroup if any two elements with a right common multiple have a right least common multiple.

Even if they exist, least common multiples need not be unique. The following result will be
obvious to experts but we couldn’t find a reference, so we include it for completeness.

Lemma 2.2. Suppose P is a discrete left-cancellative semigroup and that r ∈ P is a right LCM
for p, q ∈ P . Then s ∈ P is a right LCM for p and q if and only if s = ru for some u ∈ P ∗.
Proof. Suppose s ∈ P is a right LCM for both p and q in P . Since both r, s are right least
common multiples for p, q ∈ P , there exist r′, s′ ∈ P such that s = rr′ and r = ss′. Suppose
e ∈ P is the identity in P . Then se = s = rr′ = (ss′)r′ = s(s′r′). Since P is left cancellative, we
conclude s′r′ = e. Similarly, r′s′ = e. Hence r′ ∈ P ∗ and s = ru for some u ∈ P ∗ as required.

Now suppose that s = ru for some u ∈ P ∗. Since r is a right LCM for p, q, there exist p′, q′ ∈ P
such that pp′ = r = qq′. Thus pp′u = s = qq′u, and hence s is a right common multiple for p, q.
To see that s is a right LCM for p, q, suppose t ∈ P is a right common multiple of p, q. So there
exist p′′, q′′ ∈ P such that pp′′ = t = qq′′. Since r is a right LCM, there exist r′′ such that t = rr′′.
Then t = ruu−1r′′ = st′ for t′ = u−1r′′ ∈ P , and hence t is a right multiple of s. Since t was an
arbitrary right common multiple of p, q, we conclude that s is a right LCM for p and q in P . �

Example 2.3. An example of a right LCM semigroup comes from the quasi-lattice ordered groups
introduced by Nica in [25]. Let G be a discrete group and P a subsemigroup of G with P ∗ = {e}.
Then P induces a partial order on G via x ≤ y ⇐⇒ x−1y ∈ P . The pair (G,P ) is a quasi-lattice
ordered group if any x, y ∈ G which have a common upper bound in P have a least upper bound
x ∨ y ∈ P . That is, if (G,P ) is quasi-lattice ordered, then P is a right LCM semigroup with
unique right LCMs.

2.2. Semigroup C∗-algebras. Let P be a discrete left cancellative semigroup. We recall Li’s
construction of the C∗-algebra C∗(P ) from [19]. Given X ⊆ P and p ∈ P define

pX = {px : x ∈ X} and p−1X = {y ∈ P : py ∈ X}.
A set X ⊆ P is called a right ideal if it is closed under right multiplication with any element of
P . If X is a right ideal, then so are pX and p−1X.

Definition 2.4 ([19, p.4]). Let J (P ) be the smallest family of right ideals of P satisfying

(1) P,∅ ∈ J (P );
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(2) X ∈ J (P ) and p ∈ P implies pX and p−1X ∈ J (P ); and
(3) X, Y ∈ J (P ) implies X ∩ Y ∈ J (P ).

The elements of J (P ) are called constructible right ideals.

Remark 2.5. The general form of a constructible right ideal is given in [19, Equation (5)]. However,
the semigroups of interest to us are all right LCM semigroups, and in this case the constructible
right ideals are precisely the principal right ideals; that is, J (P ) = {pP : p ∈ P}. Notice that if
P is an arbitrary right LCM semigroup, then principal right ideals associated to distinct p, q ∈ P
are not necessarily distinct, as is the case in the example discussed in Section 3.4. If (G,P ) is a
quasi-lattice ordered group, then p 6= q =⇒ pP 6= qP .

We can now give Li’s definition of the full semigroup C∗-algebra for P .

Definition 2.6 ([19, Definition 2.2]). Suppose P is a discrete left-cancellative semigroup. Let
C∗(P ) be the universal C∗-algebra generated by isometries {vp : p ∈ P} and projections {eX :
X ∈ J (P )} satisfying

(1) vpvq = vpq;
(2) vpeXv

∗
p = epX ;

(3) eP = 1 and e∅ = 0; and
(4) eXeY = eX∩Y ,

for all p, q ∈ P and X, Y ∈ J (P ).

Example 2.7. When (G,P ) is quasi-lattice ordered, Nica [25] constructed a C∗-algebra C∗(G,P )
which is universal for isometric representations V of P satisfying

(1) V ∗p Vq =

{
Vp−1(p∨q)V

∗
q−1(p∨q) if p ∨ q <∞

0 if p ∨ q =∞.

Li showed in [19, Section 2.4] that C∗(P ) ∼= C∗(G,P ).

3. Zappa-Szép products

The Zappa-Szép product of two groups was developed by G. Zappa in [33] and J. Szép in
[30, 31, 32]. Brin [1] described Zappa-Szép products in a much broader generality, including
Zappa-Szép products of semigroups. The following definition is given in [1, Lemma 3.13(xv)].

Definition 3.1. Suppose A and U are semigroups with identities eA and eU , respectively. Assume
the existence of maps A×U → U given by (a, u) 7→ a · u, and A×U → A given by (a, u) 7→ a|u,
satisfying

(B1) eA · u = u; (B5) a · (uv) = (a · u)(a|u · v);
(B2) (ab) · u = a · (b · u); (B6) a|uv = (a|u)|v;
(B3) a · eU = eU ; (B7) eA|u = eA; and
(B4) a|eU = a; (B8) (ab)|u = a|b·ub|u.

The external Zappa-Szép product U ./ A is the cartesian product U×A with multiplication given
by

(2) (u, a)(v, b) = (u(a · v), (a|v)b)
For each a ∈ A and u ∈ U we call a|u the restriction of a to u, and a · u the action of a on u.

The following result [1, Lemma 3.9] describes the internal Zappa-Szép product.
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Proposition 3.2. Suppose P is a semigroup with identity. Suppose that U,A ⊆ P are subsemi-
groups of P with U ∩A = {e} and such that for all p ∈ P there exists unique (u, a) ∈ U ×A such
that p = ua. For a ∈ A and u ∈ U define a · u ∈ U and a|u ∈ A by au = (a · u)a|u. The action
and restriction maps so defined satisfy conditions (B1)–(B8) and P ∼= U ./ A.

The following result gives sufficient conditions for U ./ A to be a right LCM semigroup.

Lemma 3.3. Suppose U and A are left cancellative semigroups with maps (a, u) 7→ a · u and
(a, u) 7→ a|u satisfying (B1)–(B8) of Definition 3.1. Moreover, suppose U is a right LCM semi-
group, J (A) is totally ordered by inclusion, and u 7→ a ·u is a bijective map from U to U for each
a ∈ A. Then U ./ A is a right LCM semigroup.

Proof. We first show that U ./ A is left cancellative. Suppose (u, a)(v, b) = (u, a)(w, c). Then
u(a · v) = u(a · w) and a|vb = a|wc. Since U is left cancellative, we have a · v = a · w. Since the
action of a is injective, we have v = w. Then a|v = a|w, and because A is left cancellative we
have b = c. So (v, b) = (w, c).

Now suppose (u, a), (v, b) ∈ U ./ A have a right common multiple; so there exists elements
(u′, a′), (v′, b′) ∈ U ./ A such that (u, a)(u′, a′) = (v, b)(v′, b′). In particular, u(a·u′) = v(b·v′) ∈ U .
Since U is a right LCM semigroup, u and v have a right LCM w ∈ U . Fix u′′ and v′′ such that
uu′′ = w = vv′′. Since we have assumed (u, a) 7→ a ·u is surjective for fixed a, there exists x, y ∈ U
such that a · x = u′′ and b · y = v′′. Since J (A) is totally ordered, we can assume without loss of
generality that a|xA ∩ b|yA = b|yA. Fix a′′ such that a|xa′′ = b|y. Then

(u, a)(x, a′′) = (u(a · x), a|xa′′) = (uu′′, b|y) = (w, b|y),
and

(v, b)(y, e) = (v(b · y), b|y) = (vv′′, b|y) = (w, b|y).
So (w, b|y) is a right common multiple of (u, a) and (v, b).

To see that (w, b|y) is a right LCM, suppose (u, a)(s, c) = (v, b)(t, d). Then u(a · s) = v(b · t) =
ww′ for some w′ ∈ U . Since (u, a) 7→ u · a is surjective, there exists t′ ∈ U such that w′ = b|y · t′.
Then

v(b · t) = ww′ = vv′′w′ = v(b · y)(b|y · t′) = v(b · (yt′))

so b · t = b · (yt′). Since (a, u) 7→ a · u is injective for fixed a, this implies that t = yt′. Hence
(v, b)(t, d) = (w, b|y)(t′, d) = (u, a)(s, c), and so (w, b|y) is a right LCM. �

Remark 3.4. Calculations in the above proof produce some useful observations about semi-
groups U and A satisfying the hypothesis of Lemma 3.3. Firstly,

(u, a)U ./ A ∩ (v, b)U ./ A = ∅⇐⇒ uU ∩ vU = ∅.

Secondly, a right LCM can be rapidly identified in the following cases.

(a) If u, v ∈ U have right LCM z ∈ U , then (z, eA) is a right LCM of (u, eA) and (v, eA).
(b) For a ∈ A and u ∈ U a right LCM of (eU , a) and (u, eA) is

(u, a|z) = (eU , a)(z, eA) = (u, eA)(eU , a|z),
where z is the unique element in U such that a · z = u.

Perhaps surprisingly, a number of interesting examples are Zappa-Szép products of the form
U ./ A where U and A satisfy the hypotheses of Lemma 3.3. We now examine some of them.



6 NATHAN BROWNLOWE, JACQUI RAMAGGE, DAVID ROBERTSON, AND MICHAEL F. WHITTAKER

3.1. Baumslag-Solitar groups. Let c and d be positive integers. The Baumslag-Solitar group
BS(c, d) is the group with presentation 〈a, b : abc = bda〉. We denote by BS(c, d)+ the subsemi-
group of BS(c, d) generated by a and b.

By [20, Chapter IV, Theorem 2.1], every element p ∈ BS(c, d)+ admits a unique normal form

p = bα1abα2a . . . bαnabβ,

where each αi ∈ {0, . . . , d− 1} and β ∈ N. Consider the following subsemigroups of BS(c, d)+:

U := 〈e, a, ba, . . . , bd−1a〉 and A := 〈e, b〉.
We have U ∩ A = {e}. We can also see from the normal form that each p = bα1abα2a · · ·αn abβ ∈
BS(c, d)+ can be written uniquely in UA as the product of bα1abα2a · · ·αn a ∈ U and bβ ∈ A. So
Proposition 3.2 implies that BS(c, d)+ ∼= U ./ A. On generators, the action and restriction maps
satisfy

(3) b · bka =

{
bk+1a if k < d− 1

a if k = d− 1

and

(4) b|bka =

{
e if k < d− 1

bc if k = d− 1.

The subsemigroup U is the free semigroup on d generators, and hence is right LCM. The sub-
semigroup A is left cancellative, and for each α, β ∈ N we have bmax{α,β}A ⊆ bmin{α,β}A, and so
J (A) is totally ordered by inclusion. It follows from (3) that the action of each bβ ∈ A on U is
bijective. So the hypotheses of Lemma 3.3 are satisfied.

3.2. The semigroup N o N×. Consider the semigroups N = {n ∈ Z : n ≥ 0} under addition,
N× = {n ∈ Z : n ≥ 1} under multiplication, and Q∗+ = {q ∈ Q : q > 0} under multiplication.
Consider the semidirect product QoQ∗+, where

(r, a)(q, b) = (r + aq, ab) for r, q ∈ Q and a, b ∈ Q∗+.
The semidirect product NoN× is a subsemigroup of QoQ∗+, and the pair (QoQ∗+,NoN×) is
quasi-lattice ordered [15, Proposition 2.1]. We will now describe NoN× as a Zappa-Szép product.

Consider the following subsemigroups of No N×:

U := {(r, x) : x ∈ N×, 0 ≤ r ≤ x− 1} and A := {(m, 1) : m ∈ N}.
We have U ∩ A = {(0, 1)}, which is the identity of N o N×. We can write each (m, a) ∈ N o N×
uniquely as a product in UA via

(m, a) =
(
m (mod a), a

)(m− (m (mod a))

a
, 1
)
.

So the hypotheses of Proposition 3.2 are satisfied, and hence N o N× ∼= U ./ A. The action and
restriction maps are given by

(5) (m, 1) · (r, x) = ((m+ r) (mod x), x) and (m, 1)|(r,x) =
(m+ r − ((m+ r) (mod x))

x
, 1
)
.

Both U and A are subsemigroups of a left cancellative semigroup N o N×, and hence are both
left cancellative. For each m,n ∈ N we have (max{m,n}, 1)A ⊆ (min{m,n}, 1)A, and so J (A)
is totally ordered by inclusion. The next result shows that U is right LCM.
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Lemma 3.5. Consider the subsemigroup U of N o N× described above. Let (r, x), (s, y) ∈ U . If
(r + xN) ∩ (s + yN) 6= ∅, then the right LCM of (r, x) and (s, y) is (l, lcm(x, y)), where l is the
least element of (r + xN) ∩ (s + yN). If (r + xN) ∩ (s + yN) = ∅, then (r, x) and (s, y) have no
common multiple.

Proof. Let (r, x), (s, y) ∈ U . We know from [15, Remark 2.3] that

(r, x) ∨ (s, y) =

{
(l, lcm(x, y)) if (r + xN) ∩ (s+ yN) 6= ∅
∞ if (r + xN) ∩ (s+ yN) = ∅,

where l is the least element of (r + xN) ∩ (s + yN). Suppose (r + xN) ∩ (s + yN) 6= ∅, and
let j, k ∈ N with l = r + xj = s + yk. Also let x′, y′ ∈ N× with lcm(x, y) = xx′ = yy′. Then
(l, lcm(x, y)) = (r, x)(j, x′) = (s, y)(k, y′). For (l, lcm(x, y)) to be an element of U , it suffices to
show that j < x′, which would also imply k < y′. Suppose for contradiction that j ≥ x′. Then
we must also have k ≥ y′. Write j = x′ + j′ and k = y′ + k′ for some j′, k′ ∈ N. Then

r + xj = s+ yk ⇐⇒ r + xx′ + xj′ = s+ yy′ + yk′ ⇐⇒ r + xj′ = s+ yk′,

which contradicts that l is the least element of (r + xN) ∩ (s+ yN). Hence we must have j < x′,
and the result follows. �

To check that U and A satisfy all the hypotheses of Lemma 3.3, it remains to check that for
each (m, 1) ∈ A, the map u 7→ (m, 1) · u is a bijection on U . Fix (m, 1) ∈ A. We have

(m, 1) · (r, x) = (m, 1) · (s, y)⇐⇒ ((m+ r) (mod x), x) = ((m+ s) (mod y), y)

⇐⇒ x = y and r = s

⇐⇒ (r, x) = (s, y).

So the action of (m, 1) is injective. To see that the action of (m, 1) is surjective, fix (r, x) ∈ U .
Let

a :=

{
r −

(
m (mod x)

)
if r ≥ m (mod x)

x− (m (mod x)− r) if r < m (mod x).

Then (a, x) ∈ U and (m, 1) · (a, x) = (r, x). So the action of (m, 1) is surjective. We can now
apply Lemma 3.3 to see that N o N× ∼= U ./ A is a right LCM semigroup. Of course, we know
from [15] that N o N× is quasi-lattice ordered, which is stronger than right LCM. But we need
to know each pair (U,A) in our examples satisfy the hypotheses of Lemma 3.3 so we can apply
our later results, as noted in the following remark.

Remark 3.6. In general there is no unique way of decomposing a semigroup into a Zappa-Szép
product, as can be illustrated with the semigroup N o N×. In addition to the decomposition
N o N× ∼= U ./ A described above, we have N o N× ∼= N ./ N×, where a ·m = am and a|m = a.
Also note that even though U ./ A satisfies the hypotheses of Lemma 3.3, the Zappa-Szép product
N ./ N× does not. So while the C∗-algebras C∗(U ./ A) and C∗(N ./ N×) as described in Section 4
are isomorphic, the presentation given in Theorem 4.3 only applies to C∗(U ./ A).

3.3. The semigroup Z o Z×. Denote Z× := Z \ {0}. The ax + b-semigroup over Z is the
semidirect product Z o Z×, where (m, a)(n, b) = (m+ an, ab). Define subsemigroups

U = {(r, x) : x ≥ 1, 0 ≤ r < x} and A = Z× {1,−1}.
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So U is the same as the semigroup appearing in Section 3.2, and A is a group. We have U ∩A =
{(0, 1)}, which is the identity of Z o Z×. For each (m, a) ∈ Z o Z× we can uniquely write

(m, a) =
(
m (mod |a|), |a|

)(m− (m (mod |a|))
|a|

,
a

|a|

)
∈ UA.

So we can apply Proposition 3.2 to see that Z o Z× ∼= U ./ A. The action and restriction maps
are given by

(m, j) · (r, x) = ((m+ jr) (mod x), x) and (m, j)|(r,x) =
(m+ jr − ((m+ jr) (mod x))

x
, j
)
,

for j ∈ {1,−1}.
Both U and A are left cancellative. Since A is a group, J (A) = {A} is trivially totally ordered.

In Lemma 3.5 we proved that U is right LCM. To show that U and A satisfy the hypotheses of
Lemma 3.3, we just need to check that the action of each fixed (m, j) is bijective.

Fix (m, j) ∈ A. We have

(m, j) · (r, x) = (m, j) · (s, y)⇐⇒ ((m+ jr) (mod x), x) = ((m+ js) (mod y), y)

⇐⇒ x = y and (m+ jr)− (m+ js) ∈ xZ
⇐⇒ x = y and j(r − s) ∈ xZ
⇐⇒ x = y and r = s

⇐⇒ (r, x) = (s, y)

So the action of (m, j) is injective. To see that the action of (m, j) is surjective, fix (r, x) ∈ U .
Let

s :=


(
j
(
r −

(
m (mod x)

)))
(mod x) if r ≥ m (mod x)(

j
(
x− (m (mod x)− r)

))
(mod x) if r < m (mod x).

Then (s, x) ∈ U and (m, j) · (s, x) = (r, x). So the action of (m, j) is surjective.

3.4. Self-similar actions. Let X be a finite alphabet. We write Xn for the set of words of
length n in X and X∗ :=

⋃∞
n=0X

n. The set X∗ has a geometric realisation as a homogenous
rooted tree with root ∅; that is, vertices in the tree are associated with words in X∗ and for each
w ∈ X∗ there is an edge from w to wx for all x ∈ X. We will be considering subgroups of the
automorphism group on the rooted tree X∗.

A faithful action of a group G on X∗ is self-similar if for every g ∈ G and x ∈ X, there exist
unique g|x ∈ G such that

(6) g · (xw) = (g · x)(g|x · w).

The group element g|x is called the restriction of g to x. Notice that restriction extends to words
of finite length by iteration. When there is a self-similar action of G on X∗, the pair (G,X) is
called a self-similar action.

Lemma 3.7 ([23, §1.3]). Suppose (G,X) is a self-similar action.

(1) For g, h ∈ G and v, w ∈ X∗, we have

g|vw = (g|v)|w, gh|v = g|h·vh|v, and g|−1v = g−1|g·v.
(2) For every g ∈ G, the map g : Xn → Xn given by w 7→ g · w is bijective.
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We now recall Lawson’s [18] description of self-similar actions as Zappa-Szép product semi-
groups. The tree X∗ is naturally a semigroup with concatenation of words as the operation and
identity ∅. Restriction gives a map G × X∗ → G by (g, w) = g|w and the group action defines
a map G × X∗ → X∗ by (g, w) = g · w. We need to show that these maps satisfy (B1)–(B8)
in Definition 3.1. Since the map (g, w) = g · w is a group action (B1)–(B3) are automatic. The
relation (B4) follows from the fact that g · (∅u) = g · u. Equation (B5) is the self-similar action
condition (6). Lemma 3.7 (1) gives (B6) and (B8). That the group action is faithful implies (B7).
Therefore, X∗ ./ G is an external Zappa-Szép product with multiplication given by

(7) (x, g)(y, h) = (x(g · y), g|yh) ∈ X∗ ×G.
We note that Lemma 3.7 (2) implies that for every g ∈ G, the map w 7→ g ·w is bijective. Lawson
[18] goes on to prove the following.

Theorem 3.8 ([18, Propositions 3.5 and 3.6]). Let (G,X) be a self-similar action. With the
above product, X∗ ./ G is a right LCM semigroup with identity (∅, e) and the pair X∗ and G
satisfy the hypotheses of Lemma 3.3. Moreover, the poset of principal right ideals of X∗ ./ G is
order isomorphic to the poset of principal right ideals of X∗.

Remark 3.9. A semigroup S is called a left Rees monoid if S is left cancellative, each principal right
ideal sS is properly contained in only a finite number of principal right ideals, and sS ∩ tS 6= ∅
implies either sS ⊆ tS or tS ⊆ sS. In [18], Lawson showed that a semigroup is a left Rees
semigroup if and only if it is a Zappa-Szép product of a free semigroup by a group acting self-
similarly.

3.5. The adding machine. Consider the alphabet X = {0, 1, . . . , n−1} for some n ∈ N. There
is a self-similar action of Z = 〈e, γ〉 on the tree X∗, where the action and restriction of γ on a
letter k ∈ X is given by

γ · k = (k + 1) (modn)

and

γ|k =

{
e if k < n− 1

γ if k = n− 1.

The self-similar action (Z, X) is commonly known as the adding machine, or odometer. Since
the subsemigroup N ⊂ Z is invariant under the restriction map, we may form the Zappa-Szép
product X∗ ./ N. Looking at the action and restriction described above, and the action (3) and
restriction (4) for BS(c, d)+ with c = 1 and d = n, we see that X∗ ./ N is isomorphic to BS(1, n)+.

We can also describe BS(1, n)+ as a subsemigroup of the Zappa-Szép product U ./ A isomorphic
to No N× from Section 3.2. Consider the free subsemigroup of No N×

Un = 〈(0, 1), (0, n), (1, n), . . . , (n− 1, n)〉
and A = {(m, 1) : m ∈ N}. We see from the action formula given in (5) that Un is invariant
under the action of A, and the Zappa-Szép product Un ./ A is isomorphic to BS(1, n)+.

3.6. Products of self-similar actions. Suppose X and Y are finite alphabets, and G is a
group which acts self-similarly on both X and Y . Assume the existence of a bijective map
θ : Y ×X → X × Y . For each (y, x) ∈ Y ×X we denote by θX(y, x) ∈ X and θY (x, y) ∈ Y the
unique elements satisfying θ(y, x) = (θX(y, x), θY (y, x)). Let F+

θ denote the semigroup generated
by X ∪ Y ∪ {e} with relations yx = θX(y, x)θY (y, x) for all x ∈ X and y ∈ Y . Note that these
semigroups are the 2-graphs with a single vertex studied in [8, 9].
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Repeated applications of the bijection θ implies that every element z ∈ F+
θ admits a normal

form z = vw where v ∈ X∗ and w ∈ Y ∗. The self-similar actions of G on X and Y induce maps
G× F+

θ → F+
θ and G× F+

θ → G given by

(8) (g, z) 7→ g · z := (g · v)(g|v · w) and (g, z) 7→ g|z := (g|v)|w,

respectively. The following result gives necessary and sufficient conditions for the maps in (8) to
give a Zappa-Szép product F+

θ ./ G.

Proposition 3.10. The maps given in (8) induce a Zappa-Szép product semigroup F+
θ ./ G if

and only if for all g ∈ G, x ∈ X and y ∈ Y we have

θX(y, x) = g−1 · θX(g · y, g|y · x) and θY (y, x) = g|−1θX(y,x) · θY (g · y, g|y · x).

Proof. For the forward direction, suppose F+
θ ./ G is a Zappa-Szép product, and fix g ∈ G, x ∈ X

and y ∈ Y . Then

θX(y, x)θY (y, x) = g−1 · (g · (θX(y, x)θY (y, x)))

= g−1 · (g · (yx))

= g−1 · ((g · y)(g|y · x))

= g−1 · (θX(g · y, g|y · x)θY (g · y, g|y · x))

= (g−1 · θX(g · y, g|y · x))(g−1|θX(g·y,g|y ·x) · θY (g · y, g|y · x)).(9)

In particular, we see that

θX(y, x) = g−1 · θX(g · y, g|y · x),

and g ·θX(y, x) = θX(g ·y, g|y ·x) so that g|−1θX(y,x) = g−1|θX(g·y,g|y ·x) by the third identity in Lemma

3.7 (1). From (9), we also see that

θY (y, x) = g|−1θX(y,x) · θY (g · y, g|y · x)

as required.
Conversely, suppose θ satisfies the above relations. We must show that conditions (B1) – (B8)

of Definition 3.1 are satisfied. We check (B5) and leave the remaining computations to the reader.
It is enough to verify (B5) on elements yx ∈ F+

θ where y ∈ Y and x ∈ X. We compute

g · (yx) = g · (θX(y, x)θY (y, x))

= (g · θX(y, x))(g|θX(y,x) · θY (y, x))

= θX(g · y, g|y · x)θY (g · y, g|y · x)

= (g · y)(g|y · x),

as required. �

Remark 3.11. The semigroup F+
θ is left cancellative by the unique factorisation property of k-

graphs, but it is not right LCM in general. However, there are interesting examples, such as
Example 3.12 below, for which F+

θ is right LCM. Since G is a group, the other hypotheses of
Lemma 3.3 are automatically satisfied. So if F+

θ is right LCM, then F+
θ ./ G is a right LCM

semigroup.
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Example 3.12. In this example we use adding machine actions on two alphabets to induce a self-
similar action of Z on a 2-graph with one vertex. Fix m,n ≥ 2 and let X := {x0, x1, · · · , xm−1}
and Y := {y0, y1, · · · yn−1}. We can write the set {0, 1, . . . ,mn− 1} as

{i+ jm : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} and {j + in : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}.

It follows that there is a bijection {0, 1, . . . , n − 1} × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1} ×
{0, 1, . . . , n−1} sending (j, i) to the pair (i′, j′) satisfying j+ in = i′+j′m. This bijection induces
a bijection θ : Y × X → X × Y given by θ(yj, xi) = (xi′ , yj′). The group of integers Z = 〈e, γ〉
acts self-similarly on both X∗ and Y ∗ by the adding machine action. Recall from Section 3.5 that
the action is given by

γ · xi =

{
xi+1 if i < m− 1

x0 if i = m− 1
and γ · yj =

{
yj+1 if j < n− 1

y0 if j = n− 1,

and the restriction is given by

γ|xi =

{
e if i < m− 1

γ if i = m− 1
and γ|yj =

{
e if j < n− 1

γ if j = n− 1.

We leave it to the reader to show that the identities in (8) hold in this example, and so we can
apply Proposition 3.10 to get an integer action on a 2-graph.

We claim that the semigroup F+
θ is right LCM if and only if m and n are coprime. For the

reverse implication note that F+
θ is isomorphic to the subsemigroup of N o N× generated by

{(0,m), . . . , (m−1,m), (0, n), . . . , (n−1, n)}, and the arguments in the proof of Lemma 3.5 show
that this subsemigroup is right LCM. For the forward implication, suppose m = pa and n = pb
for p > 1. Then

p+ (0× pb) = p+ (0× pa) and p+ (a× pb) = p+ (b× pa),

and hence the elements ypx0 = xpy0 and ypxa = xpyb are incomparable right common multiples
which cannot be larger than any other common multiple.

4. The C∗-algebra C∗(U ./ A)

In this section we will assume that U and A are semigroups satisfying the hypotheses of
Lemma 3.3; so U ./ A is a right LCM semigroup. Consider the C∗-algebra C∗(U ./ A) obtained
by applying Li’s construction as described in Section 2.2 to U ./ A. In this case C∗(U ./ A)
is the universal C∗-algebra generated by isometries {v(u,a) : (u, a) ∈ U ./ A} and projections
{e(u,a) := e(u,a)U./A : (u, a) ∈ U ./ A} ∪ {e∅} satisfying

(L1) v(u,a)v(w,b) = v(u,a)(w,b);
(L2) v(u,a)e(w,b)v

∗
(u,a) = e(u,a)(w,b);

(L3) e(eU ,eA) = 1 and e∅ = 0; and
(L4)

e(u,a)e(w,b) =

{
e(z,c) if (u, a)U ./ A ∩ (w, b)U ./ A = (z, c)U ./ A

0 if (u, a)U ./ A ∩ (w, b)U ./ A = ∅.

Notice that (L2) and (L3) imply that

(10) v(u,a)v
∗
(u,a) = e(u,a) for all (u, a) ∈ U ./ A.
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The main result of this section is to give an alternative presentation of C∗(U ./ A) in terms of
isometric representations of the individual semigroups U and A. First we need the notion of a
covariant representation of a right LCM semigroup.

Definition 4.1. Let P be a right LCM semigroup. A covariant representation of P in a C∗-
algebra B is an isometric representation t satisfying

t∗ptq =

{
tp′t
∗
q′ if pP ∩ qP = rP and pp′ = qq′ = r

0 if pP ∩ qP = ∅.

Since the right LCM of two elements is not in general unique, we need to check that the expression
on the right-hand side is well defined.

Lemma 4.2. Let P be a right LCM semigroup, p, q ∈ P with pP ∩ qP 6= ∅, and t an isometric
representation of P . Suppose p′, q′, r ∈ P with pP ∩ qP = rP and pp′ = qq′ = r, and p′′, q′′, s ∈ P
with pP ∩ qP = sP and pp′′ = qq′′ = s. Then tp′t

∗
q′ = tp′′t

∗
q′′.

Proof. If r = s, then left cancellativity gives p′ = p′′ and q′ = q′′, and the result follows. So suppose
r 6= s. Since rP = sP , there must be u ∈ P ∗ with u 6= e and r = su. Since tu−1 = t∗ututu−1 = t∗u
(so tu is a unitary), we have

tp′t
∗
q′ = t∗ptptp′t

∗
q′t
∗
qtq = t∗ptpp′t

∗
qq′tq = t∗ptrt

∗
rtq = t∗ptsut

∗
sutq = t∗ptst

∗
stq = t∗ptpp′′t

∗
qq′′tq = tp′′t

∗
q′′ . �

We now state the main result.

Theorem 4.3. Suppose U and A are semigroups with maps (a, u) 7→ a · u and (a, u) 7→ a|u
satisfying (B1)–(B8) of Definition 3.1. Moreover, suppose U is a right LCM semigroup, A is left
cancellative with J (A) totally ordered by inclusion, and for each a ∈ A, the map u 7→ a · u is
bijective. Let A be the universal C∗-algebra generated by an isometric representation s of A and
a covariant representation t of U satisfying

(K1) satu = ta·usa|u; and
(K2) s∗atu = tzs

∗
a|z , where z ∈ U is the unique element satisfying a · z = u.

Then there exists an isomorphism π : C∗(U ./ A)→ A such that π(v(u,a)) = tusa and π(e(u,a)) =
tusas

∗
at
∗
u.

Proof. Lemma 3.3 implies that U ./ A is right LCM. We first find a family of isometries and
projections in A satisfying (L1)–(L4). Define E∅ := 0, and for each (u, a) ∈ U ./ A define

V(u,a) := tusa and E(u,a) := V(u,a)V
∗
(u,a) = tusas

∗
at
∗
u.

Then we use (K1) to get (L1):

V(u,a)V(w,b) = tusatwsb = tuta·wsa|wsb = tu(a·w)sa|wb = V(u(a·w),a|wb) = V(u,a)(w,b).

It follows that

V(u,a)E(w,b)V
∗
(u,a) = V(u,a)V(w,b)V

∗
(w,b)V

∗
(u,a) = V(u,a)(w,b)V

∗
(u,a)(w,b) = E(u,a)(w,b),

which is (L2). We have E(eU ,eA) = teUseA = 1, and E∅ = 0 by definition. So (L3) holds.
To prove (L4) first note that

E(u,a)E(w,b) = tusas
∗
at
∗
utwsbs

∗
bt
∗
w.

Suppose (u, a)U ./ A∩ (w, b)U ./ A = ∅. We know from Remark 3.4 that this means uU ∩wU =
∅. Since t is covariant, we have t∗utw = 0, and hence E(u,a)E(w,b) = 0.
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Now suppose that (u, a)U ./ A ∩ (w, b)U ./ A = (z, c)U ./ A. Then uU ∩ wU 6= ∅. Let
u′, w′ ∈ U satisfy uU ∩wU = uu′U = ww′U and uu′ = ww′. Let x, y ∈ U be the unique elements
satisfying a · x = u′ and b · y = w′. Using the covariance of t and condition (K2) we have

E(u,a)E(w,b) = tusas
∗
at
∗
utwsbs

∗
bt
∗
w = tusas

∗
atu′t

∗
w′sbs

∗
bt
∗
w

= tusatxs
∗
a|xsb|yt

∗
ys
∗
bt
∗
w.

If a|x = b|yb′ for some b′ ∈ A, then (z, c) = (uu′, a|x). We can use (K1) to continue the calculation
to get

E(u,a)E(w,b) = tuta·xsa|xs
∗
b′s
∗
b|yt
∗
b·yt
∗
w = tu(a·x)sa|xs

∗
a|xt
∗
u(a·x) = tzsgs

∗
gt
∗
z = E(z,c).

A similar argument gives E(u,a)E(w,b) = E(z,c) when b|y = a|xa′ for some a′ ∈ A. So (L4) holds.
It now follows from the universal property of C∗(U ./ A) that there exists a homomorphism
π : C∗(U ./ A)→ A such that π(v(u,a)) = tusa and π(e(u,a)) = tusas

∗
at
∗
u.

To prove that π is an isomorphism, we will find its inverse by constructing an isometric repre-
sentation S of A in C∗(U ./ A) and a covariant representation T of U in C∗(U ./ A) satisfying
(K1) and (K2). For each u ∈ U and a ∈ A let

Tu := v(u,eA) and Sa := v(eU ,a).

The fact that T : u 7→ Tu and S : a 7→ Sa are representations follows from the calculations

TuTw = v(u,eA)v(w,eA) = v(u(eA·w),eA|weA) = v(uw,eA) = Tuw

and

SaSb = v(eU ,a)v(eU ,b) = v(eU (a·eU ),a|eU b) = v(eU ,ab) = Sab.

We also know that T and S are isometric because v is isometric. To see that T is covariant, first
observe that (10) implies that

T ∗uTw = v∗(u,eA)v(w,eA) = v∗(u,eA)(v(u,eA)v
∗
(u,eA)

v(w,eA)v
∗
(w,eA)

)v(w,eA) = v∗(u,eA)e(u,eA)e(w,eA)v(w,eA).

Now suppose z is a right LCM of u and w and write u′ and w′ for elements of U such that
uu′ = ww′ = z. We know from Remark 3.4(a) that (z, eA) is a right LCM of (u, eA) and (w, eA).
Then (L4) gives

T ∗uTw =

{
v∗(u,eA)e(z,eA)v(w,eA) if uU ∩ wU = zU ,

0 if uU ∩ wU = ∅

=

{
v∗(u,eA)v(z,eA)v

∗
(z,eA)

v(w,eA) if uU ∩ wU = zU ,

0 if uU ∩ wU = ∅

=

{
v∗(u,eA)v(u,eA)v(u′,eA)v

∗
(w′,eA)

v∗(w,eA)v(w,eA) if uU ∩ wU = zU and uu′ = ww′ = z,

0 if uU ∩ wU = ∅

=

{
v(u′,eA)v

∗
(w′,eA)

if uU ∩ wU = zU and uu′ = ww′ = z,

0 if uU ∩ wU = ∅

=

{
Tu′T

∗
w′ if uU ∩ wU = zU and uu′ = ww′ = z,

0 if uU ∩ wU = ∅.

Hence T is covariant.
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We need to show that (K1) and (K2) are satisfied. We have

SaTu = v(eU ,a)v(u,eA) = v(a·u,a|u) = v(a·u,eA)v(eU ,a|u) = Ta·uSa|u ,

which is (K1). For (K2) first recall from Remark 3.4(b) that (a · z, a|z) is a right LCM of (eU , a)
and (u, eA), where z is the unique element of U with a · z = u. Condition (L4) applied to these
elements then becomes e(eU ,a)e(u,eA) = e(a·z,a|z). Hence

S∗aTu = v∗(eU ,a)v(u,eA)

= v∗(eU ,a)v(eU ,a)v
∗
(eU ,a)

v(u,eA)v
∗
(u,eA)

v(u,eA)

= v∗(eU ,a)e(eU ,a)e(u,eA)v(u,eA)

= v∗(eU ,a)e(a·z,a|z)v(u,eA)

= v∗(eU ,a)v(a·z,a|z)v
∗
(a·z,a|z)v(u,eA)

= v∗(eU ,a)v(eU ,a)v(z,eA)v
∗
(eU ,a|z)v

∗
(u,eA)

v(u,eA)

= v(z,eA)v
∗
(eU ,a|z)

= TzSa|z ,

which is (K2).
The universal property of A gives a homomorphism φ : A → C∗(U ./ A) with φ(tu) = v(u,eA)

and φ(sa) = v(eU ,a). We now check that π and φ are inverses of each other using the generators:

π ◦ φ(tu) = π(v(u,eA)) = tuseA = tu and π ◦ (φ(sa)) = π(v(eU ,a)) = teUsa = sa,

and

φ ◦ π(v(u,a)) = φ(tusa) = v(u,eA)v(eU ,a) = v(u,a) and φ ◦ π(e(u,a)) = φ ◦ π(v(u,a)v
∗
(u,a))

= v(u,a)v
∗
(u,a)

= e(u,a).

So π : C∗(U ./ A)→ A is the desired isomorphism. �

Remark 4.4. The C∗-algebras associated with Zappa-Szép products generalise Nica’s C∗-algebras
of quasi-lattice ordered groups (G,P ). Recall from Section 2.2 that C∗(G,P ) is universal for
representations V of P satisfying Equation (1). Consider the Zappa-Szép product P ./ {e}, where
e ·p = p and e|p = e. The semigroups P and {e} satisfy the hypotheses of Lemma 3.3. Conditions
(K1) and (K2) from Theorem 4.3 are satisfied by definition, and so C∗(P ./ {e}) is the universal
C∗-algebra generated by a covariant representation of P . Covariance, as in Definition 4.1, is
precisely Equation (1) when (G,P ) is quasi-lattice ordered. So C∗(P ./ {e}) ∼= C∗(G,P ).

5. The boundary quotient

In this section we introduce a quotient Q(P ) of Li’s C∗(P ) for a right LCM semigroup P .
Following the terminology of [28], we say a subset F ⊆ P is a foundation set if it is finite and
for each p ∈ P there exists q ∈ F with pP ∩ qP 6= ∅. When (G,P ) is quasi-lattice ordered, the
collection of foundation sets in P is described by Crisp and Laca in [4, Definition 3.4].

Definition 5.1. Let Q(P ) be the universal C∗-algebra generated by isometries {vp : p ∈ P} and
projections {epP : p ∈ P} satisfying relations (1)–(4) of Definition 2.6, and∏

p∈F

(1− epP ) = 0 for all foundation sets F ⊂ P .
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We call Q(P ) the boundary quotient of C∗(P ).

We now give an alternative presentation for the boundary quotient Q(U ./ A).

Theorem 5.2. Suppose U and A are semigroups with maps (a, u) 7→ a · u and (a, u) 7→ a|u
satisfying (B1)–(B8) of Definition 3.1. Moreover, suppose U is a right LCM semigroup, A is left
cancellative with J (A) totally ordered by inclusion, and for each a ∈ A, the map u 7→ a · u is
bijective. Then Q(U ./ A) is the universal C∗-algebra generated by an isometric representation s
of A and a covariant representation t of U satisfying (K1), (K2) and

(Q1) sas
∗
a = 1 for all a ∈ A; and

(Q2)
∏
u∈F

(1− tut∗u) = 0 for all foundation sets F ⊆ U .

To prove this result we need the following lemma about foundation sets.

Lemma 5.3. Suppose U and A are semigroups with maps (a, u) 7→ a·u and (a, u) 7→ a|u satisfying
(B1)–(B8) of Definition 3.1. Moreover, suppose U is a right LCM semigroup, A is left cancellative
with J (A) totally ordered by inclusion, and for each a ∈ A, the map u 7→ a · u is bijective.

(a) For every a ∈ A the singleton set {(eU , a)} is a foundation set in U ./ A.
(b) For every foundation set F ⊆ U the set {(u, eA) : u ∈ F} is a foundation set in U ./ A.
(c) For every foundation set G in U ./ A the set {u ∈ U : (u, a) ∈ G for some a ∈ A} is a

foundation set in U .

Proof. To prove (a), fix a ∈ A and consider an arbitrary (u, b) ∈ U ./ A. Let z be the unique
element of U with a · z = u. Let a′, b′ ∈ A with a|za′ = bb′ =: c. (Since J (A) is totally ordered
we know that at least one of a′ or b′ is eA.) Then

(u, c) = (eU , a)(z, a′) and (u, c) = (u, b)(eU , b
′).

Hence (eU , a)U ./ A ∩ (u, b)U ./ A 6= ∅, and so (a) holds.
For (b), let F be a foundation set in U and let (v, b) ∈ U ./ A. Then there exists u ∈ F with

uU ∩ vU 6= ∅. Let u′, v′, w ∈ U with w = uu′ = vv′. Let x be the unique element of U with
b · x = v′. Then

(w, b|x) = (u, eA)(u′, b|x) and (w, b|x) = (v, b)(x, eA).

Hence (u, eA)U ./ A ∩ (v, b)U ./ A 6= ∅, and so {(u, eA) : u ∈ F} is a foundation set in U ./ A.
For (c), let G be a foundation set in U ./ A and let v ∈ U . Then there exists (u, a) ∈ G with

(u, a)U ./ A ∩ (v, eA)U ./ A 6= ∅. But this means there exists u′, v′ with uu′ = vv′, and hence
uU ∩ vU 6= ∅. So {u ∈ U : (u, a) ∈ G for some a ∈ A} is a foundation set in U . �

Proof of Theorem 5.2. Under the presentation of C∗(U ./ A) established in Theorem 4.3, prod-
ucts

∏
(u,a)∈G(1 − e(u,a)) over foundation sets G ⊂ U ./ A correspond to

∏
(u,a)∈G(1 − tusas∗at∗u).

So it suffices to show that conditions (Q1) and (Q2) are equivalent to the condition∏
(u,a)∈G

(1− tusas∗at∗u) = 0

for all foundation sets G ⊂ U ./ A. To see this, first suppose that (Q1) and (Q2) hold and fix a
foundation set G ⊂ U ./ A. Then sas

∗
a = 1 for each a ∈ A by (Q1), and hence∏

(u,a)∈G

(1− tusas∗at∗u) =
∏

(u,a)∈G

(1− tut∗u).
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Since {u ∈ U : (u, a) ∈ G for some a ∈ A} is a foundation set by Lemma 5.3, we know from (Q2)
that the above product is zero. Conversely, suppose∏

(u,a)∈G

(1− tusas∗at∗u) = 0

for all foundation sets G ⊂ U ./ A. Fix F ⊂ U a foundation set. Then by Lemma 5.3, the set
F ′ = {(u, eA) : u ∈ F} ⊂ U ./ A is a foundation set, and hence∏

u∈F

(1− tut∗u) =
∏
u∈F ′

(1− tuseAs∗eAt
∗
u) = 0.

Likewise, for any a ∈ A Lemma 5.3 implies the singleton set {(eU , a)} ⊂ U ./ A is a foundation
set. So

1− sas∗a = 1− teUsas∗at∗eU = 0,

and hence sas
∗
a = 1 as required. �

Remark 5.4. We can see from the presentation of Q(U ./ A) that we potentially have two other
quotients of C∗(U ./ A). We denote by C∗A(U ./ A) the quotient obtained from adding relation
(Q1) to the relations of C∗(P ), and by C∗U(U ./ A) the quotient obtained from adding relation
(Q2). These quotients are interesting in their own right (in the case of N o N× these quotients
have been studied in [2]), and we will discuss them further throughout the next section.

Remark 5.5. The definition of the boundary quotient from Definition 5.1 has a natural general-
isation to arbitrary discrete left cancellative semigroups. For such a P we say F ⊂ J (P ) is a
foundation set if F is finite, and for each Y ∈ J (P ) there exists X ∈ F with X ∩ Y 6= ∅. We
define Q(P ) to be the universal C∗-algebra generated by isometries {vp : p ∈ P} and projections
{eX : X ∈ J (P )} satisfying relations (1)–(4) of Definition 2.6, and∏

X∈F

(1− eX) = 0 for all foundation sets F ⊂ P .

6. Examples

6.1. Baumslag-Solitar groups. Consider the Baumslag-Solitar group BS(c, d), for positive
integers c and d. Recall from Section 3.1 that BS(c, d)+ ∼= U ./ A, where U ∼= F+

d , A ∼= N, and
the action and restriction maps are given in (3) and (4).

Proposition 6.1. The boundary quotient Q(BS(c, d)+) is the universal C∗-algebra generated by
a unitary s and isometries t1, . . . , td satisfying

(1)
∑d

i=1 tit
∗
i = 1;

(2) sti = ti+1 for 1 ≤ i < d; and
(3) std = t1s

c.

Moreover, Q(BS(c, d)+) is isomorphic to the category of paths algebra C∗(Λ) from [29].

Proof. First note that U and A satisfy the hypotheses of Theorem 5.2, so we can use the given
presentation of Q(BS(c, d)+). That s is unitary follows from (Q1). Since U is F+

d , it suffices
to only consider the foundation set consisting of generators of F+

d in (Q2). Hence we have (1).
Relations (2) and (3) are (K1). Relation (K2) follows from (2) and (3) and that s is unitary.
It follows immediately from the generators and relations presented in [29, Theorem 3.23] that
Q(BS(c, d)+) is isomorphic to C∗(Λ). �
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We are now able to use [29, Remark 3.25] to link Q(BS(c, d)+) with topological graph algebras.

Corollary 6.2. The C∗-algebra Q(BS(c, d)+) is isomorphic to the topological graph algebra O(Ed,c)
from [12].

From the discussion in [12, Example A.6], we have the following corollary.

Corollary 6.3. If c 6∈ dZ, then Q(BS(c, d)+) is a Kirchberg algebra.

6.2. The semigroup NoN×. Recall from [15, Theorem 4.1] that the Toeplitz algebra T (NoN×)
is the universal C∗-algebra generated by an isometry s and isometries vp for each prime p satisfying

(T1) vps = spvp;
(T2) vpvq = vqvp;
(T3) v∗pvq = vqv

∗
p for p 6= q;

(T4) s∗vp = sp−1vps
∗; and

(T5) v∗ps
kvp = 0 for all 1 ≤ k < p.

The boundary quotient (in the sense of [4]) of T (NoN×) is Cuntz’s QN from [5], and corresponds
to adding the following relations:

(Q5)
∑p−1

k=0(s
kvp)(s

kvp)
∗ = 1 for all primes p; and

(Q6) ss∗ = 1.

We saw in Section 3.2 that No N× is the internal Zappa-Szép product U ./ A, where

U = {(r, x) : x ∈ N×, 0 ≤ r ≤ x− 1} and A = {(m, 1) : m ∈ N}.

Moreover, U and A satisfy the hypotheses of Theorem 4.3 and Theorem 5.2, so we can apply
these theorems to C∗(No N×) and Q(No N×), respectively.

Proposition 6.4. There is an isomorphism φ : T (NoN×)→ C∗(NoN×) satisfying φ(s) = s(1,1)
and φ(vp) = t(0,p) for all primes p. The isomorphism φ descends to an isomorphism of QN onto
Q(No N×).

Proof. The Toeplitz algebra T (N o N×) can be viewed as the universal C∗-algebra generated by
a Nica covariant representation V of N o N×. This description coincides with the presentation
(T1)–(T5) via s 7→ V(1,1) and each vp 7→ V(0,p) [15, Page 652]. The isomorphism T (N o N×) →
C∗(N o N×) from Li’s argument in [19, Section 2.4] sends V(1,1) 7→ v(1,1) and each V(0,p) 7→ v(0,p).
The isomorphism of Theorem 4.3 sends v(1,1) 7→ s(1,1) and each v(0,p) 7→ t(0,p). We define φ :
T (No N×)→ C∗(No N×) to be the composition of these isomorphisms.

We now claim that if s(1,1) and {t(0,p) : p prime} satisfy (Q1) and (Q2) of Theorem 5.2, then
they satisfy (Q5) and (Q6).

For p a prime and 0 ≤ k ≤ p − 1 we have (k, 1) · (0, p) = (k, p) and (k, 1)|(0,p) = (0, 1). Using
(K1) of Theorem 4.3 we then get

(11) s(k,1)t(0,p) = t(k,p).

Since the sets {(k, p)N o N× : 0 ≤ k ≤ p − 1} are mutually disjoint and t is covariant, we have
t(j,p)t

∗
(j,p)t(k,p)t

∗
(k,p) = 0 for 0 ≤ j, k ≤ p− 1 with j 6= k. Hence

p−1∏
k=0

(1− t(k,p)t∗(k,p)) = 1−
p−1∑
k=0

t(k,p)t
∗
(k,p).
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Since {(0, p), . . . , (p− 1, p)} is a foundation set in U , it follows from (Q2) that

(12)

p−1∑
k=0

t(k,p)t
∗
(k,p) = 1.

It now follows from Equations (11) and (12) that

p−1∑
k=0

sk(1,1)t(0,p)(s
k
(1,1)t(0,p))

∗ =

p−1∑
k=0

(s(k,1)t(0,p))(s(k,1)t(0,p))
∗ =

p−1∑
k=0

t(k,p)t
∗
(k,p) = 1,

and hence (Q5) is satisfied. We know from (Q2) that s(1,1)s
∗
(1,1) = 1, and hence (Q6) is satisfied.

So φ descends to a homomorphism φ : QN → Q(NoN×), which is injective because QN is simple
[5, Theorem 3.4]. For each (r, x) ∈ U and (m, 1) ∈ A we have

φ(sm) = s(m,1) and φ(srvx) = t(r,x),

and so each generator of Q(NoN×) is in the range of φ. Hence φ : QN → Q(NoN×) is surjective,
and so is an isomorphism. �

Remark 6.5. The multiplicative and boundary quotients of T (N o N×) are studied in [2]. The
multiplicative boundary quotient Tmult(N o N×) corresponds to adding relation (Q5) to the
presentation of T (N o N×), and the additive boundary quotient Tadd(N o N×) corresponds to
adding relation (Q6). It follows from Proposition 6.4 that Tmult(N o N×) ∼= C∗U(U ./ A) and
Tadd(No N×) ∼= C∗A(U ./ A).

6.3. The semigroup ZoZ×. In [5] Cuntz also introduced the C∗-algebra QZ, which instigated
work on the C∗-algebras of more general integral domains [7]. Recall that QZ can be viewed as
the universal C∗-algebra generated by a unitary s and isometries {va : a ∈ Z×} satisfying

(i) vavb = vab for all a, b ∈ Z×;
(ii) vas = sava and vas

∗ = s∗ava for all a ∈ Z×; and

(iii)
∑|a|−1

j=0 sjvav
∗
as
∗j = 1 for all a ∈ Z×.

Recall from Section 3.2 that Z o Z× is the internal Zappa-Szép product U ./ A, where

U = {(r, x) : x > 0, 0 ≤ r ≤ x− 1} and A = Z× {1,−1}.

Moreover, U and A satisfy the hypotheses of Theorem 5.2, so we can use the presentation of
Q(Z o Z×) from Theorem 5.2.

Proposition 6.6. There is an isomorphism φ : QZ → Q(Z o Z×) satisfying φ(s) = s(1,1) and

φ(va) = s(0,a/|a|)t(0,|a|) for all a ∈ Z×.

Proof. Let S denote the unitary s(1,1) and let Va denote the isometry s(0,a/|a|)t(0,|a|) for each a ∈ Z×.
We claim that (i)–(iii) are satisfied. First note that for each j ∈ {1,−1} and a ∈ Z× we have
(0, j) · (0, |a|) = (0, |a|) and (0, j)|(0,|a|) = (0, j). (Of course, (0, 1) is the identity in Z o Z×, so
these identities trivially hold when j = 1.) Hence by (K1) we have

s(0,j)t(0,|a|) = t(0,j)·(0,|a|)s(0,j)|(0,|a|) = t(0,|a|)s(0,j),

for all a ∈ Z×. Now

VaVb = s(0,a/|a|)t(0,|a|)s(0,b/|b|)t(0,|b|) = s(0,a/|a|)s(0,b/|b|)t(0,|a|)t(0,|b|) = s(0,ab/|ab|)t(0,|ab|) = Vab,
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which is (i). For the first part of (ii), first note that (|a|, 1) · (0, |a|) = (0, |a|) and (|a|, 1)|(0,|a|) =
(1, 1) for all a ∈ Z×. Hence by (K1) we have

VaS = s(0,a/|a|)t(0,|a|)s(1,1) = s(0,a/|a|)t(|a|,1)·(0,|a|)s(|a|,1)|(0,|a|)
= s(0,a/|a|)s(|a|,1)t(0,|a|)

= s(a,a/|a|)t(0,|a|)

= sa(1,1)s(0,a/|a|)t(0,|a|)

= SaVa.

Similarly we have (−|a|, 1) · (0, |a|) = (0, |a|) (−|a|, 1)|(0,|a|) = (−1, 1) for all a ∈ Z×, and hence

VaS
∗ = s(0,a/|a|)t(0,|a|)s(−1,1) = s(0,a/|a|)t(−|a|,1)·(0,|a|)s(−|a|,1)|(0,|a|)

= s(0,a/|a|)s(−|a|,1)t(0,|a|)

= s(−a,a/|a|)t(0,|a|)

= sa(−1,1)s(0,a/|a|)t(0,|a|)

= S∗aVa.

So (ii) holds. For (iii), we first calculate

|a|−1∑
j=0

SjVaV
∗
a S
∗j =

|a|−1∑
j=0

sj(1,1)s(0,a/|a|)t(0,|a|)t
∗
(0,|a|)s

∗
(0,a/|a|)s

∗
(1,1)

j

=

|a|−1∑
j=0

s(j,a/|a|)t(0,|a|)t
∗
(0,|a|)s

∗
(j,a/|a|).

Now, (K1) gives

s(j,a/|a|)t(0,|a|) = t(j,a/|a|)·(0,|a|)s(j,a/|a|)|(0,|a|) = t(j,|a|)s(0,a/|a|).

Hence
|a|−1∑
j=0

SjVaV
∗
a S
∗j =

|a|−1∑
j=0

t(j,|a|)s(0,a/|a|)s
∗
(0,a/|a|)t

∗
(j,|a|) =

|a|−1∑
j=0

t(j,|a|)t
∗
(j,|a|),

where the last equality holds because s(0,a/|a|) is a unitary. Since {(0, a), . . . , (a − 1, a)} is a
foundation set, and the corresponding principal ideals are mutually disjoint, condition (Q2) gives

|a|−1∑
j=0

SjVaV
∗
a S
∗j =

|a|−1∑
j=0

t(j,|a|)t
∗
(j,|a|) = 1.

So (iii) holds. We then get a homomorphism φ : QZ → Q(Z o Z×) satisfying φ(s) = s(1,1) and
φ(va) = s(0,a/|a|)t(0,|a|) for all a ∈ Z×. Since QZ is simple, we know that φ is injective. For each
(r, x) ∈ U and (m, j) ∈ A (j ∈ {1,−1}), we have

φ(srvx) = t(r,x) and φ(sm) = s(m,1).

Since each generator is in the range of φ, it follows that φ is the desired isomorphism. �
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6.4. Self-similar actions. Let (G,X) be a self-similar action as described in Section 3.4. Recall
from [16, Proposition 3.2] that the Toeplitz algebra T (G,X) is the universal C∗-algebra generated
by a Toeplitz-Cuntz family of isometries {vx : x ∈ X} and a unitary representation u of G
satisfying

(13) ugvx = vg·xug|x , for all g ∈ G and x ∈ X.

Recall from [24, Definition 3.1] (see also [16, Corollary 3.5]) that the Cuntz-Pimsner algebra
O(G,X) is the quotient of T (G,X) by the ideal I generated by 1−

∑
x∈X vxv

∗
x.

In Section 3.4 we saw that each self-similar action (G,X) gives rise to a Zappa-Szép product
X∗ ./ G. We now show that C∗(X∗ ./ G) is isomorphic to T (G,X), and that the boundary
quotient Q(X∗ ./ G) is isomorphic to O(G,X).

Theorem 6.7. Let (G,X) be a self-similar group. There is an isomorphism φ : T (G,X) →
C∗(X∗ ./ G) such that φ(ug) = sg and φ(vx) = tx. Moreover, φ descends to an isomorphism of
O(G,X) onto Q(X∗ ./ G).

Proof. We know that s is a unitary representation of G in C∗(X∗ ./ G). The covariance of t is
equivalent to insisting that t∗xty = δx,y; that is, {tx : x ∈ X} is a Toeplitz-Cuntz family. Condition
(K1) is equivalent to insisting that sgtx = tg·xsg|x for all g ∈ G and letters x ∈ X; to replace x in
this equation with a word w ∈ X∗ we use (B5) and (B6) of Definition 3.1. Condition (K2) comes
for free from (K1): for w, z ∈ X∗ and g ∈ G with g · z = w we have sgtz = tg·zsg|z = twsg|z , and
then

twsg|z = sgtz ⇐⇒ s∗gtwsg|zs
∗
g|z = s∗gsgtzs

∗
g|z ⇐⇒ s∗gtw = tzs

∗
g|z .

The above arguments imply that C∗(X∗ ./ G) is the universal C∗-algebra generated by a Toeplitz-
Cuntz family {tx : x ∈ X} and a unitary representation s of G satisfying sgtx = tg·xsg|x for all
g ∈ G and x ∈ X. It is now evident that we have the desired isomorphism φ : T (G,X) →
C∗(X∗ ./ G).

It remains to show that φ descends to an isomorphism φ : O(G,X) → Q(X∗ ./ G). Denote
by I the ideal in T (G,X) generated by 1 −

∑
x∈X vxv

∗
x, and by J the ideal in C∗(X∗ ./ G)

generated by the set {
∏

w∈F (1− twt∗w) : F is a foundation set in X∗}. So O(G,X) is T (G,X)/I
and Q(X∗ ./ G) is C∗(X∗ ./ G)/J . We need to show that φ(I), which is the ideal in C∗(X∗ ./ G)
generated by 1−

∑
x∈X txt

∗
x, is equal to J .

Since X is a foundation set in X∗, we have φ(I) ⊂ J . To get the reverse containment we fix a
foundation set F ; it suffices to prove that

∏
w∈F (1− twt∗w) ∈ φ(I). Denote

N := max{|w| : w ∈ F} and F ′ :=
⋃
w∈F

{ww′ : w′ ∈ XN−|w|}.

We now claim that F ′ = XN . For the sake of contradiction, suppose F ′ 6= XN and let z ∈
XN \ F ′. By definition of F ′, it follows that there is no w ∈ F such that z = ww′. This means
wX∗ ∩ zX∗ = ∅ for all w ∈ F , which contradicts that F is a foundation set. So we must have
F ′ = XN . For each w ∈ F and ww′ ∈ XN we have 1− twt∗w ≤ 1− tww′t∗ww′ . Since the projections
{1− tzt∗z : z ∈ XN} commute, we then have∏

w∈F

(1− twt∗w) =
∏
w∈F

(1− twt∗w)
∏
z∈XN

(1− tzt∗z).
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The result will now follow if
∏

z∈XN (1 − tzt∗z) = 1 −
∑

z∈XN tzt
∗
z ∈ φ(I). We show by induction

that 1−
∑

z∈Xn tzt
∗
z ∈ φ(I) for all n ≥ 1. The result is true for n = 1. Assume true for n. Then

1−
∑

w∈Xn+1

twt
∗
w = 1−

∑
x∈X

∑
z∈Xn

txzt
∗
xz

= 1−
∑
x∈X

tx
( ∑
z∈Xn

tzt
∗
z

)
t∗x

= 1 +
∑
x∈X

tx
((

1−
∑
z∈Xn

tzt
∗
z

)
− 1
)
t∗x

=
(
1−

∑
x∈X

txt
∗
x

)
+
∑
x∈X

tx
(
1−

∑
z∈Xn

tzt
∗
z

)
t∗x

∈ φ(I)

So
∏

w∈F (1 − twt
∗
w) ∈ φ(I), and we have J ⊂ φ(I). Hence φ(I) = J , and φ descends to an

isomorphism of O(G,X) onto Q(X∗ ./ G). �

6.5. The binary adding machine. The 2-adic ring C∗-algebra of the integers Q2 was intro-
duced and studied in [17]. Recall that Q2 is simple and purely infinite, and is the universal
C∗-algebra generated by a unitary u and an isometry s2 satisfying

(I) s2u = u2s2; and
(II) s2s

∗
2 + us2s

∗
2u
∗ = 1.

Consider the Zappa-Szép product X∗ ./ N described in Section 3.5, where X is the alphabet
{0, 1}, and N = 〈e, γ〉. It follows from our identification of X∗ ./ N as BS(1, 2)+ that C∗(X∗ ./ N)
is isomorphic to Nica’s C∗(BS(1, 2),BS(1, 2)+). The quotient C∗N(X∗ ./ N) (in the sense of
Remark 5.4) is isomorphic to the Cuntz-Pimsner algebra O(Z, X) described in Section 6.4. We
also have the following description of the boundary quotient:

Proposition 6.8. There is an isomorphism φ : Q2 → Q(X∗ ./ N) such that φ(u) = sγ and
φ(s2) = t0.

Proof. We claim that

U := sγ ∈ Q(X∗ ./ N) and S2 := t0 ∈ Q(X∗ ./ N)

satisfy relations (I) and (II). First note that U is unitary because of (Q1). Recall from the
formulae in Section 3.5 that γ · 0 = 1, γ|0 = e, γ · 1 = 0 and γ|1 = γ. It then follows from (K1)
that

US2 = sγt0 = tγ·0sγ|0 = t1se = t1.

Hence
U2S2 = U(US2) = sγt1 = tγ·1sγ|1 = t0sγ = S2U,

and so (I) is satisfied. For (II) first note that, since {0, 1} ⊂ X∗ is a foundation set, we have from
(Q2) that (1− t0t∗0)(1− t1t∗1) = 0. Since t0t

∗
0 and t1t

∗
1 are orthogonal, their sum is one. Hence

S2S
∗
2 + US2S

∗
2U
∗ = t0t

∗
0 + t1t

∗
1 = 1.

So (II) is satisfied. The universal property of Q2 gives a homomorphism φ : Q2 → Q(X∗ ./ N)
such that φ(u) = sγ and φ(s2) = t0. We know φ is injective because Q2 is simple. Since the
generators of Q(X∗ ./ N) are all in the range of φ, we know φ is surjective, and hence an
isomorphism. �
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6.6. Products of self-similar actions. Consider a Zappa-Szép product F+
θ ./ G coming from

a product of two self-similar actions as constructed in Section 3.6, where F+
θ is right LCM. In

general, the C∗-algebra C∗(F+
θ ./ G) is the universal C∗-algebra generated by a Toeplitz-Cuntz-

Krieger family {sλ : λ ∈ F+
θ } and a unitary representation u of G satisfying

(14) ugsλ = sg·λug|λ .

for all g ∈ G and λ ∈ F+
θ . Likewise, the quotient Q(F+

θ ./ G) is the universal C∗-algebra generated
by a Cuntz-Krieger family {sλ : λ ∈ F+

θ } and a unitary representation u of G satisfying (14).
Recall from Section 3.12 the semigroup F+

θ ./ Z constructed from the product of two adding
machines (Z, {0, . . . ,m− 1}) and (Z, {0, . . . , n− 1}). If m and n are coprime, F+

θ is right LCM,
and we can apply our theorems to F+

θ ./ Z. The C∗-algebra C∗(F+
θ ) has been studied extensively

in [9]; Corollary 3.2 of [9] implies that the 2-graph F+
θ is aperiodic, and hence C∗(F+

θ ) is simple
by [26, Theorem 3.1]. It would be interesting, albeit outside the scope of this paper, to further
understand C∗(F+

θ ./ Z) from the point of view of these existing constructions.
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