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Abstract: Well-crystallized Mn
3
O

4
-anchored reduced graphene oxide (rGO) nanocomposites have 

been successfully synthesized via a facile, effective, energy-saving, and scalable microwave 

hydrothermal technique for potential application as supercapacitor material. Integrating these 

nanostructures resulted in a strong synergistic effect between the two materials, consequently 

leading to a hybrid composite with higher specific capacitance compared to the bare Mn
3
O

4
 

nanoparticles. The results from different sorts of characterization indicate that the Mn
3
O

4
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particles were deposited and anchored on graphene sheets. The capacitance value of the 

rGO(31.6%)-Mn
3
O

4
 nanocomposite reached 153 F/g, much higher than that of the bare Mn

3
O

4 

(87 F/g) at a scan rate of 5 mV/s in the potential range from -0.1 V to 0.8 V. More importantly, a 

200% increase in capacitance was observed for the nanocomposite with cycling at 10 mV/s due 

to electrochemical activation and the oxidization of Mn(II,III) to Mn(IV) during cycling, as 

verified by X-ray photoelectron spectroscopy. There is no observable capacitance fading up to 

1000 cycles. The facile synthesis method and good electrochemical properties indicate that the 

nanocomposite could be an electrode candidate for supercapacitors. 

Keywords: microwave hydrothermal, graphene, Mn
3
O

4
, nanocomposite, supercapacitor  

 

1. Introduction 

 

In order to meet the need for high power energy storage systems, the electrochemical capacitor 

(EC) [1], also known as the ultracapacitor or supercapacitor, is an attractive energy storage 

device that is arousing much attention at present. It is well known that an electrochemical 

capacitor can be fully charged or discharged in seconds, which delivers a much higher power 

density (10 kW/kg) over a shorter time compared to batteries [2,3]. Its energy density (about 5 

Wh/kg), however, is significantly lower than for lithium ion batteries (150-250 Wh/kg). 

Therefore, the supercapacitor can play a significant role in complementing lithium ion batteries 

in various energy storage applications, such as in emergency power supplies and peak power 

assistance in electric vehicles. 

 Based on the charge storage mechanism and the active materials used, supercapacitors can be 

classified into two types. The first group only involves physical adsorption of ions, without any 

chemical reactions, and such capacitors are called electric double-layer capacitors (EDLC), the 
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typical electrode materials of which are carbon-based active materials with high surface area and 

low cost [4]. For the second group, the capacitors are termed pseudocapacitors or redox 

supercapacitors, which can rapidly transfer faradic charges between the electrolyte and electrode 

at the surface or near-surface of the active materials for charge storage [5]. Transition metal 

oxides, conducting polymers [6,7], and carbon composites [3,8-11], including graphene based 

composites [12-16], can be used in this class and have been extensively studied in past decades. 

Among these materials, the most widely studied metal oxide is hydrous ruthenium oxide 

(RuO
x
H

y
 or RuO

2
•

 
xH

2
O) due to its high electrical conductivity, on the order of 10

5
 S/cm (at room 

temperature), and its ultra-high theoretical capacitance (~2000 F/g) in a wide potential window 

of 1.4 V, as well as its excellent chemical stability [17]. However, owing to the rarity of Ru, Ru-

based aqueous electrochemical capacitors are very expensive, limiting any wide commercial 

applications. Manganese oxides are considered as one of the most cost-effective transition metal 

oxide materials for the next generation of supercapacitors due to their low cost, environmentally 

friendly nature, and high theoretical specific capacitance [18a]. There are only a few articles, 

however, that have reported Mn
3
O

4 
as electrode material for pseudosupercapacitors so far, due to 

its intrinsic insulating properties (~10
-7
-10

-8
 S/cm). Cui et al. [18b] reported that the specific 

capacitance for MWCNT/Mn
3
O

4 
with high mass loading of 10 mg/cm

2
 was 143 F/g at the scan 

rate of 2 mV/s, and 81% of capacitance can be retained after 100 cycles. Fang et al. [18c] found 

that there was 100% retention of the specific capacitance of Mn
3
O

4 
powders as supercapacitive 

electrode after 400 cycles, based on an initial capacitance of 148 F/g, but the mass loading was 

very low, only 0.01g/cm
2
, so the poor electronic conductivity limits the performance of Mn

3
O

4 
 as 

supercapacitive active material. In order to improve the capacitive performance of Mn
3
O

4
 

electrodes, a promising approach is to construct composite electrodes with Mn
3
O

4
 nanostructures 

embedded in a highly conductive porous matrix. Robust and flexible two-dimensional (2-D) 
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graphene sheets (GS) are an excellent matrix material to encapsulate Mn
3
O

4
. This is due to 

graphene’s high conductivity, large surface area, flexibility, and chemical stability [19-23].  

Herein, we have fabricated well-organized graphene sheets with Mn
3
O

4
 to form 

nanocomposites via a facile, fast, and scalable microwave hydrothermal technique. The 

microwave hydrothermal method, compared with the traditional hydrothermal method, can 

increase the kinetics of crystallization by promoting rapid nucleation and growth, as well as 

offering great possibilities for large-scale batch reactions; therefore, it can achieve large energy 

savings. In addition, in these composites, the Mn
3
O

4
 nanoparticles were deposited on and further 

anchored on the highly conductive graphene sheets, which will not only function as an ionic and 

electronic transport medium in the electrode during the cycling, but could prevent the possible 

detachment of Mn
3
O

4
 from the graphene sheets during cycling. The high specific surface area 

also has benefits for the accommodation of electric double layer capacitance and Mn
3
O

4
 

deposition, so that the as-prepared rGO-Mn
3
O

4
 nanocomposites can preserve high electrical 

conductivity throughout the whole electrode, which leads to higher capacitance in the 

supercapacitor compared to the bare Mn
3
O

4
. Furthermore, we also observed that there was a 

200% increase in capacitance for the nanocomposite with cycling at 10 mV/s as a result of 

electrochemical activation and oxidization of Mn(II,III) to Mn(IV) in the electrolyte during 

cycling, which has been proved by X-ray photoelectron spectroscopy (XPS) analysis in this 

work, and the Mn(IV) is further deposited as MnO
2
, which will increase the capacitance due to 

its higher electric conductivity. A similar phenomenon was observed in the work reported by 

Komaba et al. [43], however, their work did not pay much attention to the intrinsic factor of the 

oxidization of Mn(II,III) [24]. 

 

2. Experimental section 
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2.1 Synthesis of the rGO-Mn
3
O

4
 nanocomposites   

  Graphite oxide (GO) was prepared using a modified Hummers’ method as described elsewhere 

[25]. In a typical preparation of rGO-Mn
3
O

4
 nanocomposite (composite 2), 10 mL of manganese 

acetate (0.2 mol/L) aqueous solution was added into 100 mL of as-prepared GO (0.5 mg/mL) 

dispersion under vigorous magnetic stirring for 4 hours. 2 mL of NaOH (2 mol/L) aqueous 

solution was added dropwise to the above mixture, followed by stirring overnight. Subsequently, 

0.23 mL anhydrous hydrazine was added to the above solution with stirring for 0.5 h, and then 

the solution was diluted by the addition of 100 mL de-ionized water. Finally, 20 mL of this 

brown solution was transferred to a Teflon-lined autoclave and then was irradiated in a Milestone 

Microsynth Microwave Labstation (Germany) for 30 min at 150
o
C. The formation of Mn

3
O

4
 is 

represented by the following Equations (1) and (2) [26]: 

Mn
2+

 + 2OH
-
        Mn(OH)

2                                                           
(1) 

                             3Mn(OH)
2
 + (1/2)O

2
       Mn

3
O

4
 + 3H

2
O                     (2) 

   After the reaction, the precipitate was collected with a centrifuge and rinsed with de-ionized 

water and ethanol three times, respectively. Afterwards, the obtained powders were dried at 60
o
C 

overnight in a vacuum oven. For comparison, nanocomposites with other ratios of Mn
3
O

4
 to rGO 

(composite 1, composite 3) were also prepared by the same experimental procedure, except that 

the amount of GO and anhydrous hydrazine were 50 mL and 0.19 mL, and 150 mL and 0.27 mL, 

respectively. Bare Mn
3
O

4
 nanoparticles were also synthesized by the same procedure but without 

the addition of GO. Pure rGO was synthesized according to a report by Li [25]. The content of 

rGO in the composites was estimated by using thermogravimetric analysis (TGA). It was found 

that the weight percent of rGO in the three rGO-Mn
3
O

4
 nanocomposites was about 18.8 wt.%, 

31.6 wt.%, and 45 wt.%, respectively (Figure S1 in the Supporting Information). 
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2.2 Materials characterization.  

The phase structure of the as-prepared products was characterized by X-ray diffraction (XRD; 

MMA GBC with Cu Kα   radiation) and Raman spectroscopy (Jobin Yvon HR800). The 

morphology and size of the as-obtained products were investigated using field-emission scanning 

electron microscopy (FESEM; JEOL-7500, 2 keV) and transmission electron microscopy (TEM; 

JEOL-2010, 200 keV). Thermogravimetric analysis was conducted on a TA 2000 Thermo-

analyzer. The elemental composition was characterized by X-ray photoelectron spectroscopy 

(XPS; PHOIBOS 100 hemispherical analyser, SPECS GmbH), and the excitation was Al Kα   

radiation at 10 kV (100 W). The survey spectra were collected with pass energy of 69 eV, and 

the particular lines with pass energy of 20 eV. 

  The working electrodes were prepared by mixing 80 wt.% rGO-Mn
3
O

4
 nanocomposite 

powder and 10 wt% carbon black, along with 10 wt% polyvinylidene difluoride (PVdF), in the 

presence of N-methyl pyrrolidinone (NMP), and this slurry was pasted on stainless steel mesh 

and then heat treated at 80
•

C under vacuum overnight. Beaker-type three-electrode cells were 

assembled with a working electrode, a counter electrode (platinum foil), and a reference 

electrode (saturated calomel electrode (SCE)) in 1 M Na
2
SO

4
 electrolyte. Cyclic voltammetry 

(CV) and galvanostatic charge-discharge measurements were performed over the potential range 

from - 0.1 V to 0.8 V at various scan rates (5 to 50 mV/s) and different current densities (0.2 A/g 

- 5 A/g) on a VMP-3 electrochemical workstation. For comparison, the electrochemical 

performance of the bare Mn
3
O

4
 nanoparticles and pure rGO were also investigated under the 

same conditions. 

 

3. Results and discussion 
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    Figure 1 presents the X-ray diffraction (XRD) patterns of the graphene oxide (GO), reduced 

graphene oxide (rGO), bare Mn
3
O

4
 nanoparticles, and rGO(31.6%)-Mn

3
O

4
 nanocomposite. The 

diffraction peak at 9.7
o 
is indexed to GO, and the appearance of the (002) diffraction line at 23.4

o
 

for rGO [27] gives evidence that the graphite oxide was reduced to graphene during the 

microwave hydrothermal process. Meanwhile, it can also be observed that the peaks of graphene 

become broadened after reduction, which is a typical pattern for amorphous carbon structure 

[28], revealing that the stacking of graphene sheets is substantially disordered. 

   The peaks assigned in Figure 1 correspond to the Mn
3
O

4
, which has a tetragonal spinel 

structure with space group I41/amd (JCPDS card: 24-0734), and they also match well with 

previous report in the literature [29]. No other crystalline impurity phases can be observed.  

   In addition, the presence of both rGO and Mn
3
O

4
 phases is indicated by typical peaks in the 

Raman spectra (Figure 2). Figure 2 contains typical Raman spectra of GO, bare Mn
3
O

4
 

nanoparticles, and rGO(31.6%)-Mn
3
O

4
 nanocomposite. For the GO and rGO(31.6%)-Mn

3
O

4
 

nanocomposite
 
samples, the G band (1604 cm

-1
) arises from the zone centre E

2g
 mode, 

corresponding to ordered sp
2
 bonded carbon, whereas the D band (1330 cm

-1
) is ascribed to edges 

or disordered layers. The intensity ratio of the D to the G band (I
D
/I

G
) provides a sensitive 

measure of the disorder and the crystallite size of the graphitic layers [30]. In comparison, the 

intensity ratio I
D
/I

G
 for GO (1.08) is lower than that of the rGO(31.6%)-Mn

3
O

4
 composite (1.31), 

which is due to the presence of unrepaired defects that have remained after the removal of 

oxygen moieties [31], suggesting that the reduction of exfoliated GO leads to smaller and more 

disordered layers, as well as dramatically decreasing the number of stacked graphene layers [32]. 

In addition, minor peaks at 317, 374, and 475 cm
-1
, as well as a dominant peak at 652 cm

-1
 in the 

rGO-Mn
3
O

4
 nanocomposite, can be ascribed to specific vibrations of pure crystalline Mn

3
O

4
 [33, 

34], which are substantially coincident with those of the bare Mn
3
O

4
. The Raman spectrum of 
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rGO-Mn
3
O

4
 nanocomposite is actually that of a combination of pure reduced graphene oxide and 

bare Mn
3
O

4
. This implies that Mn

3
O

4 
and rGO are in their own pristine structures, and no 

chemical reactions have occurred between them during the in situ hydrothermal synthesis 

process. 

 

Figure 1. X-ray diffraction patterns of (a) GO, (b) rGO, (c) bare Mn3O4 nanoparticles, and (d) as-

prepared rGO(31.6%)-Mn3O4 nanocomposite. 

 

Figure 2. Raman spectra of GO, rGO(31.6%)-Mn3O4 nanocomposite, and bare Mn3O4 

nanoparticles. 
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Figure 3. FESEM images of (a) bare Mn3O4 nanoparticles, and (b) rGO(31.6%)-Mn3O4     

nanocomposite. TEM images of rGO(31.6%)-Mn3O4 nanocomposite: (c) large-area 

image and associated selected-area electron diffraction (SAED) pattern (inset), (d) high-

resolution TEM image of Mn3O4 particle in [112] orientation embedded in graphene 

sheets. 

 

To investigate the morphologies of the products, field-emission scanning electron microscope 

(FESEM) images were collected for the bare Mn
3
O

4
 nanoparticles and the rGO(31.6%)-Mn

3
O

4
 

nanocomposite, as shown in Figure 3. The morphology of the bare Mn
3
O

4
 nanoparticles, 
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prepared by the same procedure as for the rGO-Mn
3
O

4
 nanocomposite, is spherical, but the 

nanoparticles are severely aggregated, giving rise to bigger particle sizes in the range of 40-100 

nm (Figure 3(a)). In comparison, we can observe that the size of the Mn
3
O

4
 nanoparticles is 

dramatically decreased to around 20 nm when they are prepared in situ with GO via the 

microwave hydrothermal method, as shown in Figure 3(b), due to the intimate attachment to the 

flexible graphene sheets, which limits the growth and agglomeration of the crystalline Mn
3
O

4
 

particles.   

  The transmission electron microscope (TEM) images in Figure 3(c) and (d) reveal that the 

Mn
3
O

4
 nanoparticles are distributed on the surfaces of the graphene nanosheets in the form of 

either single particles or small particle clusters, and the nature of the Mn
3
O

4
 particles shown in 

Figure 3(c) was further confirmed by selected area electron diffraction (SAED) patterns (inset of 

Figure 3(c)). The visible diffraction rings can be indexed to Hausmannite Mn
3
O

4
 phase, which is 

consistent with the XRD patterns. The high-resolution TEM image (Figure 3(d)) indicates that 

there are multiple overlapping layers near the edges of the Mn
3
O

4 
particles, whereas the d-

spacing of the (002) graphene planes is 0.34 nm, almost equal to the value of pristine graphene. 

The Mn
3
O

4
 particles are anchored on the graphene sheets, and their crystal lattice fringes with d-

spacing of 0.3 nm can be assigned to the (112) planes of tetragonal Mn
3
O

4
. Based on the FESEM 

and TEM images, it could be confirmed that there is an intimate interaction between the Mn
3
O

4
 

particles and the graphene sheets, and this combination could be an ideal way to construct 

composite materials which not only take advantage of the graphene sheets to enable fast electron 

transport from the graphene matrix to the Mn
3
O

4
 nanoparticles, but also retain this benefit for a 

longer time, guaranteeing the enhancement of the cycling performance. 

 The specific capacitance of the as prepared samples was estimated from the cyclic 

voltammograms (CVs) by integrating the area under the current-potential curve and then 
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dividing by the sweep rate (ν ), the mass of the film (m), and the potential window, according to 

Equation (3) [35]: 

                                                                    (3) 
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Figure 4. Cyclic voltammograms of electrodes made from (a) bare Mn3O4 nanoparticles at 



 14

different scan rates, (b) rGO(31.6%)-Mn3O4 nanocomposite at different scan rates, (c) 

bare Mn3O4 nanoparticles, pure rGO, and rGO(18.8%, 31.6%, 45%)-Mn3O4 

nanocomposites at the scan rate of 20 mV/s, (d) rGO(31.6%)-Mn3O4 composite in typical 

selected cycles at the scan rate of 10 mV/s, and (e) cycling stability of rGO(18.8%, 

31.6%, 45%)-Mn3O4 nanocomposites, bare Mn3O4 nanoparticles, and pure rGO 

electrodes at the scan rate of 10 mV/s. (f) Galvanostatic charge−discharge curves of bare 

Mn3O4 nanoparticles and rGO(31.6%)-Mn3O4 nanocomposite at current density of 1 A/g, 

(g) Specific capacitance calculated from galvanostatic charge−discharge curves at 

different current densities of bare Mn3O4 nanoparticles and rGO(31.6%)-Mn3O4  

nanocomposite. All cyclic voltammograms and galvanostatic charge-discharge profiles 

were measured in 1 M Na2SO4 electrolyte in the voltage range from -0.1 V to 0.8 V. 

 

Figure 4(a) and (b) compare the cyclic voltammogram profile of the bare Mn
3
O

4
 nanoparticle 

electrode with that of the rGO(31.6%)-Mn
3
O

4
 nanocomposite electrode at different scan rates in 

1 M Na
2
SO

4
 electrolyte. The anodic and cathodic potential limits were set to 0.8 V and - 0.1 V 

vs. SCE, due to the irreversible reactions beyond these two limits of the potential window in the 

hydrous electrolyte [36]. The CV profiles of composites 1 and 3, and of pure rGO are shown in 

Figure S2(a-c). 

   Obviously, the rGO(31.6%)-Mn
3
O

4
 nanocomposite electrode presents the largest integrated 

area compared to the bare Mn
3
O

4
 nanoparticle electrode, the pure rGO, and the other two 

nanocomposite electrodes, as shown in Figure 4(c), and all of these nanocomposite and bare 

Mn
3
O

4
 electrodes exhibit the typical characteristics of pseudocapacitive behavior. The specific 

capacitance of the bare Mn
3
O

4
 nanoparticles and the rGO(31.6%)-Mn

3
O

4
 nanocomposite was 

calculated to be 87 F/g and 153 F/g, respectively, at 5 mV/s according to Equation (3), as shown 
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in Table 1, indicating that the capacitance of the nanocomposite has been significantly increased 

due to the addition of GO. The enhancement in capacitance can be ascribed to the large specific 

surface area of the graphene in the nanocomposite material, which favours charge storage and 

ion transfer, and there is also a significant charge transfer from the graphene layer to the 

Mn
3
O

4
(001) surface in the ground electronic state, based on our previous theoretical 

computations [37], which can considerably enhance the electronic conductivity of the whole 

nanocomposite.  

 An increase in the anodic and cathodic currents of the rGO(31.6%)-Mn
3
O

4
 nanocomposite 

with cycling is also clearly observed in the CV curves over the whole potential range, with 

cycling at the scan rate of 10 mV/s, particularly before 200 cycles. The current response in the 

CV become stable after around 300 cycles (Figure 4(d)). As shown in Figure 4(e), the specific 

capacitance of rGO(31.6%)-Mn
3
O

4
 reaches a value of approximately 315 F/g at the 300

th
 cycle, 

much higher than that reported in previous work [38]. In particular, after 300 cycles, the specific 

capacitance slightly increases up to 1000 cycles. The shape of the CV profiles, as shown in 

Figure 4(d), become more rectangular, and the cathodic peak at around 0.5 V and the anodic 

peak at 0.4 V generally become stronger, while the peaks shift toward higher potential with 

cycling, which could be attributed to both the electrochemical activation of the rGO(31.6%)-

Mn
3
O

4
 electrode and the oxidization of the low valence state of Mn ions [39,44]. In comparison, 

a similar trend towards increasing capacitance can be observed in the bare Mn
3
O

4
 nanoparticles, 

as well as the rGO(18.8%)-Mn
3
O

4
 and rGO(45%)-Mn

3
O

4
 nanocomposites, but the specific 

capacitance for pure rGO decreased gradually to 45 F/g after 1000 cycles in Figure 4(e). The 

specific capacitance of the bare Mn
3
O

4
 nanoparticles experienced a slight decay after 200 cycles 

after an increase from 66 F/g in the initial cycle to 251 F/g at the 200
th
 cycle, while the specific 

capacitance values for the nanocomposites (rGO(18.8%, 45%)-Mn
3
O

4
) could remain stable up to 



 16

1000 cycles, which further indicates that the graphene sheets in this composite play a significant 

role in terms of ensuring high conductivity and cycling stability through intimate interaction with 

the Mn
3
O

4
 nanoparticles. 

      Galvanostatic charge–discharge (CD) measurements performed on the three electrodes in a 

potential window from -0.1 to 0.8 V provide a complementary measurement of the capacitance. 

Figure 4(f) shows the charge–discharge profiles of the bare Mn3O4, pure rGO, and rGO(31.6%)-

Mn3O4 nanocomposite electrodes at the current density of 1 A/g. The rGO electrode presents 

linear charge and discharge profiles, indicating purely capacitive behavior, however, for bare 

Mn3O4 and the nanocomposite, the charge curve is almost symmetric with its corresponding 

discharge counterpart, with a small internal resistance (IR) drop, indicating the pseudocapacitive 

contribution, along with the double layer contribution. The specific capacitance was calculated 

using Equation (4):  

                                          (4) 

where i is the discharge current, ∆t, the discharge time, m, the mass of the active material and ∆E, 

the potential window. The specific capacitances calculated from the charge–discharge profiles in 

Figure 4(f) were 35, 53, and 107 F/g for bare Mn3O4, rGO, and rGO(31.6%)-Mn3O4 

nanocomposite, respectively. Figure 4(g) shows the variation in the specific capacitance with 

current density. A sharp decrease in specific capacitance is observed at low current densities. The 

specific capacitance of bare Mn3O4 was 70, 50, 35, 30, and 29 F/g at 0.2, 0.5, 1, 2, and 5 A/g, 

respectively, and the specific capacitance for pure rGO was 75, 54, 53, 46, and 39 F/g at 0.2, 0.5, 

1, 2, and 5 A/g. In contrast, the specific capacitance for the rGO(31.6%)-Mn3O4 nanocomposite 

was 181, 165, 107, 78, and 56 F/g at 0.2, 0.5, 1, 2, and 5 A/g. The higher capacitance of the 
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composite can be attributed to the improvement in conductivity in the presence of GO. The 

results are in agreement with those calculated using cyclic voltammetry, where a synergistic 

effect between the rGO and Mn3O4 is observed.  

     

 

Figure 5. XPS spectra of the fresh electrode  and the electrode after 1000 cycles for rGO(31.6%)-

Mn3O4 nanocomposite in (a) the Mn 2p and (b) the Mn 3s region. Mixed Gaussian and 

Lorentzian component peaks are also exhibited in the spectra. 

In order to confirm the factors behind the enhanced pseudocapacitive properties observed 

during cycling, X-ray photoelectron spectroscopy (XPS) was used to determine the oxidation 
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state of the fresh rGO(31.6%)-Mn
3
O

4
 nanocomposite and that of the same electrode after 1000 

cycles. In Figure 5(a), the binding energy peaks of Mn 2p
3/2

 for the fresh electrode and the 

electrode after cycling are located at 641.5 eV and 642.2 eV, which are indexed to Mn
3
O

4
 and 

MnO
2
, respectively, and they are also in good agreement with the literature [40], revealing that in 

the nanocomposite, Mn(II,III) ions may be oxidized to Mn(IV) after cycling. 

  Further evidence of the oxidation process can be seen from the multiplet splitting of the Mn 

3s peaks in the core level spectra in Figure 5(b), which were further examined to assess the 

change in terms of the oxidation state of manganese between the fresh rGO(31.6%)-Mn
3
O

4
 

nanocomposite electrode and the cycled electrode on the basis of the parallel spin coupling of the 

3s electron with the 3d electron during the photoelectron ejection. The corresponding peak 

separation energy (∆ E) is defined as the exchange interaction energy in Equation (5) [40-42]: 

∆ E = (2S+1) K [3s,3d]                (5) 

where S is the total spin of unpaired electrons in the 3s and 3d levels in the final states and K[3s, 

3d] is the exchange integral between the 3s and 3d energy levels. 

 The energy separation between the two peaks is intrinsically related to the mean manganese 

oxidation state. Since a lower valence implies more electrons in the 3d orbital, more interaction 

can occur through photoelectron ejection. Consequently, the energy separation between the two 

components of the Mn 3s multiplet will increase at the lower valence. The inverse trend will be 

observed when the manganese valence increases. From Figure 5(b), we can observe that the 

splitting width of the electrode after cycling is 4.73 eV, smaller than before cycling (5.5 eV), 

indicating that the manganese oxidation state increased to Mn(IV), on the basis of an 

approximately linear relationship between the Mn 3s splitting width and the Mn oxidation state 

according to previous reports in the literature [40]. 
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 Based on XPS analysis and previous reports [39], it can be concluded that the as-prepared 

rGO(31.6%)-Mn
3
O

4
 was oxidized to Mn(IV) by electrochemical oxidation during cyclic 

voltammetry within the potential range from -0.1 to 0.8 V (vs. SCE) in 1 M Na
2
SO

4
 electrolyte. 

The electrochemically oxidized MnO
2
 electrode showed better pseudocapacitive performance 

due to the enhanced electronic conductivity. Specifically, Mn
3
O

4
 has a spinel structure and is 

virtually an insulator, while MnO
2
 is a semiconductor; therefore, the electrochemically oxidized 

MnO
2
 exhibits higher electronic conductivity through the film matrix onto the current collector, 

which can exactly explain the interesting phenomenon of increasing capacitance with cycling 

described above.  

   Although a similar capacitance increase phenomenon has been observed and reported in quite a 

few papers on Mn
3
O

4
 as electrode material for supercapacitors [39,43], in some other reported 

work [44], the capacitance increase was not observed during cycling. The possible reason could 

be the partial detachment of Mn
3
O

4
 from the graphene sheets during cycling; therefore, the 

capacitance increase of the electrode due to the valence state change in the Mn ions and 

electrochemical activation will be sacrificed by the relatively lower utilization of Mn
3
O

4
, and the 

electrode will eventually show stable capacitance during cycling. It is well known that the 

electronic configuration of the 3d orbital in Mn(III) of Mn
3
O

4 
is expressed as t

2g

3
–e

g

1
, which 

indicates a typical Jahn-Teller ion having lower stabilization energy in the non-distorted 

octahedral environment. Mn(III) tends to be disproportionated into Mn(II) (t
2g

3
–e

g

2
) and Mn(IV) 

(t
2g

3
), resulting in the release of Mn

2+
 ions into the electrolyte and also the phase conversion into 

MnO
2
. It is very likely that Mn

3
O

4
 nanostructures detach from the graphene sheets when Mn

2+
 

ions are dissolved into the electrolyte [43], and therefore, part of the Mn
3
O

4
 loses contact with the 

graphene sheets. In our work, Mn
3
O

4
 nanoparticles were still anchored on the graphene, even 

after 1000 cycles, as shown in Figure S3. It can be observed that the particle size of MnOx after 
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cycling becomes smaller than in its fresh counterparts in Figure 3(c), and the smaller particles 

aggregate together as circled in Figure S3. In addition, the MnOx particles become nearly 

amorphous due to repeated reduction/oxidation reactions. Hence, it appears that the 

electrochemical performance is significantly affected by the morphology and the distribution of 

the active materials.  

 

4. Conclusions 

  In summary, we successfully synthesized Mn
3
O

4
-anchored graphene sheet nanocomposites 

from GO via a facile, effective, energy-saving, and scalable microwave hydrothermal technique. 

The Mn
3
O

4
 particles in the nanocomposites, directly growing on the surfaces of graphene sheets, 

interact with each other intimately, so that the rGO-Mn
3
O

4
 nanocomposites exhibit better 

performance in the pseudosupercapacitor than the bare Mn
3
O

4 
nanoparticles. The capacitance was 

raised from 87 F/g for the bare Mn
3
O

4 
to 153 F/g for the rGO(31.6%)-Mn

3
O

4
 nanocomposite in 

the presence of graphene oxide at the scan rate of 5 mV/s. Moreover, the capacitance for the 

rGO(31.6%)-Mn
3
O

4 
composite electrode reached 315 F/g at 300 cycles and remained stable up to 

1000 cycles at the scan rate of 10 mV/s. The possible reasons for the capacitance increase during 

electrochemical cycling can be ascribed to: (1) Mn(II,III) was gradually oxidized to Mn(IV) in 

the electrolyte during cycling, which has been proved by XPS analysis in this paper. The Mn(IV) 

further deposited as MnO
2
 will increase the capacitance due to its higher electric conductivity. 

(2) The ideal structure, in which the Mn
3
O

4
 nanoparticles were deposited on, and further attached 

intimately to graphene sheets, can enhance the electronic conductivity of the whole composite 

and prevent the possible detachment of Mn
3
O

4
 from the graphene sheets during cycling. 

 

Supporting Information  
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TGA curves of rGO(18.8%)-Mn3O4 nanocomposite (composite 1), rGO(31.6%)-Mn3O4 

nanocomposite (composite 2), rGO(45%)-Mn3O4 nanocomposite (composite 3), and  bare Mn3O4 

nanoparticles (Figure S1); Cyclic voltammograms of (a) rGO(18.8%)-Mn3O4 nanocomposite 

(composite 1), (b) rGO(45%)-Mn3O4 nanocomposite (composite 3), and (c) pure rGO at different 

scan rates in the voltage range from -0.1 V-0.8 V in 1 M Na2SO4 electrolyte (Figure S2); and 

TEM image of the rGO(31.6%)-Mn3O4 nanocomposite electrode after 1000 cycles (Figure S3). 
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Figure S1 TGA curves of rGO(18.8%)-Mn3O4 nanocomposite (composite 1) , rGO(31.6%)-

Mn3O4 nanocomposite (composite 2), rGO(45%)-Mn3O4 nanocomposite (composite 3), 

and  bare Mn3O4 nanoparticles.    

Figure S2 Cyclic voltammograms of (a) rGO(18.8%)-Mn3O4 nanocomposite (composite 1), (b) 

rGO(45%)-Mn3O4 nanocomposite (composite 3), and (c) pure rGO at different scan rates 

in the voltage range from -0.1 V−0.8 V in 1 M Na2SO4 electrolyte. 

Figure S3 TEM image of the rGO(31.6%)-Mn3O4 nanocomposite  electrode after 1000 cycles. 

The red circle indicates an aggregation of MnOx particles.  Inset is the corresponding 

selected-area electron diffraction pattern. 
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Figure S1 
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Figure S2(a) 
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Figure S2(b) 
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Figure S2(c) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 1. Specific capacitance 

composite at different scan rates at the first cycle.

 5 mV/s

Bare Mn3O4 87

Composite  153

 

 

 

 

 

 

 

 

Figure S3  

 (F/g) of bare Mn3O4 nanoparticles and rGO

composite at different scan rates at the first cycle. 

5 mV/s 10 mV/s 20 mV/s 50 mV/s 

87 66 52 35 

153 127 106 86 

35

rGO(31.6%)-Mn3O4 
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