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Summary. Recently proposed outlier robust small area estimators can be substantially biased when outliers 

are drawn from a distribution that has a different mean from that of the rest of the survey data. This naturally 

leads one to consider an outlier robust bias correction for these estimators. In this paper we develop this idea, 

proposing two different analytical mean squared error estimators for the ensuing bias corrected outlier robust 

estimators. Simulations based on realistic outlier contaminated data show that the proposed bias correction 

often leads to more efficient estimators. Furthermore, the proposed mean squared error estimation methods 

appear to perform well with a variety of outlier robust small area estimators. 

 

Keywords: Bias-variance trade-off; Linear mixed model; M-estimation; M-quantile model; Robust 

prediction; Robust bias correction. 

 

1. Introduction 

Outliers are a fact of life for any survey and as a result, a variety of methods have been devised to mitigate 

the effects of outlier values on survey estimates. Some of these, for example identification and removal of 

outlier data values by experienced data experts during survey processing, can be effective in ensuring that the 

resulting survey estimates are unaffected by these values. However, being somewhat subjective, such 

methods are not amenable to scientific evaluation. As a consequence there are a number of objective methods 

for survey estimation that use statistical rules to decide whether an observation is a potential outlier, and to 

down-weight its contribution to the survey estimates if this is the case. Generally, an outlier robust estimator 

of this type is based on the assumption that the non-sample data values all follow the assumed working 

model, and so these estimators aim to robustly estimating the expected value of the non-sample sum (or 

mean) of the study variable under this working model on the basis of the outlier-contaminated sample data. 

In practice, this often involves replacement of an outlying sample value by an estimate of what it should have 
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been if in fact it had been generated under the working model. We refer to such methods as Robust Projective 

in what follows since they project sample non-outlier (i.e. working model) behaviour on to the non-sampled 

part of the survey population. 

Robust Projective methods essentially emulate the subjective approach described earlier, and typically 

lead to biased estimators with lower variances than would otherwise be the case. The reason for the bias is 

not difficult to find – it is extremely unlikely that all the non-sampled values in the target population are 

drawn from the same distribution as the sample non-outliers, and yet these methods are built on precisely this 

assumption. Chambers (1986) recognised this dilemma and coined the concept of a ‘representative outlier’, 

i.e. a sample outlier that is potentially drawn from a group of population outliers and hence cannot be unit-

weighted in estimation. He noted that representative outliers cannot be treated on the same basis in 

estimation as other sample data more consistent with the working model for the population, since such 

outlier values can seriously destabilise the survey estimates, and suggested the addition of an outlier robust 

bias correction term to a Robust Projective survey estimator, e.g. one based on outlier-robust estimates of the 

model parameters. Welsh and Ronchetti (1998) expand on this idea, applying it more generally to estimation 

of the finite population distribution of a survey variable in the presence of representative outliers. A similar 

idea is implicit in the approach described in Chambers et al. (1993), where a nonparametric bias correction is 

suggested. In what follows, we refer to methods that allow for contributions from representative sample 

outliers as Robust Predictive since they attempt to predict the contribution of the population outliers to the 

population quantity of interest. 

If outliers are a concern for estimation of population quantities, it is safe to say that they are even more of 

a concern in small area estimation (SAE), where sample sizes are considerably smaller and model-dependent 

estimation is the norm. It is easy to see that an outlier that destabilises a population estimate based on a large 

survey sample will almost certainly destroy the validity of the corresponding direct estimate for the small 

area from which the outlier is sourced, since this estimate will be based on a much smaller sample. This 

problem does not disappear when the small area estimator is an indirect one, e.g. an Empirical Best Linear 

Unbiased Predictor (EBLUP), since the weights underpinning this estimator will still put most emphasis on 

data from the small area of interest, and the estimates of the model parameters underpinning the estimator 
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will themselves be destabilised by the sample outliers. Consequently, it is of some interest to see how outlier 

robust survey estimation can be adapted to this situation. 

Chambers and Tzavidis (2006) explicitly address this issue of outlier robustness in SAE, using an 

approach based on fitting outlier robust M-quantile models to the survey data. More recently, Sinha and Rao 

(2009) also address this issue from the perspective of linear mixed models. Both these approaches, however, 

use plug-in robust prediction. That is, they replace parameter estimates in optimal, but outlier sensitive, 

predictors by outlier robust versions (a Robust Projective approach). Unfortunately, although this approach 

typically leads to a low prediction variance, it can involve an unacceptable prediction bias in situations where 

the outliers are drawn from a distribution that has a different mean to the rest of the survey data. 

After discussing Robust Projective estimators for small areas in Section 2, we explore the extension of the 

Robust Predictive approach to the SAE situation in Section 3. In Section 4 we propose two different 

analytical mean squared error (MSE) estimators for outlier robust predictors of small area means. In 

particular, the first proposal is based on the bias-robust mean squared error estimation approach described in 

Chambers et al. (2011) and represents an extension of the ideas in Royall and Cumberland (1978). The 

second MSE estimator is based on first order approximations to the variances of solutions of outlier robust 

estimating equations. We show how these two approaches can be useful for estimating the MSE of various 

small area predictors considered in this paper. In Sections 5 and 6 we use model-based simulations based on 

realistic outlier contaminated data scenarios as well as design-based simulations to evaluate how these two 

different approaches compare, both in terms of point estimation performance as well as in terms of MSE 

estimation performance. Section 7 concludes the paper with some final remarks, and a discussion of future 

research aimed at outlier robust small area inference. 

 

2. Robust Projective Estimation for Small Areas 

In what follows we assume that unit record data are available at small area level. For the sampled units in the 

population this consists of indicators of small area affiliation, values y
j
 of the variable of interest, values 

x
j
 of a p ×1 vector of individual level covariates, and values z

j
 of a vector of area level covariates. For 

the non-sampled population units we do not know the values of y
j
. However, it is assumed that all areas are 
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sampled and that we know the numbers of such units in each small area and the respective small area 

averages of x
j
 and z

j
. We also assume that there is a linear relationship between y

j
 and x

j
 and that 

sampling is non-informative for the small area distribution of y
j
 given x

j
, allowing us to use population 

level models with the sample data. 

Battese et al. (1988) introduced the use of linear mixed models for SAE, with random effects for the 

small areas of interest. See Rao (2003) for a comprehensive review of SAE based on these models. A more 

recent, and more compact, review is Chambers and Clark (2012, Chapter 15). Let y , X  and Z  denote 

the population level vector and matrices defined by y
j
, x

j
 and z

j
 respectively. Then 

 , (1) 

where 
 
u = u1

T ,� , um

T( )T  is a vector of dimension mq  made up of m independent realisations 

 
{u

i
; i = 1,� , m}  of a q-dimensional random area effect with  and  is a vector of 

N individual specific random effects. It is also assumed that u  is distributed independently of e . Here m is 

the total number of small areas that make up the population and q is the dimension of z
j
 so that Z  is a 

N × mq  matrix of fixed known constants. We assume that the covariance matrices  and  are defined 

in terms of a lower dimensional set of parameters , which are typically referred to as the 

variance components of (1), while the vector  is usually referred to as its fixed effects parameter. 

Let  denote the estimate of the fixed effects parameter in (1) and let 
 
û = û1

T ,� , ûm

T( )T  denote the 

vector of predicted values of the random area effects in (1). The EBLUP of the area i mean of the y j
 under 

(1) is then 

  (2) 

where we use indices of s and r to denote sample and non-sample quantities respectively. Thus, y
si

 is the 

average of the n
i
 sample values of y j

 from area i and x
ri

 and z
ri

 denoting the vectors of average 

values of x j
 and z j

 respectively for the N
i
− n

i
 non-sampled units in the same area. 

From a Robust Projective viewpoint, (2) can be made insensitive to sample outliers by replacing  and û  

by outlier robust alternatives. To motivate this approach, we initially assume the variance components  
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are known, so the covariance matrices  and  in (1) are known. Put  where  

denotes the sample component of . Then the Best Linear Unbiased Estimator (BLUE) of the fixed effects 

parameter  and the Best Linear Unbiased Predictor (BLUP) of the random effects vector u  are solutions 

to 

  (3) 

and 

 . (4) 

A straightforward way to make the solutions to (3) and (4) robust to sample outliers is therefore to replace 

them by 

  (5) 

and 

 . (6) 

Here ψ  is a bounded influence function and ψ (a) denotes the vector defined by applying ψ  to every 

component of a . Observe that the bounded influence function is applied separately to model residuals and 

to predicted area effects in (5) and (6), making the solutions to these estimating equations robust against 

individual as well as area outliers. Unfortunately, since V
s
 is not a diagonal matrix, the solution to (6) can 

be numerically unstable. An alternative approach was therefore suggested by Fellner (1986), who noted that 

any solution to (3) and (4) was also a solution to 

 and . 

Fellner (1986) suggested that these alternative estimating equations (and hence their solutions) can be made 

outlier robust by replacing them by 

  (7) 

and 

 . (8) 

Since (7) and (8) assume the variance components  are known, their usefulness is somewhat limited 
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unless outlier robust estimators of these parameters can also be defined. Richardson and Welsh (1995) 

propose two outlier robust variations to the maximum likelihood estimating equations for . One of these 

(ML Proposal II) leads to an estimating equation for the variance component θ
k
 of  of the form 

 , (9) 

where ∂θk
Vs

 denotes the first order partial derivative of V
s
 with respect to the variance component θ

k
 

and, for 
 
Z � N (0,1) , Dn

ψ = E ψ 2 (Z ){ }Vs

−1
. Richardson and Welsh (1995) also proposed robust REML-type 

equations for  but unlike (9) these are not robust generalisations of REML estimating equations. 

Sinha and Rao (2009) describe an approach to outlier robust estimation of  and u  in (1) that builds 

on these results, substituting approximate solutions to both (5) and (9) into the Fellner estimating equation 

(8) to obtain an outlier robust predicted value of the area effect u . In particular, their approach replaces (5) 

by 

 , (10) 

where Us = diag Vs( ) , and replaces (9) by 

  (11) 

Since the solutions to (10) and (11) depend on the influence function ψ , we denote them by a superscript of 

ψ  below. The Sinha and Rao (2009) Robust Projective alternative to (2) is then 

 . (12) 

Note that (12) estimates the area i mean under (1). A minor modification restricts this to the mean of the non-

sampled units in area i, in which case (12) becomes 

 . (13) 

From now on, we refer to (13) as the Robust EBLUP or REBLUP. 

An alternative methodology for outlier robust SAE is the M-quantile regression-based method described 

by Chambers and Tzavidis (2006). This is based on a linear model for the M-quantile regression of y  on 

X , i.e. 

 , (14) 
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where mq (y | X)  denotes the M-quantile of order q of the conditional distribution of y  given X . An 

estimate  of  can be calculated for any value of q  in the interval (0,1), and for each unit in the 

sample we define its unique M-quantile coefficient under this fitted model as the value q j
 such that 

, with the sample average of these coefficients in area i denoted by q
i
. The M-quantile estimate 

of the mean of y j
 in area i, hereafter MQ, is then 

 . (15) 

Note that the regression M-quantile model (14) depends on the influence function ψ  and so does MQ. 

When this function is bounded, sample outliers have limited impact on . That is, (15) corresponds to 

assuming that all non-sample units in area i follow the working model (14) with q = q
i
, in the sense that one 

can write  for all such units. 

 

3. Robust Predictive Estimation for Small Areas 

A problem with the Robust Projective approach is that it assumes all non-sampled units follow the working 

model, or, in what essentially amounts to the same thing, that any deviations from this model are noise and 

so cancel out ‘on average’. Thus, under the linear mixed model (1) one can see that provided the individual 

errors of the non-sampled units are symmetrically distributed about zero, the REBLUP (13) suggested by 

Sinha and Rao (2009) will perform well since it is based on the implicit assumption that the average of these 

errors over the non-sampled units in area i converges to zero. The M-quantile estimator MQ (15) of 

Chambers and Tzavidis (2006) is no different since it assumes that the errors  from the area i-

specific M-quantile regression model are ‘noise’ and hence also cancel out on average. Note that this does 

not mean that these non-sample units are not outliers. It is just that our best prediction of the corresponding 

small area average value of their model errors is zero. 

Welsh and Ronchetti (1998) consider the issue of outlier robust prediction within the context of 

population level survey estimation. Starting with a working linear model linking the population values of y j
 

and x j
, and sample data containing representative outliers, they extend the approach of Chambers (1986) to 
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robust prediction of the empirical distribution function of the population values of y j
. Their argument 

immediately applies to robust prediction of the empirical distribution function of the area i values of y j
, and 

leads to a predictor of the form 

 . (16) 

Here  denotes an M-estimator of the regression parameter in the linear working model based on a 

bounded influence function ψ , ω ij

ψ  is a robust estimator of the scale of the residual  in area i 

and φ  denotes a bounded influence function that satisfies φ ≥ ψ . Tzavidis et al. (2010) note that the 

robust estimator of the area i mean of the y j
 consistent with (16) is just the expected value functional 

defined by it, which is 

 . (17) 

These authors therefore suggest an extension to the M-quantile estimator (15) by replacing  in (17) by 

, which leads to a bias-corrected version of (15), hereafter MQ-BC, given by 

 . (18) 

Here ω ij

MQ is a robust estimator of the scale of the residual  in area i. 

The use of the two influence functions ψ  and φ  in (18) is worthy of comment. The first, ψ , 

underpins , and hence . Its purpose is to ensure that sample outliers have little or no influence on the 

fit of the working M-quantile model. As a consequence it is bounded and so downweights these outliers. The 

second, φ , is still bounded but ‘less restrictive’ than ψ  (since φ ≥ ψ ), and its purpose is to define an 

adjustment for the bias caused by the fact that the first two terms on the right hand side of (18) treat sample 

outliers as self-representing. A similar argument can be used to modify REBLUP (13). In particular, a Robust 

Predictive version of this estimator, hereafter REBLUP-BC, mimics the bias correction idea used in (18) and 

leads to 
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 , (19) 

where the ω ij

ψ  are now robust estimates of the scale of the area i residuals . 

 

4. MSE Estimation for Robust Predictors 

In this Section we propose two different analytic methods of MSE estimation for robust predictors of small 

area means under the Robust Projective and Robust Predictive approaches. Both are developed on the 

assumption that the working model for inference conditions on the realised values of the area effects, and so 

the proposed MSE estimators are conditional estimators. In Section 4.1 we apply the ideas set out by 

Chambers et al. (2011) to define a pseudo-linearization estimator of the conditional MSE of REBLUP (13). 

Similar conditional MSE estimators for REBLUP-BC (19), MQ (15) and MQ-BC (18) follow directly. In 

Section 4.2 we use first order approximations to the variances of solutions of estimating equations to develop 

conditional MSE estimators for REBLUP (13) and REBLUP-BC (19). Analogous MSE estimators for MQ 

(15) and MQ-BC (18) based on this approach are described in the Appendix. 

 

4.1 Pseudo-linearization approach to MSE estimation for robust small area predictors 

Sinha and Rao (2009) propose a parametric bootstrap-based estimator for the MSE of REBLUP. Here we 

describe an analytical estimator of the conditional MSE of REBLUP that is less computationally demanding. 

The proposed estimator is based on the pseudo-linearization approach to MSE estimation described by 

Chambers et al. (2011), which can be used for predictors that can be expressed as weighted sums of the 

sample values. Since REBLUP can be expressed in a pseudo-linear form, i.e. as a weighted sum of the 

sample values of y, this approach is immediately applicable. To start, we note that under (1), and assuming 

that the variance components are known, the Robust BLUP or RBLUP of y
i
 can be expressed as  

 ŷi

RBLUP = wij

RBLUP y jj∈s∑ = w is

RBLUP( )T ys
, (20) 

where 

wis

RBLUP( )T = N i

−1 1s

T + N i − ni( ) xir

T As + zir

T Bs Is −XsA s( ) { } . 
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Here 

• As = Xs

T Vs

−1Us

1/2W1sU s

−1/2Xs( )−1

Xs

T Vs

−1Us

1/2W1sU s

−1/2 , with W1s
 a n × n  diagonal matrix of weights with 

j-th component ; 

• , with W2 s
 a n × n diagonal matrix of 

weights with j-th component , and 

W3s
 is a m ×m  diagonal matrix of weights with i-th component ; 

•  and  are the solutions to (10) and (11) when variance components are known. 

In addition, 1
s
 is the n-vector with j-th component equal to one whenever the corresponding sample unit is 

in area i and is zero otherwise. The REBLUP (13) can be expressed in exactly the same way, except that all 

quantities in the weight vector w is

RBLUP  that depend on (unknown) variance components now need a ‘hat’, in 

which case we denote it by w is

REBLUP . Given this pseudo-linear representation for REBLUP, a simple first 

order approximation to its MSE is developed assuming the conditional version of the model (1), i.e. the 

random effects are considered to be fixed, but unknown, quantities. Let I ( j ∈i) denote the indicator for 

whether unit j is in area i. The estimator of the conditional MSE of REBLUP is then 

 , (21) 

where  

V̂ (ŷi

REBLUP
) = Ni

−2
aij

2 + (N i − ni )n
−1{ }λ j

−1
(y j − µ̂ j )

2

j∈s∑  

is the estimate of the conditional prediction variance of (13), with aij = N iwij

REBLUP − I( j ∈i) and  

B̂(ŷi

REBLUP
) = wij

REBLUPµ̂ jj∈s∑ − Ni

−1 µ̂ jj∈ ri∪si( )∑  

is the estimate of its conditional prediction bias. In order to calculate (21) we need to define µ̂ j
 and λ̂ j

. 

Here µ̂ j = φkj ykk∈s∑  is an unbiased linear estimator of the conditional expected value µ j = E y j | x j ,u
ψ( ) 

and λ j = 1− 2φ jj + φkj

2

k∈s∑{ }  is a scaling constant. Because of the well-known shrinkage effect associated 

with BLUPs, replacing µ̂ j
 by the EBLUP of µ j

 under (1) can lead to biased estimation of the conditional 
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prediction variance. Chambers et al. (2011) therefore recommend that µ̂ j
 be computed as the ‘unshrunken’ 

version of the EBLUP for µ j
. See also Salvati et al. (2012). Note that the MSE estimator (21) ignores the 

extra variability associated with estimation of the variance components, and hence is a first order 

approximation to the actual conditional MSE of REBLUP. 

The MSE estimator for REBLUP-BC (19) is obtained using the same pseudo-linearization approach as 

outlined above. The only difference is that the weights wij

REBLUP  used in (21) are now replaced by 

corresponding REBLUP-BC weights. Furthermore, since REBLUP-BC is an approximately unbiased 

estimator of the small area mean, the squared bias term in (21) is omitted. 

It has been empirically demonstrated that this method of MSE has good repeated sampling properties for 

realistic small area applications - see Chandra and Chambers (2009), Chambers and Tzavidis (2006), 

Chandra et al. (2007), Tzavidis et al. (2010) and Salvati et al. (2010). Although empirical results (see 

Chambers et al., 2011) show that (21) performs well in terms of bias, this improved bias performance comes 

at the cost of increased mean squared error, mainly due to variability of the squared bias term in this 

situation. In particular, when the area-specific sample sizes are very small, the use of (21) can lead to MSE 

estimates with high MSE. 

 

4.2 Linearization based MSE estimation for small area predictors 

In what follows we build on the linearization ideas set out in Booth and Hobert (1998) to propose a new 

estimator of the MSE of a small area estimator that is defined by the solution of a set of robust estimating 

equations. The MSE is shown to be a sum of a prediction variance, a squared bias term and a correction term 

that accounts for the sampling variability of parameter estimates. Our theoretical development is based on 

approximations that correspond to assuming that max ni( ) =O 1( ) , so that, as m→∞ , the prediction 

variance and the squared bias are O 1( ) and the correction term is O m
−1( ) . We also make the standard 

assumption that a consistent estimator of the MSE of a linear approximation to the small area estimator of 

interest can be used as its MSE estimator. As noted by Harville and Jeske (1992), such an approach will not 

generally be consistent, and the resulting MSE estimator can be biased low. In small sample problems this is 
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not generally an issue. However, it needs to be kept in mind in what follows. 

We illustrate this approach by applying it to estimation of the conditional MSE of REBLUP (13) and 

REBLUP-BC (19). The corresponding MSE estimator for the EBLUP (2) can be obtained as a special case of 

the MSE estimator of REBLUP (13). In order to conserve space, the development omits some technical 

details, but these are available from the authors upon request. Note that when used with an estimator based 

on a mixed model, the proposed MSE estimator provides a second order approximation to the conditional 

MSE, since it includes a term for the contribution to the variability resulting from the estimation of the 

variance components. Throughout, we assume use of a Huber Proposal 2 influence function with tuning 

constant c. We also assume the regularity conditions (RC1) to (RC7) set out in the Appendix. 

Under model (1) the conditional prediction variance of the Robust BLUP (RBLUP) of y
i
 can be 

expressed as 

  (22) 

where 
 
with corresponding 'true' value . Here 

,  and a subscript of u is used to denote 

moments that are conditioned on the realised values of the area effects. In order to estimate (22) we need to 

estimate . From (8) and (10) we see that  where 

 . 

We compute the asymptotic variance of solutions to an estimating equation to obtain a first order 

approximation to  and by extension to the conditional prediction variance of RBLUP. Given (RC1) 

and (RC2), and following the same argument as in Booth and Hobert (1998), leads to the first order 

approximation 

. 

After some simplification this approximation suggests the sandwich-type estimator of : 
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 , 

where 

 , 

with 

• Êu ∂
β0
ψ H

0βψ{ } = −Xs

T Vs

−1Us

1/2RU s

−1/2Xs
; 

• ; 

•  

• V̂u H
0βψ{ } = n − p( )−1 ψ 2 (rj )

j=1

n

∑ X s

T Vs

−1U sVs

−1Xs ; 

• ; and 

•  

Here R  is a n × n  diagonal matrix with j-th diagonal element equal to 1 if −c < rj < c , 0 otherwise, T  

is a diagonal matrix of dimension n × n  with j-th diagonal element equal to 1 if −c < t j < c , 0 otherwise, 

and D  is a m ×m  diagonal matrix with i-th diagonal element equal to 1 if −c < d
i
< c , 0 otherwise. From 

(22) an estimator of the conditional prediction variance of RBLUP can then be written as 

 , (23) 

where 

•  is due to the estimation of fixed and random effects in 

the model; and 

•  can be calculated just using the data from area i, i.e. 

, or by pooling data from the entire sample, in 
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which case . Note that the pooled estimator 

leads to more stable MSE estimates when area sample sizes are very small.  

Finally, we add an estimator of the squared conditional bias to (23), leading to an estimator of the MSE of 

RBLUP of the form 

 , (24) 

where B̂u ŷi

RBLUP( )  is the estimator of the conditional bias defined following (21). 

The corresponding estimator of the MSE of REBLUP (13) is obtained by adding an extra term to (24) to 

account for the increased variability due to the estimation of the variance components. Let  

denote the vector of the variance components, with estimator . Our development is similar to 

that of Prasad and Rao (1990) in that it is based on the decomposition 

 

MSEu ŷi

REBLUP( ) = MSEu ŷi

RBLUP( )+ Eu ŷi

REBLUP − ŷi

RBLUP( )2





+2Eu ŷi

RBLUP − yi( ) ŷi

REBLUP − ŷi

RBLUP( )





= MSEu ŷi

RBLUP( )+ Eu ŷi

REBLUP − ŷi

RBLUP( )2




+O(m−1).

 (25)
 

Details of the proof that the cross-product term above is of lower order are available from the authors. An 

approximation to the second term on the right hand side of (25) can be obtained using Taylor series methods 

under conditions (RC1) - (RC7) set out in the Appendix. In order to develop this approximation, we first note 

that, using (RC7), we can write 

 . 

Next, using the identity 

 

and the fact that the derivatives of 
 
with respect to  are of lower order, we can write 

 

Finally, using conditions (RC2)-(RC6) and noting that  we get 
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where 

 . 

Consequently, (25) can be approximated by: 

 . (26) 

where 

  

and 

 

ϒ = ∂θk
Bs( ) z j

T
u0

ψ( ) zl

T
u0

ψ( )+σ e

ψ 2
I( j = l){ }

l

∑
j

∑








 ∂θg

Bs( )T









g=1

2

∑
k=1

2

∑ .  

An estimate of the variance-covariance matrix of the variance components  can be calculated using 

the results of Sinha and Rao (2009). An estimator of the conditional MSE of REBLUP is then obtained by 

replacing and  by  in (26) and leads to: 

 . (27) 

Note that a corresponding estimate of the conditional MSE of the EBLUP is easily calculated by setting the 

tuning constant for the influence function in (27) so that no outlier modification occurs, e.g. setting c > 100. 

We take a similar approach to defining an estimator of the conditional MSE of REBLUP-BC. To start, we 

develop an approximation to the conditional prediction variance of this predictor when the variance 

components are known, i.e. for RBLUP-BC. In this case the prediction error is 

 

. 

The second (BC) term inside the braces on the right hand side of this expression can be expanded using a 

Taylor series approximation. When the tuning constant used in φ  is large, so ′φ ≈1, this approximation 
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becomes 

 

 

Substituting in the preceding expression for the prediction error of RBLUP-BC leads to 

 ŷi

RBLUP−BC − yi = 1− ni N i

−1( ) Ti − eri +Ui( )+Op m
−1( )  (28) 

where 
 
and . 

Under the regularity conditions (RC1) – (RC5), the variance of T
i
 is O m

−1( )  and the covariance between 

T
i
 and U

i
 is of a lower order of magnitude than either of their variances, so from (28) we can write down 

an estimator of the conditional variance of RBLUP-BC of the form 

 , (29) 

where 

 
 

and 

 

. 

The estimator of the conditional MSE of REBLUP-BC is then obtained by adding a term to (29) to account 

for the additional uncertainty due to estimation of the variance components. The same approach as already 

used for REBLUP can be applied, leading to the approximation 

  (30) 

where . Note that Di = 0  when φ  is the 

identity function, e.g. as in the version of BC described in Chambers et al. (1993), and the model only 

contains random intercepts. An estimator of the MSE of REBLUP-BC is then defined by replacing 

and  by  in (29) and (30), to give 
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. (31) 

As with the estimator of the conditional MSE of REBLUP-BC based on the pseudo-linearization approach, 

no squared conditional bias estimator is used with (31) since the REBLUP-BC predictor is approximately 

unbiased for the small area mean. However, unlike (27), the MSE of REBLUP-BC has an extra term  

that arises due to the conditional bias correction in REBLUP-BC (19). Note that the term  in (31) is 

equivalent to  in (27), i.e., they both estimate the increase in variability due to the estimation of the 

variance components. Estimators of the conditional MSEs of MQ (15) and MQ-BC (18) can be obtained 

similarly, with this development set out in the Appendix. 

 

5. Model-Based Simulations 

We provide model-based simulation results illustrating the performances of the different outlier robust small 

area predictors and of the corresponding MSE estimators described in Sections 3 and 4. Population data are 

generated for m = 40  small areas, with samples selected by simple random sampling without replacement 

within each area. Population and sample sizes are the same for all areas, and are fixed at either 

Ni = 100, ni = 5  or Ni = 300, ni =15 . Values for x are generated as independently and identically 

distributed from a lognormal distribution with a mean of 1.0 and a standard deviation of 0.5 on the log scale. 

Values for Y are generated as y
ij
= 100 + 5x

ij
+ u

i
+ ε

ij
, where the random area and individual effects are 

independently generated according to four scenarios: 

• [0,0] – No outliers: 
 
u � N (0, 3) and 

 
ε � N(0, 6) . 

• [e,0] – Individual outliers only: 
 
u � N (0, 3)  and 

 
ε � δN (0, 6)+ (1−δ )N (20,150) , where δ  is an 

independently generated Bernoulli random variable with Pr(δ = 1) = 0.97 , i.e. the individual effects are 

independent draws from a mixture of two normal distributions, with 97% on average drawn from a 

‘well-behaved’ N (0,6)  distribution and 3% on average drawn from an outlier N(20,150)  

distribution. 

• [0,u] – Area outliers only: 
 
u � N (0, 3) for areas 1-36, 

 
u � N (9,20) for areas 37-40 and 

 
ε � N(0, 6) , 
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i.e. random effects for areas 1–36 are drawn from a ‘well behaved’ N (0, 3)  distribution, with those for 

areas 37–40 drawn from an outlier N(9,20)  distribution. Individual effects are not outlier-

contaminated. 

• [e,u] – Outliers in both area and individual effects: 
 
u � N (0, 3) for areas 1-36, 

 
u � N (9,20) for areas 

37-40 and 
 
ε � δN (0, 6)+ (1−δ )N (20,150) . 

Each scenario is independently simulated 500 times. For each simulation the population values are generated 

according to the underlying scenario, a sample is selected in each area and the sample data are then used to 

compute estimates of each of the actual area means for y. 

Five different estimators are used for this purpose - the standard EBLUP, see (2), which serves as a 

reference; the projective M-quantile estimator MQ, see (15); the robust bias-corrected predictive MQ 

estimator MQ-BC, see (18); the robust projective REBLUP estimator of Sinha and Rao (2009), see (13); and 

its robust bias-corrected version REBLUP-BC, see (19). In all cases the ‘projective’ influence function ψ  

is a Huber Proposal 2 type with tuning constant c = 1.345 . In contrast, the ‘predictive’, less restrictive, 

influence function φ  used in MQ-BC and REBLUP-BC is also a Huber Proposal 2 type, but with a larger 

tuning constant, c = 3. 

The performance of these estimators across the different simulations is assessed by computing the median 

values of their area specific relative bias and relative root mean squared error, where the relative bias of an 

estimator ŷi
 for the actual mean y

i
 of area i is the average across simulations of the errors ŷi − yi

 

divided by the corresponding average value of y
i
, and its relative root mean squared error is the square root 

of the average across simulations of the squares of these errors, again divided by the average value of y
i
. 

Table 1 presents these median values for the different simulation scenarios and different estimators. 

The relative bias results set out in Table 1 confirm our expectations regarding the behaviour of the 

projective estimators (EBLUP, REBLUP and MQ) and the predictive estimators (REBLUP-BC and MQ-BC). 

The former are more biased than the latter (see scenarios with area and individual outliers) as a consequence 

of their implicit assumption that although outlier variances may be inflated relative to non-outliers, outlier 

effects still have zero expectation. This increase in bias is most pronounced when there are outliers in the 

area effects, which is not unexpected since that is when area means are most affected by the presence of 
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outliers in the population data. Turning to the median RRMSE results, we see that claims in the literature (e.g. 

Chambers and Tzavidis, 2006) about the superior outlier robustness of MQ compared with the EBLUP 

certainly hold true – provided the outliers are in individual effects. If there are outliers in area effects, then 

MQ appears to offer no extra protection compared to the EBLUP, and in fact performs worse, mainly due to 

its sharply increasing bias in this situation. Similarly, when we compare the EBLUP and the REBLUP we see 

that if outliers are associated with individual effects, then the REBLUP offers better RRMSE performance 

than the EBLUP. However, the gap between these two estimators narrows considerably when outliers are 

associated with area effects. In contrast, the two predictive estimators seem relatively robust in terms of 

RRMSE performance. Nevertheless, due to the increased variability as a consequence of their bias 

corrections, both predictive estimators are not as efficient as the projective estimators when outliers are 

associated with individual effects, but both also do not fail when there are outliers in the area effects. Finally, 

the REBLUP-BC estimator appears to perform better than the MQ-BC estimator for those scenarios where 

the use of predictive estimators offers gains. 

We now examine the performance of the different MSE estimators. We are mainly interested in the 

performance of MSE estimators for the predictive estimators REBLUP-BC and MQ-BC. However, we also 

comment on the performance of the different MSE estimators when used for estimating the MSE of 

projective estimators under a range of scenarios. MSE estimation for REBLUP and REBLUP-BC is 

implemented via the pseudo-linearization MSE estimator (21) (hereafter CCT) and via the linearization-

based MSE estimators (27) and (31) (hereafter CCST). For MQ and MQ-BC the MSE estimators (A6) and 

(A8) - see the Appendix for details - which correspond to CCST, as well as those which correspond to CCT 

(see Chambers et al. 2011 for details) are used. For REBLUP and REBLUP-BC we investigated the 

parametric bootstrap procedure of Sinha and Rao (2009), hereafter BOOT, which we implemented by 

generating 100 bootstrap samples in each Monte Carlo run (using more bootstrap samples did not change our 

results to any significant extent). Finally, the MSE of the EBLUP was estimated via the Prasad-Rao (1990) 

estimator, hereafter PR, as well as via CCT and CCST. The results of the MSE estimators for each scenario 

and for each estimator are shown in Table 2 where we report the median values of their area specific relative 

biases and their relative root mean squared errors. 
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As a first general comment we note that for all estimators and scenarios we considered, CCST offers 

better stability than CCT. We now focus on the performance of these two MSE estimators for estimating the 

MSE of the robust predictive estimators REBLUP-BC and MQ-BC. As already pointed out, CCST exhibits 

overall better stability than the CCT. In terms of bias the picture is not as clear cut, however, with the biases 

of the two MSE estimators of same order of magnitude. In particular, while CCST has a somewhat better 

bias performance for REBLUP-BC, CCT performs better in terms of bias for MQ-BC. We also see that 

BOOT is generally a more stable MSE estimator for REBLUP-BC compared to CCT and CCST. However, 

this is a computationally intensive method of MSE estimation, and so may not always be appropriate in a 

practical survey setting. In this context we note that semiparametric bootstrap methods have recently been 

proposed for MQ and the non-robust version of MQ-BC (Tzavidis et al., 2010). We have not fully evaluated 

these different bootstrap methods here because the focus of this paper is on analytic methods of MSE 

estimation, and also because to do so would have substantially increased the length of this paper. 

Turning now to MSE estimation for the projective estimators we observe that CCST for both REBLUP 

and MQ has lower bias than CCT and is also more stable. In contrast, BOOT is sometimes more biased than 

CCST but is more stable. However, both CCT and CCST appear to substantially overestimate the MSE of 

MQ when the population contains both area and unit outliers. Reasons for why this happens are not clear at 

present. Since this scenario is one where robust predictive estimation is advised, it is perhaps of more interest 

to note that both CCT and CCST work well in terms of estimating the MSE of MQ-BC, with CCST being the 

more stable of the two MSE estimators in this situation. 

As one would expect, the PR estimator of the MSE of the EBLUP performs well in the [0,0] scenario and 

also records small relative bias for the [e,0] scenario, i.e. only individual outliers (when both CCT and CCST 

record large positive biases). However, it records large negative biases for situations where there are area 

level outliers (when both CCT and CCST record negligible biases). The main strength of PR is its stability - 

its median RRMSE is consistently lower than that of CCT and it is also more stable than CCST when there 

are no area level outliers. In large part, this is due to the small sample instability caused by the squared 

conditional bias term used in both CCT and CCST. This issue was noted by Chambers et al. (2011), who 

pointed out that the bias robustness of CCT for the EBLUP that is evident in Table 2 comes at the price of 



 
21

higher variability, especially in the case of very small area sample sizes. In comparison, CCST for the 

EBLUP demonstrates very similar bias robustness to CCT and is more stable. 

 

6. Design-Based Simulation  

Design-based simulations complement model-based simulations for SAE since they allow us to evaluate the 

performance of SAE methods in the context of a real population and realistic sampling methods where we do 

not know the precise source of contamination. From a finite population perspective we believe that this type 

of simulation constitutes a more practical and appropriate representation of the SAE problem. Furthermore, it 

provides a good illustration of why a focus on conditional MSE is likely to be closer to the MSE of interest 

for analysts using small area methods. 

The population underpinning the design-based simulation is based on a data set obtained under the 

Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environmental Protection Agency. 

The background to this data set is that between 1991 and 1995 EMAP conducted a survey of lakes in the 

North-Eastern states of the U.S. The data collected in this survey consists of 551 measurements from a 

sample of 334 of the 21,026 lakes located in this area. The lakes making up this population are grouped into 

113 8-digit Hydrologic Unit Codes (HUCs), of which 64 contained less than 5 observations and 27 did not 

have any observations. In our simulation, we defined HUCs as the small areas of interest, with lakes grouped 

within HUCs. The variable of interest is Acid Neutralizing Capacity (ANC), an indicator of the acidification 

risk of water bodies. In addition to ANC values for the sampled locations, the EMAP data set also contained 

the elevation of each lake in the target area. In this simulation, elevation is used as the only model covariate. 

A synthetic population of 21,026 ANC lake-specific individual values was constructed following the same 

procedure as in Salvati et al. (2012). This corresponds to non-parametrically simulating a population of ANC 

values for all 21,026 lakes using a nearest-neighbour imputation algorithm that retains the spatial structure of 

the observed 334 lake-specific ANC values in the EMAP sample data. This synthetic population of ANC 

values is then kept fixed over the Monte-Carlo simulations. Details on the exact data generation mechanism 

and the characteristics of the population can be found in Salvati et al. (2012). A total of 1000 independent 

random samples of lakes were taken from the population of 21,026 lakes by randomly selecting lakes in the 
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86 HUCs that contained EMAP sampled lakes, with sample sizes in these HUCs set to the greater of five and 

the original EMAP sample size. A two-level (level 1 is the lake and level 2 is the HUC) mixed model was 

fitted to the synthetic population data. The Shapiro-Wilk normality test rejects the null hypothesis that the 

residuals follow a normal distribution, with p-values of 0.0356 (level 1), and <0.0001 (level 2), indicating 

that the Gaussian assumptions of the mixed model are not met. Using a model that relaxes these assumptions, 

e.g. an M-quantile model with a bounded influence function, therefore seems reasonable for these data.  

Table 3 shows the median relative biases and the median RRMSEs of the different predictors (EBLUP, 

REBLUP, MQ, REBLUP-BC, MQ-BC) and Table 4 reports the median relative biases and the median 

RRMSEs of the corresponding estimators of the MSEs of these predictors. The robust predictive estimators 

MQ-BC and REBLUP-BC work well both in terms of bias and RRMSE, while the EBLUP and MQ have the 

highest RRMSE, with MQ also recording the largest negative bias. The REBLUP shows a good performance 

in terms of RRMSE but records a large negative bias. These results suggest that predictive estimators offer 

the most balanced performance both in terms of bias and MSE for this population. 

We now examine the performance of the different methods of MSE estimation. To start, Table 4 indicates 

that on average across areas CCST performs better or comparably to CCT for all predictors with these data. 

It also shows that the performance of the parametric bootstrap BOOT of Sinha and Rao (2009) depends on 

the predictor. We see that BOOT performs similarly to CCST for REBLUP-BC but exhibits substantial bias 

for REBLUP. Finally, we observe that for the EBLUP, MSE estimation via PR is essentially no different to 

that via CCT and CCST, with the CCST being more stable. 

The analysis in Table 4 focuses on median RMSE estimation performance across areas. This hides the 

large variability in MSE estimation performance between areas. The relationship between the 'true' 

(empirical) RMSE of each predictor and its estimators for each area is shown in Figure 1, where box plots 

illustrating the variability in the RMSE Ratio, defined as the ratio of the average estimated RMSE for each 

area to the true RMSE, are shown for each predictor and each MSE estimation method. Here we see that both 

PR and CCST behave rather similarly for the EBLUP and do not adequately capture the between area 

differences in the area-specific MSE of this predictor. In contrast, CCT tracks this area-specific empirical 

MSE very well. These results are consistent with the comments in both Longford (2007) and Chambers et al. 
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(2011) that PR should not be used if area-specific estimation of MSE is a requirement. The main difference 

between CCT and CCST is that CCT essentially only assumes a linear mean structure for the data, while 

CCST, like PR, assumes that the sample data follow a linear mixed model. The fact that CCST does not 

perform as well as CCT in terms of tracking the area-specific MSE of the EBLUP in our simulations is 

therefore some evidence for recommending that CCST not be used with a non-robust predictor like the 

EBLUP. Turning to MSE estimation for REBLUP and REBLUP-BC, we see that CCST improves somewhat 

for REBLUP, which is consistent with this estimator being somewhat more robust than the EBLUP, and 

performs very well for the robust bias corrected REBLUP-BC, while CCT, though still an efficient 'tracker' 

of the area-specific MSEs of these two predictors, also exhibits a small downward bias. In contrast, BOOT 

does not track the area-specific MSEs of REBLUP and REBLUP-BC. Finally, we note that CCT and CCST 

behave very similarly for MQ and MQ-BC. Both track the area-specific MSEs of these predictors quite well. 

Overall, it appears that for the EMAP population data that were used in our simulations, CCST is the method 

of choice for area-specific MSE estimation for the robust predictive estimators REBLUP-BC and MQ-BC. 

 

7. Final Remarks 

In this paper we explore the extension of the Robust Predictive approach to SAE and we propose two 

analytic linearization-based mean squared error (MSE) estimators for outlier robust predictors of small area 

means. The first is a bias-robust MSE estimator that is based on the 'pseudo-linearization' approach of 

Chambers et al. (2011). The second method is based on first order approximations to the variances of 

solutions of robust estimating equations. 

The empirical results reported in Sections 5 and 6 show that the robust predictive estimators (REBLUP-

BC and MQ-BC) are less biased and can be more efficient than the robust projective estimators (REBLUP 

and MQ) in the presence of area and individual outliers. What is also evident from these results is that the 

bias correction of the robust predictive estimators comes at the cost of higher variability. As a result we 

expect that the use of these estimators will pay dividends when model diagnostics suggest that there are 

significant departures from the assumed working small area model. One approach for controlling the bias-

variance trade off when using the robust predictive approach is by selecting optimal tuning constants c and 
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φ  to be used in these estimators. In general, c is set equal to 1.345 for the ψ  influence function and is set 

to a larger value for φ influence function. Applications with real data show that setting c=2 or c=3 for φ  

provides a good balance between bias and variance. An 'optimal' c value can be potentially achieved by 

cross-validation, and is an avenue for future research. 

The pseudo-linearization MSE estimator CCT and the linearization-based MSE estimator CCST offer a 

promising approach to analytic estimation of the MSE of robust predictive estimators. As has already been 

noted by Chambers et al. (2011), CCT represents a method of MSE estimation that is well suited to tracking 

area-specific variability in MSE. However, this comes at the price of increased instability. Although we do 

not explore this issue fully in this paper, it seems clear that CCST, when used in conjunction with robust 

predictive estimation methods, also tracks area-specific variability in MSE and is more stable than CCT. This 

opens up the possibility that CCST may be competitive with more numerically intensive bootstrap methods 

for MSE estimation. A more complete comparison of this MSE estimation method with alternative 

parametric and semiparametric bootstrap methods of MSE estimation is beyond the scope of this paper, 

however, and is left for further research. Finally, we note that although CCST was developed under a 

conditional version of the linear mixed model, it should be possible to develop an unconditional version of 

CCST that averages over the distribution of the random area effects under a linear mixed model, and so 

reduces to the widely used MSE estimator PR in the case of the EBLUP. This presents an additional avenue 

for further research. 
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Appendix 

1. Regularity Conditions 

The following regularity conditions are required for the development of the linearization-based MSE 

estimator set out in Section 4.2, and uses the same notation as employed there. 

(RC1) The influence function ψ  is a bounded continuous function with a derivative which, except for a 

finite number of points, is defined everywhere and is also bounded; 

(RC2) The elements of 
 
X

s
 and 

 
Z

s
 are uniformly bounded as m→∞ , so that 

Xs

T Vs

−1UsVs

−1X s = O(m)[ ]
p×p

,  and are 

uniformly bounded, where  with U s = diag Vs( ) ; 

(RC3) The covariance matrices  and  have linear structure (Prasad and Rao, 1990) and are 

known positive definite matrices of order mq × mq  and n × n  respectively, with elements that 

are also uniformly bounded as m→∞; 

(RC4) The dimension q of the area random effect
 
is a fixed finite number with

 sup
i≥1 n

i
= λ1 < ∞ ; 

(RC5) There exist constants ς > 0  and L < ∞  such that if , 

 and di = σ u

2ψ( )−1/2

u0i

ψ , then Eu ψ rj( ) 4+ς
, Eu ′ψ rj( ) , 

Eu ψ t j( ) 4+ς
, Eu ′ψ t j( ) , Eu ψ di( ) 4+ς

 and Eu ′ψ di( )  are all bounded by L. 

(RC6) ∂θk
Xs

T
Bs = O 1( )  p×m

 for 
 
k = 1,� , K , where B

s
 was defined following (20). 

(RC7) The elements of V and U  are differentiable with respect to the variance components, with 

 and  when . 



 
26

 

2. Linearization-based MSE estimation for MQ and MQ-BC 

In what follows we assume that for every area i there exists a value q0 (i) such that the 'true' value of the 

regression vector for area i is . We also use a subscript of 0 to 'true' values under this area-specific 

model. Then, denoting the M-quantile coefficient for area i by q(i), the prediction variance of the MQ (15) 

is 

 . (A1) 

A first order approximation to  is 

  (A2) 

with , where ψ
q

 is a bounded M-quantile influence function of order 

q, ψ q (r0 i )  is the n-vector with elements  and ω j0i
 is a robust estimator 

of the scale of the residual . The Var0 H(β0q ){ }  component of (A2) can be written as 

Var0 H(βq0 (i ) ){ } = X s

T E0 ψ q (r0i )ψ q

T (r0i ){ }{ }Xs
, 

since E0 ψ q (rj 0i ){ } = 0 . Assuming a Huber-type influence function, we obtain 

 

where C  is a n × n  diagonal matrix with j-th diagonal component  

ω j 0i

−1 E0 qI 0 < rj 0i ≤ c( )+ 1− q( ) I −c < rj 0i ≤ 0( ){ } . 

These expressions lead to the following estimator of (A2): 

  (A3) 

where . When q(i) = 0.5 , (A3) is the estimator proposed by Street et al. (1988). 

An estimator of the first order approximation (A1) is then 
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  (A4) 

where . A corresponding estimator of the area-specific bias 

of MQ is 

  (A5) 

where wij = bij + N ini

−1
I ( j ∈i) and bi = bij( ) = W(qi )Xs X s

T W(qi )Xs( )−1

Ni − ni( ) xri − xsi( ) . The final 

expression for the estimator of the MSE of MQ is just the sum of (A4) and the square of (A5): 

 mse ŷi

MQ( ) = V̂ ŷi

MQ( )+ B̂ ŷi

MQ( ){ }2

. (A6) 

In order to develop a corresponding MSE estimator for MQ-BC, we first note that its prediction error is 

 

where the right-most (BC) term in this error can be approximated by 

. 

Under the condition that the tuning constant used in φ  is large, so ′φ ≈ 1, we then have the corresponding 

approximation 

 . (A7) 

The covariance between the first and third terms on the right hand side of (A7) will be of a lower order than 

either of their variances, so a first order approximation to the prediction variance of MQ-BC is 

 

The corresponding estimator of this first order approximation to the MSE of MQ-BC is therefore 

. (A8) 
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Note that, unlike (A6), there is no squared bias term in (A8), since this bias is (approximately) corrected by 

the BC term of MQ-BC. Also note that both (A6) and (A8) do not allow for variability associated with the 

'parameter error' q
i
− q0 (i), and so could underestimate the MSEs of MQ and MQ-BC under the area-

specific model. 
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Table 1. Model-based simulation results: performances of predictors of small area means. 

 

Scenario [0,0] [e,0] [0,u] [0,u] [e,u] [e,u] 

Areas 1-40 1-40 1-36 37-40 1-36 37-40 

 Median values of Relative Bias (expressed as a percentage) 

EBLUP 0.02 -0.02 0.10 -0.54 0.17 -1.59 

REBLUP 0.03 -0.39 0.11 -0.47 -0.30 -1.00 

MQ 0.02 -0.43 0.09 -0.94 -0.32 -0.99 

REBLUP-BC 0.02 -0.29 0.03 0.02 -0.28 -0.32 

MQ-BC 0.02 -0.28 0.03 -0.07 -0.26 -0.30 

 Median values of Relative RMSE (expressed as a percentage) 

EBLUP 0.81 1.22 0.85 0.97 1.37 2.39 

REBLUP 0.82 1.01 0.84 1.02 0.99 1.44 

MQ 0.82 1.03 0.83 1.46 1.01 1.57 

REBLUP-BC 0.91 1.23 0.92 0.86 1.24 1.27 

MQ-BC 0.91 1.24 0.92 0.93 1.26 1.49 
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Table 2. Performance of RMSE estimators in model-based simulation experiments. 

 

Scenario [0,0] [e,0] [0,u] [0,u] [e,u] [e,u] 

Areas 1-40 1-40 1-36 37-40 1-36 37-40 

Predictor MSE Estimator Median values of Relative Bias (expressed as a percentage) 

PR -0.34 1.74 3.82 -17.31 11.32 -40.86 

CCT 3.61 31.24 1.55 2.15 5.95 -3.05 EBLUP 

CCST 0.55 31.22 -3.91 -0.30 2.96 -4.17 

CCT -17.71 -15.76 -20.24 -34.79 -19.51 -36.63 

CCST -2.01 -8.46 -5.31 -3.58 -7.91 -22.51 REBLUP 

BOOT -1.19 -4.42 7.38 -19.42 11.37 -31.44 

CCT -2.98 -16.29 -12.56 6.69 -24.02 177.42 
MQ 

CCST 0.11 -8.21 -7.77 8.95 -14.10 163.38 

CCT -10.56 -12.46 -11.88 -10.54 -12.57 -18.37 

CCST -2.95 -2.83 -4.21 -11.27 -5.81 -8.48 
REBLUP-

BC 
BOOT -0.21 -6.76 -0.52 -1.25 -4.90 -12.96 

CCT -6.35 3.48 -7.19 3.92 1.87 5.96 
MQ-BC 

CCST -7.18 -11.38 -7.42 3.21 -11.42 -9.20 

 Median values of Relative RMSE (expressed as a percentage) 

PR 6.24 18.57 7.20 17.90 22.28 43.19 

CCT 31.51 76.20 31.25 28.37 61.57 51.30 EBLUP 

CCST 22.92 66.27 7.68 18.98 27.15 39.13 

CCT 29.52 30.82 28.67 28.58 29.00 38.70 

CCST 27.86 28.47 20.89 22.87 20.25 29.24 REBLUP 

BOOT 10.27 34.92 10.67 14.62 16.61 33.04 

CCT 61.94 61.50 59.88 43.76 59.67 205.30 
MQ 

CCST 54.77 49.14 50.63 40.58 45.34 189.92 

CCT 33.64 45.20 33.21 33.56 45.48 47.18 

CCST 33.30 45.17 33.11 32.99 45.13 47.10 
REBLUP-

BC 
BOOT 10.12 15.27 10.20 10.60 14.53 18.35 

CCT 36.68 65.37 36.19 38.33 65.70 64.26 
MQ-BC 

CCST 33.93 44.81 33.55 35.30 44.65 50.55 
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Table 3. Median values of the Relative Bias (RB) and Relative RMSE (RRMSE) of point estimators in the 

design-based simulation. All values are expressed as percentages and medians are over the regions of interest. 

 

Estimator RB(%) RRMSE(%) 

EBLUP 10.79 35.18 

REBLUP -13.08 30.59 

MQ -22.98 35.07 

REBLUP-BC -4.13 31.94 

MQ-BC -6.17 31.57 

 

Table 4. Performance of RMSE estimators in design-based simulation: median values of the percentage 

Relative Bias and Relative RMSE. 

 

MSE Estimator PR CCT CCST BOOT 

Median values of Relative Bias (expressed as a percentage) 

EBLUP 6.37 1.79 3.23  

REBLUP  -23.06 3.59 32.12 

MQ  -31.59 -24.48  

REBLUP-BC  -14.58 3.00 0.48 

MQ-BC  -6.40 -11.01  

Median values of Relative RMSE (expressed as a percentage) 

EBLUP 30.61 30.67 28.86  

REBLUP  45.79 43.72 61.95 

MQ  62.19 55.88  

REBLUP-BC  39.78 39.47 39.81 

MQ-BC  45.53 38.38  
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Figure 1. Box plots showing area-specific values of the RMSE Ratios for the MSE estimators evaluated in 

the design-based simulation. The RMSE Ratio is defined as the ratio of the average over repeated sampling 

of the RMSE estimator for a predictor to the actual RMSE of this predictor under repeated sampling. 
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