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Fully secure hidden vector encryption under standard
assumptions

Jong Hwan Park a, Kwangsu Lee a, Willy Susilo b, Dong Hoon Lee a,⇑
a Center for Information Security and Technologies, Korea University, Seoul, Republic of Korea
b School of Computer Science and Software Engineering, University of Wollongong, Northfields Avenue, Wollongong, Australia
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1. Introduction

Recently, predicate encryption [28] has received considerable attention as a new vision in public key encryption. In a
predicate encryption scheme, an encryptor uses a public key PK to generate a ciphertext CTx,M, which is an encryption of
an arbitrary access control policy x 2 X as well as a message M, and an authority who has a master secret key generates a
secret key sky for another access control policy y 2 Y. Using sky, the ciphertext CTx,M is successfully decrypted, i.e., the decryp-
tion outputs the right message M if and only if P(x, y) = 1, where P is a predicate function defined as P:X � Y ? {0, 1}. A pri-
mary security property of predicate encryption is that the ciphertext CTx,M leaks no information about either x or M.1

Nevertheless, the possibility of computing the predicate P(x, y) without revealing x from the ciphertext can provide a good solu-
tion for searching encrypted data.

One application of predicate encryption could be an electronic health record system where patients’ sensitive data should
be securely encrypted. When patients’ data needs to be accessed by an outside entity, access should be limited to only the
minimum necessary amount of data. In the health record system, each doctor has its own public/private key pair, and en-
crypts a patient’s data M each time the doctor treats a patient. The data M is encrypted along with an access policy xthat
could be comprised of a set of attributes like the name of the patient, name of a disease, date of treatment, etc. If an outside
entity later requests an access token associated with a particular access policy y, the doctor generates a private key sky and
gives it to the entity as a token. Within the security of predicate encryption, the outside entity is able to access the set of

⇑ Corresponding author.
E-mail addresses: decartian@korea.ac.kr (J.H. Park), guspin@korea.ac.kr (K. Lee), wsusilo@uow.edu.au (W. Susilo), donghlee@korea.ac.kr (D.H. Lee).

1 Functional encryption [11] is a broader concept including predicate encryption, which encompasses the case in which CTx,M does not reveal only
information about M but not about x. The sub-classes of functional encryption with the revelation of x include Identity-Based Encryption (IBE)
[43,9,14,6,47,22,16,2], Hierarchical IBE [26,23,6,7,21,46,32,33], Attribute-Based Encryption (ABE) [41,25,37,3,35,4,31], and Ciphertext-Policy ABE
[5,24,30,35,45]. We refer to [11] for more precise definition and classification about functional encryption (including predicate encryption).
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ciphertexts {CTx,M} such that P(x, y) = 1, and not beyond it. This can be an exact realization of the minimum necessary
requirement.

Predicate encryption can be realized in a variety of ways, depending on how the predicate function is explored over X � Y.
Until now, there have been three sub-classes of predicate encryption: anonymous Identity-Based Encryption (IBE), Hidden
Vector Encryption (HVE), and Inner-Product Encryption (IPE). Anonymous IBE [1,20,12] supports a simple equality predicate
and thus gives a simple equality search on encrypted data. HVE [13] provides a conjunctive equality predicate, which can be
extended to give a conjunctive combination of equality, comparison, and range searches. IPE [28] employs an inner-product
predicate, and this enables more complex access controls such as conjunctions, disjunctions, and polynomial evaluations.
The relation between these three primitives forms a hierarchy: anonymous IBE HVE IPE, where A B signfies that B
implies A.

1.1. Efficiency of HVE

The predicate in an HVE scheme is defined over ‘-dimensional vectors ~x 2 X and ~y 2 Y . Most previous HVE schemes
[13,44,27,28,36,30,18,35,38] (including HVE derived from IPE), which are all pairing-based, require not only O(‘) pairing
computations to perform one decryption, but also a size O(‘) of private keys. From the perspective of efficiency, it is desirable
that the searching cost per one ciphertext is not proportional to the number ‘, i.e., the cost required to decrypt one ciphertext
CT~x;M using sk~y

2 becomes O(1). To search for suitable ciphertexts holding Pð~x;~yÞ ¼ 1, the decryptor should perform decryption
on all ciphertexts fCT~x;Mg in a storage server. This is because the decryptor does not know any information on the stored or
incoming ciphertexts in advance and each ciphertext could possibly become the one that matches sk~y. The O(‘) pairing compu-
tations will become burdensome for the decryptor if the number ‘ increases to deal with more expressive access control, and
become seriously problematic if a large number of users can have access to the storage system.

The size of sk~y becomes an important factor since each sk~y should be transmitted in a secure channel from the authority to
the decryptor. In a storage system with a large number of users, the transmission can be viewed as a reverse situation of
broadcast encryption [19] where a central authority broadcasts encrypted messages to many receivers. Shortening the size
of broadcast ciphertexts has long been a central issue in designing broadcast encryption schemes [10,39]. Thus, like in broad-
cast encryption, it is necessary to shorten the transmission size of sk~y as the number of users increases. Also, this is especially
the case when the authority is based on a device with restricted resources like a smart phone. Until now, only a few HVE
schemes [40,29] have achieved both O(1) pairing computations and O(1) size of private keys in a weaker security model (de-
scribed below).

1.2. Security of HVE

It is better for an HVE scheme to be fully (or adaptively) secure. Full security means that an adversary is allowed to make both
matching and non-matching private key queries for two target pairs ð~xb;MbÞ for b = 0, 1. In other words, any private key query
for~y is permitted as long as Pð~x0;~yÞ ¼ Pð~x1;~yÞ. In fact, this is the complete security notion of HVE that was suggested in [11], but
no previous HVE (or even IPE) schemes have achieved full security. Most earlier HVE schemes [13,44,27,28,36,40,29,38] have
argued their security in a selective security model (originated from [15]), albeit permitting the two type of key queries. Re-
cently, several constructions [30,35,18] have overcome the barrier of selective security by adapting the technique of dual sys-
tem encryption [46], but are unfortunately not yet fully secure since their security models allow an adversary to make only non-
matching private key queries. This incomplete security is described as ‘weakly attribute-hiding’.

There is a strict difference between weakly attribute-hiding security and full security. In the former case, the adversary is
allowed to make only non-matching queries so that it cannot employ queried keys to decrypt a challenge ciphertext that is
an encryption of ð~xb;MbÞ for a randomly chosen b 2 {0, 1}. This ensures that the adversary does not know any information
about (the whole of)~xb and Mb, provided that any matching key is not given. In contrast, full security considers an adversary
that is able to ask both matching and non-matching queries. Naturally, full security encompasses weakly attributing security
by additionally considering the case where an adversary is able to have matching keys. The additional security guarantees
that even if the adversary knows information about the message3 and (partial)~xb that involves the same vector components
x0,i = x1,i in~xb ¼ ðxb;0; . . . ; xb;‘Þ (b = 0, 1), the adversary does not gain any information about the pairwise-distinct vector compo-
nents in ~xb from the ciphertext.

Although we have powerful tools like dual system encryption [46] for achieving adaptive security, the resulting HVE
schemes [30,35,18] have been limited to weak attribute hiding. A natural direction of research would be to provide an an-
swer to the open problem by presenting an HVE scheme that can be proven to be fully secure. Another challenge is that it is
clearly desirable for HVE security to rely on well-known standard assumptions. Of all suggested HVE schemes (which are all
pairing-based), only a few constructions [27,38,35] have demonstrated security under the Decision Bilinear Diffie-Hellman
(DBDH) and Decision Linear (DLIN) assumptions. These constructions are all based on prime-order groups and can be instan-
tiated using either symmetric or asymmetric bilinear maps.

2 It is often called ‘token’, denoted as TK~y.
3 In this case, two challenge messages should be equal, i.e., M0 = M1.
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1.3. Our contribution

We present the first HVE scheme that is fully secure under the DBDH and DLIN assumptions, and additionally achieves
O(1) pairing computations and O(1)-sized private keys. Table 1 in Section 5 will compare our scheme with previous HVE
schemes in terms of efficiency and security. We have developed a new method to realize dual system encryption in
prime-order groups. Our method is similar to the original Waters’ method [46] in the sense that tag values are critically used
to solve a paradox in our dual system technology. Based on the new dual system encryption, we suggest our HVE scheme by
introducing two techniques to hide each component of ~x from the ciphertext and also to compress tag values that would
otherwise be associated with each component. Fortunately, combining these new techniques leads to improvements in effi-
ciency and thus we can avoid the dependance on the dimension ‘ in terms of both private key size and pairing computations.

When encrypting~x ¼ ðx1; . . . ; x‘Þ, a ciphertext component corresponding to xi is encoded in the form of ðuih
xi
i v tagi Þs1 Ys2

i , where
ui, hi, v and Yi ¼ gyi are public parameters, and s1, s2, and tagi are exponents randomly chosen by an encryptor. The element Ys2

i is
a blinding factor that plays a key role in preventing the component xi from being revealed in groups with bilinear maps. In
decryption, ciphertext components that need to match sk~y for the vector~y ¼ ðy1; . . . ; y‘Þ are multiplied together, resulting inQ

iuih
xi
i � vRitagi

� �s1 gðRiyiÞs2 . The important point here is that the tag values {tagi} are compressed into one. Thus, if the secret
key sk~y is constructed into the similar compressed form of

Q
iuih

yi
i � v tagk

� �r
for a randomly chosen exponent r, we can make

the size of sk~y constant, irrelevant to the number of vector components embedded into sk~y. Moreover since sk~y consists of a con-
stant number of group elements, the number of pairing computations necessary for decryption also becomes constant.

To achieve full security, our proof is divided into two cases: (1) all private key queries are non-matching and (2) at least one
private key query is matching. In the first case, we can apply the hybrid argument of dual system encryption [46] to prove the
confidentiality of Mb, and on top of that we need to consider an additional hybrid argument to prove the confidentiality of~xb. In
the second case, at least one queried key can be used for successful decryption so that the message-hiding property is no longer
necessary. At first glance, the adversary in the second case can ask all private key queries that are matching ones, which might
make the second case proof seem challenging. However, for an index i 2 {1, . . . , ‘} such that x0,i – x1,i in both challenge vectors
~xb ¼ ðxb;0; . . . ; xb;‘Þðb ¼ 0;1Þ, any key query for~y that includes an ith component can not be matching, i.e., should be non-match-
ing as in the first case. Using this fact, we can create a variant of the hybrid argument applied in the first case proof.

Since any HVE implies an anonymous IBE, our HVE construction can yield a new anonymous IBE scheme that is fully se-
cure under the standard assumptions. Full security is straightforwardly achieved by using the same strategy as in the first
case above, since all private key queries for identities should all be non-matching. Prior to our new result, several schemes
[20,30,35] have been presented to offer full security without random oracles, and only [35] is fully secure under the DLIN
assumption. Compared to [35], our anonymous IBE scheme is more efficient in all respects.

2. Preliminaries

2.1. Hidden vector encryption

Let R be an arbitrary set of attributes, and let ⁄ be a wildcard character which is not involved with any attribute. We let
I ¼ R [ f�g. We then use two ‘-dimensional vectors,~x ¼ ðx1; . . . ; x‘Þ 2 R‘ in the encryption phase and ~r ¼ ðr1; . . . ;r‘Þ 2 I ‘ in

Table 1
Comparison between other HVE schemes and ours.

Scheme Group order PK size Ciphertext size Token size Decryption cost Selective or full Standard assumptions

BW-HVE [13] p1p2 O(‘) (2‘ + 1)G + 1 GT (2‘ + 1)G (2‘ + 1)p S No
KSW-HVEIPE [28] p1p2p3 O(‘) 2(2‘ + 1)G + 1GT (2‘ + 1)G 2(2‘ + 1)p S No
SW-HVE [44]} p1p2p3 O(‘) (‘ + 3)G + 1GT (‘ + 3)G (‘ + 3)p S No
IP-HVE [27]| p1 O(‘) (2‘ + 1)G + 1GT (2‘)G (2‘)p S DBDH, DLIN
OT-HVEIPE [36]} p1 O(‘) (2‘ + 3)G + 1GT (2‘ + 3)G (2‘ + 3)p S No
Park-HVEIPE [38] p1 O(‘) 2(4‘ + 2)G + 1GT 2(4‘ + 2)G 2(4‘ + 2)p S DBDH, DLIN
PL-HVE [40] p1p2 O(‘) (2‘ + 2)G + 1 GT 4G 4p + 2(‘ � 1)m S No
LL-HVE-1 [29] p1p2p3 O(‘) (‘ + 3)G + 1GT 4G 4p + (‘ � 1)m S No
LL-HVE-2 [29]k p1 O(‘) (‘ + 3)G + 1GT 4G 4p + (‘ � 1)m S No
LOS+-HVEIPE [30]} p1 O(‘) (4‘ + 3)G + 1GT (4‘ + 3)G (4‘ + 3)p wF€ No
DIP-HVE [18]| } p1p2p3p4 O(‘) (‘)G + 1GT (‘)G (‘)p wF€ No
OT-HVEIPE [35]} p1 O(‘) (6‘ + 6)G + 1GT (6‘ + 6)G (6‘ + 6)p wF€ DLIN
OT-HVEIPE-1 [34]} p1 O(‘2) 2(4‘ + 2)G + 1GT 2(4‘ + 2)G 2(4‘ + 2)p F DLIN
OT-HVEIPE-2 [34]} p1 O(‘) 2(5‘ + 1)G + 1GT 11G + ‘Zp 11p + 5(‘ � 1)e F DLIN
Our HVE p1 O(‘) (2‘ + 6)G + 1GT + 1ZP 9G + 1ZP 9p + 3(‘ � 1)m F DBDH, DLIN

pi: prime numbers; ‘: the dimension of vectors; {G,GT,Zp}: length of an element in fG;GT ;Zpg; {p,m,e}: pairing, multiplication, and exponentiation in G,
respectively.
| In [27,18], the components of vectors are defined over {0,1} in encryption and {0,1,⁄} in token generation.
€ weakly attribute-hiding.
} [44,36,30,18,35,34] provide delegation mechanism.
k The second construction of [29] is based upon asymmetric bilinear maps.
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the token generation phase. For the vector ~r 2 I ‘, let Sð~rÞ be the set of indexes i such that ri is not a wildcard character. We
define a predicate function P‘ : I ‘ � R‘ ! f0;1g as follows:

P‘ð~r 2 I ‘; ~x 2 R‘Þ ¼ 1 if for all i 2 Sð~rÞ; xi ¼ ri;

0 otherwise:

�
In HVE, the sender encrypts a pair ð~x;MÞ 2 R‘ �M where M is a message space, and the receiver releases a token for a

vector ~r. Then, the token can decrypt a ciphertext if and only if P‘ð~r;~xÞ ¼ 1. With the predicate function described above, we
formally define HVE by the following four algorithms:

Setup (k, ‘) takes as input a security parameter k and a dimension ‘ of vector consisting of attributes. It outputs a public
key PK and a secret key SK.

Encrypt ðPK; ð~x;MÞÞ takes as input the public key PK, a vector ~x 2 R‘ of attributes, and a message M 2M. It outputs a
ciphertext CT.

GenToken ðSK; ~rÞ takes as input the secret key SK and a vector ~r 2 I ‘ of attributes. It outputs a token TK~r.
Decrypt ðTK~r;CTÞ takes as input the token TK~r and a ciphertext CT. It outputs a message M if P‘ð~r;~xÞ ¼ 1 and outputs \

otherwise.
Correctness. For all ~x 2 R‘, all ~r 2 I ‘, and all M 2 M, let ðPK; SKÞ R Setupðk; ‘Þ, CT R EncryptðPK; ð~x;MÞÞ, and

TK~r 
R

GenTokenðSK; ~rÞ. If we have P‘ð~r;~xÞ ¼ 1, M  DecryptðTK~r;CTÞ, otherwise Pr½? DecryptðTK~r;CTÞ� > 1� �ðkÞ
where �(k) is a negligible function.

In the above definition, the message M is a real message that the encryptor wishes to send to recipients. In practice, M can
also be used as a symmetric key with which authenticated encryption works to check the validity of the ciphertext.

2.2. Security for hidden vector encryption

Following [13,28,11,35], we describe the security for HVE that captures the intuition that the ciphertext CT reveals no
information about ð~x;MÞ. The security is defined in the following interaction between an adversary A and a challenger C,
where ‘ is given to A.

Setup: C runs the setup algorithm to obtain the public key PK and the secret key SK. It gives PK to A.
Query Phase 1:A adaptively issues a polynomial number of token queries for vectors,~ri. C responds with the correspond-

ing tokens TK~ri
 GenTokenðSK; ~riÞ.

Challenge: A outputs~x�0; ~x
�
1 and two messages M0, M1 under the two constraints that:

– P‘ ~ri;~x�0
� �

¼ P‘ ~ri;~x�1
� �

¼ 0 for all queried vectors, ri.
– P‘ ~ri;~x�0

� �
¼ P‘ ~ri;~x�1

� �
¼ 1 for at least one queried vector, ri, in which case M0 = M1.

C flips a coin b 2 {0,1} and gives CT�  Encrypt PK; ~x�b;Mb

� �� �
to A.

Query Phase 2: A adaptively issues additional token queries for vectors, ri, subject to the restriction in Challenge above.
C responds with the corresponding tokens TK~ri

 GenTokenðSK; ~riÞ.
Guess: A outputs a guess b0 2 {0, 1}. A wins if b0 = b.
The advantage of the adversary A in breaking the HVE scheme is defined as AdvHVE

A ¼ jPr½b0 ¼ b� � 1=2j.

Definition 1. We say that a Hidden Vector Encryption (HVE) scheme is (attribute-hiding) secure if for any polynomial time
adversaries A attacking the HVE scheme, the advantage AdvHVE

A is negligible.

2.3. Bilinear maps and complexity assumptions

Bilinear Maps: We adopt the notation in [9,6]. Let G and GT be two (multiplicative) cyclic groups of prime order p. We
assume that g is a generator of G. Let e : G�G! GT be a function that has the following properties:

1. Bilinear: for all u, v 2 G and a, b 2 Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) – 1.
3. Computable: there is an efficient algorithm to compute the map e.

Then, we say that the map e is a bilinear map in G. Note that e(,) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).
The Decisional Bilinear Diffie-Hellman (DBDH) Problem: The DBDH problem [9] is defined as follows: given

ðg; ga; gb; gc; ZÞ 2 G4 �GT as input, determine whether Z = e(g, g)abc or Z is random in GT .
The Decision Linear (DLIN) Problem: The DLIN problem [8] was originally stated as follows: given g; gz1 ; gz2 ; gz1z3 ;ð

gz2z4 ; ZÞ 2 G6 as input, determine whether Z ¼ gz3þz4 or Z is random in G. We consider an equivalently modified version such
as: given g; gz1 ; gz2 ; gz1z3 ; gz4 ; Zð Þ 2 G6 as input, determine whether Z ¼ gz2ðz3þz4Þ or Z is random in G. This was already used in
[12].
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Definition 2. We say that the {DBDH, DLIN} assumption holds in G if the advantage of any polynomial time algorithm in
solving the {DBDH, DLIN} problem is negligible.

Remark 1. In the groups equipped with symmetric bilinear maps e : G�G! GT , we can see that the DBDH assumption is
weaker than the DLIN assumption. To show this, let us assume that there is an adversary to solve DBDH problem. If an
instance ðg; gz1 ; gz2 ; gz1z3 ; gz4 ; ZÞ as a DLIN problem is given, we first compute Z0 ¼ eðgz1 ; ZÞ=eðgz2 ; gz1z3 Þ and next we give an
instance ðg; gz1 ; gz2 ; gz4 ; Z0Þ of a DBDH problem to the adversary. Clearly, if Z0 ¼ eðg; gÞz1z2z4 , then Z ¼ gz2ðz3þz4Þ, and otherwise,
Z is random. It seems that the opposite direction does not hold, and also the relation between the n-DLIN assumption (n > 2)
(which is also weaker than the DLIN assumption) and the DBDH is not clear.

3. Fully secure HVE scheme

3.1. Construction

Let G and GT be groups of prime order p, and let e : G�G! GT be the bilinear map. We assume that each attribute xi

belongs to R ¼ Zp and our scheme deals with ‘-dimensional vector~x ¼ ðx1; . . . ; x‘Þ 2 R‘. If necessary, we can extend our con-
struction to handle arbitrary attributes in {0, 1}⁄ by first hashing each xi using a collision-resistant hash function
H : f0; 1g� ! Zp. Note that I ¼ Zp [ f�g.

Setup (k): Given a security parameter k 2 Zþ, the setup algorithm runs GðkÞ to obtain a tuple ðp;G;GT ; eÞ. The algorithm
picks a random generator g 2 G, random elements g1;v ;u; fui;hi; sig‘i¼1 in G, random exponents X; c; fyig

‘
i¼1;

fwi; di;/ig
2
i¼1; ffig3

i¼1 in Zp. It obtains að – 0Þ 2 Zp such that w1d1 + w2d2 = aX. If a = 0, the algorithm tries again with new ran-
dom exponents. It sets w1/1 þw2/2 ¼ b 2 Zp. The algorithm sets

W1 ¼ gw1 ; W2 ¼ gw2 ; F1 ¼ gf1 ; F2 ¼ gf2 ; F3 ¼ gf3 ;

Yi ¼ gyi ði ¼ 1; . . . ; ‘Þ; g2 ¼ ga; g3 ¼ gb; g4 ¼ gc; K ¼ eðg1; g2Þ:

The public key PK (along with the description of ðp;G;GT ; eÞÞ and the secret key msk are set to be

PK ¼ g;v ;u; fui;hi; si;Yig‘i¼1; g2; g3; g4; fWig2
i¼1; fFig3

i¼1;K
� �

2 G4‘þ11 �GT ;

SK ¼ X; fyig
‘
i¼1; c; fdi;/ig

2
i¼1; ffig3

i¼1; g1

� �
2 Z‘þ9

p �G:

Encrypt ðPK; ð~x;MÞÞ: Let~x ¼ ðx1; . . . ; x‘Þ 2 R‘. To encrypt a message M 2M# GT and the vector~x under the public key PK, the
encryption algorithm picks random exponents s1; s2; s3; ftagc;ig

‘
i¼1 in Zp and computes the ciphertext

CT ¼ C1; . . . ; fC6;i;C7;ig‘i¼1;C8;C9; ftagc;ig
‘
i¼1

� �
2 G2‘þ6 �GT � Z‘

p as follows:

C1 ¼Ws1
1 Fs2

1 ; C2 ¼Ws1
2 Fs2

2 ; C3 ¼ gs1
2 ; C4 ¼ gs1

3 Fs2
3 ; C5 ¼ gs2 ;

C6;i ¼ uih
xi
i v tagc;i

� �s2 Ys3
i ; C7;i ¼ siutagc;i

� �s2
n o‘

i¼1
; C8 ¼ gs3

4 ; C9 ¼ Ks1 M:

GenToken ðSK; ~rÞ: Let ~r ¼ ðr1; . . . ;r‘Þ 2 I ‘. Let Sð~rÞ be the set of all indexes i such that ri – ⁄. To generate a token TK~r for
the vector ~r, the token generation algorithm picks random exponents r1; r2; r3; r4; tagk 2 Zp and obtains r5 2 Zp such that
ðRi2Sð~rÞyiÞr3 ¼ cr5. The algorithm computes the token TK~r ¼ ðK1; . . . ;K9; tagkÞ 2 G9 � Zp as follows:

K1 ¼ gd1r1 g/1r2 ; K2 ¼ gd2r1 g/2r2 ; K3 ¼ g1gXr1 ; K4 ¼ gr2 ; K5 ¼ Kf1
1 Kf2

2 K�f3
4 v r3ur4 ; K6

¼
Y

i2Sð~rÞ
uih

ri
i � v tagk

0@ 1Ar3 Y
i2Sð~rÞ

si �utagk

0@ 1Ar4

; K7 ¼ gr3 ; K8 ¼ gr4 ; K9 ¼ gr5 :

Decrypt ðCT;TK~rÞ: To decrypt a ciphertext CT ¼ C1; . . . ; fC6;i;C7;ig‘i¼1;C8;C9; ftagc;ig
‘
i¼1

� �
using a private key

TK~r ¼ ðK1; . . . ;K9; tagkÞ, the decryption algorithm sets

C6 ¼
Y

i2Sð~rÞ
C6;i; C7 ¼

Y
i2Sð~rÞ

C7;i; tagc ¼
X

i2Sð~rÞ
tagc;i:

If tagc – tagk, the decryption algorithm proceeds as follows:

1. Compute A1 = e(C1, K1) � e(C2, K2)/e(C3, K3) � e(C4, K4) � e(C5, K5).
2. Compute

A2 ¼ ðeðC6;K7Þ � eðC7;K8Þ=eðC5;K6Þ � eðC8;K9ÞÞ1=ðtagc�tagkÞ:
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3. Output M = C9 � A1 � A2.

Performance: Note that a token consists of 9 group elements in G plus 1 group element in Zp, and the decryption algorithm
requires 9 pairing operations. These two efficiency factors are independent of the dimension ‘ of the attribute vectors.

3.2. Correctness

We first check that A1 ¼ K�s1 � eðg;vÞ�s2r3 � eðg;uÞ�s2r4 as follows:

eðC1;K1Þ � eðC2;K2Þ
eðC3;K3Þ � eðC4;K4Þ � eðC5;K5Þ

¼
e gw1s1 gf1s2 ; gd1r1 g/1r2
� �

� e gw2s1 gf2s2 ; gd2r1 g/2r2
� �

e gas1 ; g1gXr1ð Þ � e gbs1 gf3s2 ; gr2ð Þ � e gs2 ;Kf1
1 Kf2

2 K�f3
4 v r3ur4

� �
¼

e gðw1d1þw2d2Þs1 ; gr1
� �

� e gðw1/1þw2/2Þs1 ; gr2
� �

� e gf1s2 ;K1
� �

� e gf2s2 ;K2
� �

e gas1 ; g1gXr1ð Þ � e gbs1 gf3s2 ; gr2ð Þ � e gs2 ;Kf1
1 Kf2

2 K�f3
4 v r3ur4

� �
¼

e gaXs1 ; gr1
� �

� e gbs1 ; gr2ð Þ � e gs2 ;Kf1
1 Kf2

2

� �
e gas1 ; g1gXr1ð Þ � e gbs1 gf3s2 ; gr2ð Þ � e gs2 ;Kf1

1 Kf2
2 K�f3

4 v r3ur4

� �
¼ 1

eðg; g1Þ
as1 � eðg; vÞs2r3 � eðg;uÞs2r4

:

Next, notice that

C6 ¼
Y

i2Sð~rÞ
uih

xi
i � v tagc

0@ 1As2

� gðRi2Sð~rÞyiÞs3 ; C7 ¼
Y

i2Sð~rÞ
si �utagc

0@ 1As2

:

Then, if P‘ð~r;~xÞ ¼ 1, (i.e., ri = xi for all i 2 Sð~rÞ), we can see that A2 ¼ eðg;vÞs2r3 � eðg;uÞs2r4 by the following computation:

eðC6;K7Þ � eðC7;K8Þ
eðC5;K6Þ � eðC8;K9Þ

¼

e
Y

i2Sð~rÞ
uih

xi
i � v tagc

0@ 1As2

gðRi2Sð~rÞyiÞs3 ; gr3

0@ 1A � e Y
i2Sð~rÞ

si �utagc

0@ 1As2

; gr4

0@ 1A
e gs2 ;

Y
i2Sð~rÞ

uih
ri
i � v tagk

0@ 1Ar3 Y
i2Sð~rÞ

si �utagk

0@ 1Ar4
0@ 1A � eðgcs3 ; gr5 Þ

¼

e
Y

i2Sð~rÞ
uih

xi
i � v tagc

0@ 1Ar3 Y
i2Sð~rÞ

si �utagc

0@ 1Ar4

; gs2

0@ 1A � e gðRi2Sð~rÞyiÞs3 ; gr3
� �

e gs2 ;
Y

i2Sð~rÞ
uih

ri
i � v tagk

0@ 1Ar3 Y
i2Sð~rÞ

si �utagk

0@ 1Ar4
0@ 1A � eðgcs3 ; gr5 Þ

¼ eðv r3ur4 ; gs2 Þtagc

eðgs2 ;v r3ur4 Þtagk

¼ ðeðg;vÞs2r3 � eðg;uÞs2r4 Þtagc�tagk :

Finally, the message M is correctly recovered as

C9 � A1 � A2 ¼ Ks1 M �K�s1 � eðg; vÞ�s2r3 � eðg;uÞ�s2r4 � eðg;vÞs2r3 � eðg;uÞs2r4 ¼ M:

Otherwise, if P‘ð~r;~xÞ ¼ 0, this means that there is at least one component ri – xi for some i 2 Sð~rÞ. Let D be the set of in-
dexes i 2 Sð~rÞ such that ri – xi. In this case, the computation above becomes

eðC6;K7Þ � eðC7;K8Þ
eðC5;K6Þ � eðC8;K9Þ

¼ e gs2r3 ;
Y
i2D

hxi�ri
i

 !
� ðeðg;vÞs2r3 � eðg;uÞs2r4 Þtagc�tagk

¼ eðg; gÞs2r3Ri2Dðlogg hiÞðxi�riÞ � ðeðg; vÞs2r3 � eðg;uÞs2r4 Þtagc�tagk :

Thus, the final output becomes M if Ri2D (logghi)(xi � ri) = 0 in Zp. However, it is computationally hard to find pairs (xi, ri)
for i 2 D for which such an equality holds. In fact, the probability of a false positive is at most 1/p in each decryption.

3.3. Fully secure anonymous IBE scheme

Any HVE scheme implies an anonymous IBE scheme if the vectors~x and ~r are limited to one dimension. Thus, our HVE
scheme provides a new anonymous IBE scheme that is fully secure under standard assumptions such as the DLIN and DBDH
assumptions. Prior to our result, several works [9,20,12,42,16,2,17] (including all previous HVE and IPE schemes) have been
proposed, but until now there were few anonymous IBE schemes [20,30,35] that achieve full security without using random
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oracles. Our new scheme is another example, but is fully secure under the standard assumptions. Compared to [35], which
has comparable security, our construction is more efficient in all efficiency respects. Table 2 in Section 5 presents the result
by simply assigning the dimension to 1. To demonstrate security of any anonymous IBE scheme, testing for weak attribute
hiding is sufficient since two target pairs (IDb, Mb) for b = 0,1 should be equal as long as at least one matching query is asked.
Thus, security of our new anonymous IBE scheme is straightforwardly obtained from the proof of Case 1 (defined in the next
section) where only non-matching token queries are permitted.4

The hierarchical extension of our anonymous IBE scheme can not be realized due to the relation ðRi2Sð~rÞyiÞr3 ¼ cr5. Such a
relation plays a key role in the elimination of blinding factors Ys3

i ¼ gyis3 . In constructing our anonymous IBE scheme, only y1

is necessary for one identity and choosing r3 and r5 satisfying the relation y1r3 = cr5 can be easily done by the key generation
center who knows the exponents {yi} and c. However, if a key owner (as a parent) wants to generate private keys for its
descendants of depth 2, the parent has to select exponents r03 and r05 such that y2r03 ¼ cr05 without knowing y2 and c, which
is computationally infeasible. Thus, it is still an open problem to construct an anonymous Hierarchical IBE scheme that is
fully secure under standard assumptions.

4. Security proof

4.1. Semi-functional algorithms

We now describe the semi-functional ciphertexts and tokens. Their main purpose is to define the structures that will be
used in our proof.

4.1.1. Semi-functional ciphertexts
The algorithm first runs the encryption algorithm to generate a normal ciphertext CT ¼

C01; . . . ; C06;i;C
0
7;i

n o‘
i¼1
;C08;C

0
9; ftagc;ig

‘
i¼1

� �
for a vector ~x and a message M. The algorithm selects a random exponent x 2 Zp

and sets

C1 ¼ C 01 � gd2x; C2 ¼ C 02 � g�d1x; C3 ¼ C03; C4 ¼ C 04 � gðd2/1�d1/2Þx;

C5 ¼ C 05; C6;i ¼ C 06;i; C7;i ¼ C 07;i
n o‘

i¼1
; C8 ¼ C 08; C9 ¼ C 09:

The semi-functional ciphertext is CTsf ¼ C1; . . . ; fC6;i;C7;ig‘i¼1;C8;C9; ftagc;ig
‘
i¼1

� �
. If one tries to decrypt the semi-functional

ciphertext with a normal token TK~r for ~r, then the decryption would be correctly performed. This stems from the fact that

eðgd2x;K1Þ � eðg�d1x;K2Þ
eðgðd2/1�d1/2Þx;K4Þ

¼ eðgd2x; gd1r1 g/1r2 Þ � eðg�d1x; gd2r1 g/2r2 Þ
eðgðd2/1�d1/2Þx; gr2 Þ ¼ 1;

where K1, K2, and K4 are components of the normal token.

4.1.2. Semi-functional tokens
The algorithm first runs the token generation algorithm to generate a normal token TK~r ¼ K 01; . . . ;K 09; tagk

� �
for a vector ~r.

Next the algorithm picks a random exponent k 2 Zp and sets

K1 ¼ K 01 � g�w2k; K2 ¼ K 02 � gw1k; K3 ¼ K 03; K4 ¼ K 04;

K5 ¼ K 05 � gðf2w1�f1w2Þk; K6 ¼ K 06; K7 ¼ K 07; K8 ¼ K 08; K9 ¼ K 09:

Then, the semi-functional token is TKsf
~r ¼ ðK1; . . . ;K9; tagkÞ. Note that the element K5 becomes K5 ¼ Kf1

1 Kf2
2 K�f3

4 vr3ur4 . If one
tries to decrypt a normal ciphertext encrypted under ~x with the semi-functional token TKsf

~r , the decryption would be also
correctly performed. This can be checked from the fact that

eðC1; g�w2kÞ � eðC2; gw1kÞ
eðC5; gðf2w1�f1w2ÞkÞ ¼ eðgw1s1 gf1s2 ; g�w2kÞ � eðgw2s1 gf2s2 ; gw1kÞ

eðgs2 ; gðf2w1�f1w2ÞkÞ ¼ 1;

where C1, C2, and C5 are components of the normal ciphertext.
We note that when a semi-functional token is used to decrypt a semi-functional ciphertext, the semi-functional compo-

nents in two parts will be computed as follows:

e C 01 � gd2x;K 01 � g�w2k
� �

� e C 02 � g�d1x;K 02 � gw1k
� �

e C 04 � gðd2/1�d1/2Þx;K 04
� �

� e C 05;K
0
5 � gðf2w1�f1w2Þk

� � ¼ eðg; gÞ�ðw1d1þw2d2Þxk ¼ eðg; gÞ�aXxk
;

which is not equal to 1 in GT .

4 The condition should be different when considering security of anonymous Hierarchical IBE, where both matching and non-matching token queries are
justified for two identity vectors upon which an adversary wants to challenge.
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4.2. Proof of security

In the security game defined in Section 2, the adversary A outputs two vectors~x�0 ¼ x�0;1; . . . ; x�0;‘
� �

;~x�1 ¼ x�1;1; . . . ; x�1;‘
� �

2 R‘

and two messages M0;M1 2 M as its challenge. The goal of A is to decide which one of the two pairs ~x�0;M0
� �

and ~x�1;M1
� �

is
associated with the challenge ciphertext. All tokens will be normal and the challenge ciphertext will also be normal. This is
the real security game GameReal. Under the rules of the security game, A that makes at most q token queries will behave in
one of two different ways:

Case 1 A will make token queries for vectors ~ri such that P‘ð~ri;~x�0Þ ¼ P‘ ~ri;~x�1
� �

¼ 0 for all i = 1, . . . , q.
Case 2 A will make token queries for vectors ~ri such that P‘ ~ri;~x�0

� �
¼ P‘ ~ri;~x�1

� �
¼ 1 for at least one i 2 {1, . . . , q}. In this

case, it should be the case that M0 = M1.

In our security proof, the simulator needs to guess which case it will be in by flipping a coin. If the guess is wrong,
the simulator aborts the simulation and outputs a random bit as its answer. Since the simulator’s guess will be indepen-
dent of which case A behaves in, the simulation is able to proceed with probability 1/2. Depending on the case by guess,
the simulator prepares its simulation differently. We describe the simulator’s strategy in two cases.

Case 1: (Proof idea) We first give an idea behind the security proof in Case 1. Since A cannot make any
matching token query, we can adapt a similar proof strategy to one in the Waters’ original dual system encryption
[46]. That is, we create a sequence of hybrid games, where the challenge ciphertext and all tokens are changed into
semi-functional ones, and we can then change the message Mb for a random bit b 2 {0, 1} into a random message. This
is the same as in [46], but the difference is that we create an additional sequence of hybrid games, based on the
result of randomizing Mb, in order to change each component of the vector ~x�b into a random one. During these two se-
quences of hybrid games, tag values are crucially used to solve the paradox that happens inevitably when proving full
security.

The simulator considers a sequence of hybrid games as follows:

Game1
Real: This is the actual HVE security game in Case 1. All tokens will be normal and the challenge ciphertext will be a

normal challenge ciphertext on a pair ~x�b;Mb
� �

, where b 2 {0,1} is a random bit.
Game1

0: All tokens will be normal, but the challenge ciphertext will be a semi-functional ciphertext on a pair ~x�b;Mb
� �

.

..

. ..
.

Game1
k: The first k token queries will return semi-functional tokens, and the rest of the tokens will be normal. The chal-

lenge ciphertext will be a semi-functional ciphertext on a pair ~x�b;Mb

� �
.

..

. ..
.

Game1
q: All tokens will be semi-functional, and the challenge ciphertext will be a semi-functional ciphertext on a pair

~x�b;Mb

� �
.

Game1
M: All tokens will be semi-functional, and the challenge ciphertext will be a semi-functional ciphertext on a pair

~x�b;R
� �

, where R is a random message from M.

Game1
~x;1: All tokens will be semi-functional, and the challenge ciphertext will be a semi-functional ciphertext on a pair

ðr1; x�b;2; . . . ; x�b;‘Þ;R
� �

, where r1 is a random element from R.

..

. ..
.

Game1
~x;‘: All tokens will be semi-functional, and the challenge ciphertext will be a semi-functional ciphertext on a pair

((r1, r2, . . . , r‘), R), where all ri for i = 1, . . . , ‘ are random elements from R.

In Game1
Real, the normal challenge ciphertext corresponding to ~x�b;Mb

� �
is given to the adversary. On the other hand, in

Game1
~x;‘, the challenge ciphertext given to the adversary is a semi-functional ciphertext corresponding to ((r1, . . . , r‘), R) that

leaks no information about ~x�b;Mb

� �
. We will show that no polynomial time adversary is able to distinguish between Game1

Real

and Game1
~x;‘ by proving that the transitions between the sequence of games above are all computationally indistinguishable

under the DLIN and DBDH assumptions.

Lemma 1. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game1
Real and

Game1
0 with non-negligible advantage.

195



Proof. Suppose that there exists an adversary A which can attack our HVE scheme with non-negligible advantage �.
We describe an algorithm B which uses A to solve the DLIN problem with advantage �. On input ðg; gz1 ; gz2 ;

gz1z3 ; gz4 ; ZÞ 2 G6;B’s goal is to output 1 if Z ¼ gz2ðz3þz4Þ and 0 otherwise. B interacts with A as follows:
Setup B selects random exponents X; c; fyi;li; ti; fig‘i¼1; fcig

3
i¼1; fwi; di;/ig2

i¼1; ffig3
i¼1 in Zp, such that w1d1 + w2d2 = X. B

sets

W1 ¼ ðgz2 Þd2 ðgz1 Þw1 ; W2 ¼ ðgz2 Þ�d1 ðgz1 Þw2 ;

F1 ¼ ðgz2 Þd2 gf1 ; F2 ¼ ðgz2 Þ�d1 gf2 ; F3 ¼ ðgz2 Þd2/1�d1/2 gf3 ;

g2 ¼ gz1 ; g3 ¼ ðgz2 Þd2/1�d1/2 ðgz1 Þw1/1þw2/2 ; g4 ¼ gc;

Yi ¼ gyi ; ui ¼ gli ; hi ¼ gti ; si ¼ gfi ði ¼ 1; . . . ; ‘Þ;

v ¼ gc2 ; u ¼ gc3 ; K ¼ eðgc1 ; gz1 Þ:

B (implicitly) sets

~w1 ¼ d2z2 þw1z1; ~w2 ¼ �d1z2 þw2z1;
~f 1 ¼ d2z2 þ f1;

~f 2 ¼ �d1z2 þ f2

~f 3 ¼ ðd2/1 � d1/2Þz2 þ f3; b ¼ ðd2/1 � d1/2Þz2 þ ðw1/1 þw2/2Þz1;

a ¼ z1; g1 ¼ gc1 :

Notice that each public key element is independently and uniformly distributed as in the actual construction. Also, we can
see that

~w1d1 þ ~w2d2 ¼ ðd2z2 þw1z1Þd1 þ ð�d1z2 þw2z1Þd2 ¼ ðd1w1 þ d2w2Þz1 ¼ Xa;

~w1/1 þ ~w2/2 ¼ ðd2z2 þw1z1Þ/1 þ ð�d1z2 þw2z1Þ/2 ¼ ðd2/1 � d1/2Þz2 þ ðw1/1 þw2/2Þz1 ¼ b:

Key Generation Phases 1 and 2 A issues token queries for vectors f~rig. For any queried vector ~ri, it is easy for B to gen-
erate a normal token TK~ri

, since it knows exponents X; c; fyig
‘
i¼1; fdi;/ig

2
i¼1. It selects random r1, r2, r3, r4, r5 (subject to the

equation ð
P

i2Sð~riÞyiÞr3 ¼ cr5), tagk 2 Zp and computes a normal token.
Challenge Ciphertext A outputs two vectors ~x�0;~x

�
1 and two messages M0, M1. B flips a random coin b 2 {0,1} and picks

random s3; ftagc;ig
‘
i¼1 in Zp. To generate a challenge ciphertext for ~x�b ¼ ðx�b;1; . . . ; x�b;‘Þ;Mb

� �
;B implicitly sets s1 = z3 and s2 = z4.

B computes C3;C5; fC6;i;C7;ig‘i¼1;C8, and C9 elements as

C3 ¼ gz1z3 ¼ gs1
2 ; C5 ¼ gz4 ¼ gs2 ;

C6;i ¼ ðgz4 Þliþtix
�
b;i
þc2tagc;i gyis3 ¼ ðuih

x�
b;i

i v tagc;i Þs2 Ys3
i ;

C7;i ¼ ðgz4 Þfiþc3tagc;i ¼ ðsiutagc;i Þs2 ;

C8 ¼ gcs3 ¼ gs3
4 ; C9 ¼ eðgz1z3 ; gc1 ÞMb ¼ eðg1; g2Þ

s1 Mb:

Next, B computes C1, C2, and C4 elements as follows:

C1 ¼ ðgz1z3 Þw1 ðgz4 Þf1 Zd2 ;

C2 ¼ ðgz1z3 Þw2 ðgz4 Þf2 Z�d1 ;

C4 ¼ ðgz1z3 Þw1/1þw2/2 ðgz4 Þf3 Zðd2/1�d1/2Þ:

If Z ¼ gz2ðz3þz4Þ, then we have that

C1 ¼ ðgz1z3 Þw1 ðgz4 Þf1 ðgz2ðz3þz4ÞÞd2 ¼ gðd2z2þw1z1Þz3 gðd2z2þf1Þz4 ¼Ws1
1 Fs2

1 ;

C2 ¼ ðgz1z3 Þw2 ðgz4 Þf2 ðgz2ðz3þz4ÞÞ�d1 ¼ gð�d1z2þw2z1Þz3 gð�d1z2þf2Þz4 ¼Ws1
2 Fs2

2 ;

C4 ¼ ðgz1z3 Þw1/1þw2/2 ðgz4 Þf3 ðgz2ðz3þz4ÞÞðd2/1�d1/2Þ ¼ g½ðd2/1�d1/2Þz2þðw1/1þw2/2Þz1 �z3 g½ðd2/1�d1/2Þz2þf3 �z4 ¼ gs1
3 Fs2

3 :

In this case, the ciphertext will have the same distribution as a normal ciphertext. Thus, B is playing GameReal with A. On
the other hand, if Z ¼ gz2ðz3þz4Þgp for some (non-zero) random p 2 Zp, then
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C1 ¼ ðgz1z3 Þw1 ðgz4 Þf1 ðgz2ðz3þz4ÞgpÞd2 ¼Ws1
1 Fs2

1 � gd2x;

C2 ¼ ðgz1z3 Þw2 ðgz4 Þf2 ðgz2ðz3þz4ÞgpÞ�d1 ¼Ws1
2 Fs2

2 � g�d1x;

C4 ¼ ðgz1z3 Þw1/1þw2/2 ðgz4 Þf3 ðgz2ðz3þz4ÞgpÞðd2/1�d1/2Þ ¼ gs1
3 Fs2

3 � gðd2/1�d1/2Þx;

where the exponent p plays the role of x. In this case, the ciphertext will have the same distribution as a semi-functional
ciphertext. Thus, B is playing Game0 with A.

Guess B receives a bit b0 2 {0, 1} and outputs 0 if b0 = b.
Analysis As mentioned above, if Z ¼ gz2ðz3þz4Þ the challenge ciphertext is distributed exactly as in GameReal, whereas if

Z ¼ gz2ðz3þz4Þgp the challenge ciphertext is distributed exactly as in Game0. It follows that under the DLIN assumption, these
two games are indistinguishable. h

Let k = 1, . . . , q.

Lemma 2. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game1
k�1 and

Game1
k with non-negligible advantage.

Proof. Suppose that there exists an adversary A which can attack our HVE scheme with non-negligible advantage �. We
describe an algorithm B which uses A to solve the DLIN problem with advantage �. On input
ðg; gz1 ; gz2 ; gz1z3 ; gz4 ; ZÞ 2 G6;B interacts with A as follows:

Setup B selects random exponents a; fAi; Bi; yi; li; ti; fig‘i¼1, c; fcig
3
i¼1; fwi; di; /ig2

i¼1, ffig3
i¼1 in Zp, such that w1d1

+ w2d2 = a. (Here, we can exclude the unlikely event that c = 0 and f3 = 0 in Zp.) B sets w1/1 + w2/2 = b and

W1 ¼ gw1 ; W2 ¼ gw2 ;

F1 ¼ gf1 ; F2 ¼ gf2 ; F3 ¼ ðgz1 Þf3 ;

g2 ¼ ga; g3 ¼ gb; g4 ¼ gc;

Yi ¼ gyi ; ui ¼ ðgz1 Þ�Ai gli ; hi ¼ ðgz1 Þ�Bi gti ; si ¼ gfi i ¼ 1; . . . ; ‘Þ;

v ¼ gz1 gc2 ; u ¼ gc3 ; K ¼ eðgc1 ; gaÞ:

B (implicitly) sets

~d1 ¼ �w2z2 þ d1z1; ~d2 ¼ w1z2 þ d2z1; ~/1 ¼ �w2z2 þ /1;
~/2 ¼ w1z2 þ /2;

~f 3 ¼ f3z1; X ¼ z1; g1 ¼ gc1 :

Notice that each public key element is independently and uniformly distributed as in the actual construction. Also, we can
see that

w1
~d1 þw2

~d2 ¼ w1ð�w2z2 þ d1z1Þ þw2ðw1z2 þ d2z1Þ ¼ ðw1d1 þw2d2Þz1 ¼ aX;

w1
~/1 þw2

~/2 ¼ w1ð�w2z2 þ /1Þ þw2ðw1z2 þ /2Þ ¼ w1/1 þw2/2 ¼ b:

Key Generation Phases A issues token queries for vectors f~rig. B breaks the token generation phases into three cases.
Consider ith query issued by A.

Case I: i > k.
B generates a normal token for the requested vector ~ri. B picks random exponents r1, r2, r3, r4, r5 (subject to the
equation ðRi2Sð~riÞyiÞr3 ¼ cr5), tagk 2 Zp and performs the usual token generation procedures. Note that even though
~d1; ~d2; ~/1; ~/2;X, and ~f 3 are unknown to B, it is easy to compute a normal token.

Case II: i < k.
B generates a semi-functional token for the requested vector ~ri. B picks random exponents r1, r2, r3, r4, r5 (subject
to the equation ðRi2Sð~riÞyiÞr3 ¼ cr5), tagk; k 2 Zp and generates the semi-functional token generation procedures.
Since B knows exponents w1, w2, f1, and f2, it is easy to compute a semi-functional token.

Case III: i = k.
For the requested vector ~ri;B picks random exponents r3; r4 2 Zp and sets

tagk ¼ Rj2Sð~riÞðAj þ Bj � ri;jÞ;

where ri,j is a non-wildcard component in ~ri. It (implicitly) sets ~r1 ¼ z3, ~r2 ¼ z4;~r3 ¼ f3z4 þ r3, and ~r5 ¼ ðRj2Sð~riÞyjÞðf3z4 þ r3Þ=c.
Note that the equation ðRj2Sð~riÞyjÞ~r3 ¼ c~r5 is satisfied. B generates K3, K4, K6, K7, K8, and K9 elements as follows:
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K3 ¼ gc1 gz1z3 ¼ g1gX~r1 ; K4 ¼ gz4 ¼ g~r2 ;

K6 ¼ ðgz4 Þ½ðRj2Sð~ri Þ
ðliþtiri;jÞÞþc2tagk �f3 g½ðRj2Sð~ri Þ

ðliþtiri;jÞÞþc2tagk �r3 g½ðRj2Sð~riÞ
fiÞþc3tagk �r4 ¼ odj2Sð~riÞuih

ri;j

i � v
tagk

� �~r3 Y
j2Sð~riÞ

si �utagk

0@ 1Ar4

;

K7 ¼ ðgz4 Þf3 gr3 ¼ g~r3 ; K8 ¼ gr4 ;

K9 ¼ ðgz4 ÞðRj2Sð~riÞ
yiÞf3=cgðRj2Sð~ri Þ

yiÞr3=c ¼ g~r5 :

Next, B generates K1, K2, and K5 elements as

K1 ¼ Z�w2 ðgz1z3 Þd1 ðgz4 Þ/1 ; K2 ¼ Zw1 ðgz1z3 Þd2 ðgz4 Þ/2 ;

K5 ¼ Kf1
1 Kf2

2 ðgz1 Þr3 ðgz4 Þc2 f3 gc2r3 gc3r4 ¼ Kf1
1 Kf2

2 K�
~f 3

4 v~r3ur4 :

If Z ¼ gz2ðz3þz4Þ, then B has that

K1 ¼ ðgz2ðz3þz4ÞÞ�w2 ðgz1z3 Þd1 ðgz4 Þ/1 ¼ gð�w2z2þd1z1Þz3 gð�w2z2þ/1Þz4 ¼ g~d1r1 g~/1r2 ;

K2 ¼ ðgz2ðz3þz4ÞÞw1 ðgz1z3 Þd2 ðgz4 Þ/2 ¼ gðw1z2þd2z1Þz3 gðw1z2þ/2Þz4 ¼ g~d2r1 g ~/2r2 :

In this case, B generates the ith token as a normal token, so B plays Gamek�1 with A. On the other hand, if Z ¼ gz2ðz3þz4Þgp

for some (non-zero) p 2 Zp, then B has that

K1 ¼ ðgz2ðz3þz4ÞgpÞ�w2 ðgz1z3 Þd1 ðgz4 Þ/1 ¼ g~d1r1 g~/1r2 � g�w2p;

K2 ¼ ðgz2ðz3þz4ÞgpÞw1 ðgz1z3 Þd2 ðgz4 Þ/2 ¼ g~d2r1 g~/2r2 � gw1p;

where p plays a random exponent k in Zp. In this case, B generates the ith token as a semi-functional token, so B plays Gamek

with A.
Challenge Ciphertext A outputs two vectors~x�0;~x

�
1 and two messages M0, M1. B picks a random bit b 2 {0,1} and random

exponents s1; s2; s3; x 2 Zp. B (implicitly) sets ~s2 ¼ f�1
3 axz2 þ s2 and tag�c;i ¼ Ai þ Bi � x�b;i 2 Zp for i = 1, . . . , ‘, where

~x�b ¼ x�b;1; . . . ; x�b;‘
� �

. B computes a semi-functional ciphertext for ~x�b;Mb
� �

as follows:

C1 ¼ gw1s1 ðgz2 Þf1 f�1
3 axgf1s2 � ðgz2 Þw1xðgz1 Þd2x ¼Ws1

1 F~s2
1 � g

~d2x;

C2 ¼ gw2s1 ðgz2 Þf2 f�1
3 axgf2s2 � ðgz2 Þw2xðgz1 Þ�d1x ¼Ws1

2 F~s2
2 � g�

~d1x;

C3 ¼ gas1 ¼ gs1
2 ;

C4 ¼ gbs1 ðgz1 Þf3s2 � ðgz2 Þðw1/1þw2/2Þxðgz1 Þðd2/1�d1/2Þx ¼ gs1
3 F~s2

3 � gð
~d2

~/1�~d1
~/2Þx;

C5 ¼ ðgz2 Þf
�1
3 axgs2 ¼ g~s2 ;

C6;i ¼ ðgz2 Þðliþtix
�
b;i
þc2tag�

c;i
Þf�1

3 axgðliþtix
�
b;i
þc2tag�

c;i
Þs2 gyis3 ¼ uih

x�
b;i

i v tag�
c;i

� �~s2

Ys3
i ;

C7;i ¼ ðgz2 Þðfiþtag�
c;i

c3Þaxf�1
3 gðfiþtag�

c;i
c3Þs2 ¼ siu

tag�
c;i

� �~s2
;

C8 ¼ gcs3 ¼ gs3
4 ;

C9 ¼ eðg; gÞc1as1 Mb ¼ eðg1; g2Þ
s1 Mb:

In computing C4, we have that

~d2
~/1 � ~d1

~/2 ¼ ðw1z2 þ d2z1Þð�w2z2 þ /1Þ � ð�w2z2 þ d1z1Þðw1z2 þ /2Þ ¼ ðw1/1 þw2/2Þz2 þ ðd2/1 � d1/2Þz1 � az1z2;

where a = w1d1 + w2d2. Then, the unknown term ðgz1z2 Þ�ax is canceled out by the opposite term ðgz1z2 Þax that comes from the
calculation of F~s2

3 ¼ ðgf3z1 Þf
�1
3 axz2þs2 . Also, in computing C6,i, the term gz1 inserted into ui, hi, and vi is also canceled out by setting

tag�c;i ¼ Ai þ Bi � x�b;i for i = 1, . . . , ‘. Note that the values fAi;Big‘i¼1 are information-theoretically hidden to the adversary, and
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because of the restriction P‘ ~ri;~x�0
� �

¼ P‘ ~ri;~x�1
� �

¼ 0 in the security model, there must be at least one component ri,j such that
ri;j – x�b;j, so that the value tagk ¼ Rj2Sð~riÞðAj þ Bj � ri;jÞ from the ith query must include at least one value Aj + Bj � ri,j for the
component ri;j – x�b;j. Because of this existence, the adversary cannot identify any special relationship between tag�c;i

n o‘
i¼1

and tagk (from the ith query).
Guess B receives a bit b0 2 {0,1} and outputs 0 if b0 = b.
Analysis As mentioned above, if Z ¼ gz2ðz3þz4Þ;B is in Gamek�1, whereas if Z ¼ gz2ðz3þz4Þgp;B is in Gamek. It follows that

under the DLIN assumption, these two games are indistinguishable. h

Lemma 3. Suppose that the DBDH assumption holds. Then no polynomial time adversary A can distinguish between Game1
q and

Game1
M with non-negligible advantage.

Proof. Suppose that there exists an adversary A which can attack our HVE scheme with non-negligible advantage �. We
describe an algorithm B which uses A to solve the DBDH problem with advantage �. On input
ðg; ga; gb; gc; ZÞ 2 G4 �GT ; B’s goal is to output 1 if Z = e(g, g)abc and 0 otherwise. B interacts with A as follows:

Setup B selects random exponents a; X; c; fyi; li, ti; fig‘i¼1; fcig
3
i¼1, fwi; di; /ig2

i¼1; ffig3
i¼1 in Zp, such that w1d1 + w2-

d2 = aX (where X – 0).
B sets

W1 ¼ ðgbÞd2 gw1 ; W2 ¼ ðgbÞ�d1 gw2 ; F1 ¼ gf1 ; F2 ¼ gf2 ; F3 ¼ gf3 ;

g2 ¼ ga; g3 ¼ ðgbÞd2/1�d1/2 gw1/1þw2/2 ; g4 ¼ gc;

Yi ¼ gyi ; ui ¼ gli ; hi ¼ gti ; si ¼ gfi ði ¼ 1; . . . ; ‘Þ;

v ¼ gc2 ; u ¼ gc3 ; K ¼ eðga; gbÞX � eðg; gÞc1 :

B (implicitly) sets

~w1 ¼ d2bþw1; ~w2 ¼ �d1bþw2; b ¼ ðd2/1 � d1/2Þbþ ðw1/1 þw2/2Þ;

g1 ¼ gXabgc1 :

Notice that each public key element is independently and uniformly distributed as in the actual construction. Also, we can
see that

~w1d1 þ ~w2d2 ¼ ðd2bþw1Þd1 þ ð�d1bþw2Þd2 ¼ w1d1 þw2d2 ¼ aX;

~w1/1 þ ~w2/2 ¼ ðd2bþw1Þ/1 þ ð�d1bþw2Þ/2 ¼ ðd2/1 � d1/2Þbþ ðw1/1 þw2/2Þ ¼ b:

Key Generation Phases 1 and 2 A issues token queries for vectors. For any queried vector ~ri;B generates a semi-func-
tional token TKsf

~ri
. It selects random r1, r2, r3, r4, r5 (subject to the equation ðRi2Sð~riÞyiÞr3 ¼ cr5), tagk, k 2 Zp. B implicitly sets

~r1 ¼ �abþ r1; ~k ¼ aþ k:

It computes the token as follows:

K1 ¼ ðgbÞd1kðgaÞ�w2 gd1r1 g/1r2 g�w2k; K2 ¼ ðgbÞd2kðgaÞw1 gd2r1 g/2r2 gw1k;

K3 ¼ gc1 gXr1 ; K4 ¼ gr2 ; K5 ¼ Kf1
1 Kf2

2 K�f3
4 v r3ur4 ;

K6 ¼
Y

j2Sð~riÞ
ujh

rj

j � v
tagk

0@ 1Ar3 Y
j2Sð~riÞ

sj �utagk

0@ 1Ar4

;

K7 ¼ gr3 ; K8 ¼ gr4 ; K9 ¼ gr5 :

The validity of K1, K2, K3, K5, and K6 elements can be checked as follows:

K1 ¼ ðgbÞd1kðgaÞ�w2 gd1r1 g/1r2 g�w2k ¼ gd1ð�abþr1Þg/1r2 � g�ð�d1bþw2ÞðaþkÞ ¼ gd1~r1 g/1r2 � g�~w2
~k;

K2 ¼ ðgbÞd2kðgaÞw1 gd2r1 g/2r2 gw1k ¼ gd2ð�abþr1Þg/2r2 � gðd2bþw1ÞðaþkÞ ¼ gd2~r1 g/2r2 � g ~w1
~k;

K3 ¼ gc1 gXr1 ¼ gXabgc1 gXð�abþr1Þ ¼ g1gX~r1 :
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Observe that the unknown term gab is canceled out in K1, K2, and K3 elements, respectively.
Challenge Ciphertext A outputs two vectors~x�0;~x

�
1 and two messages M0, M1. B then flips a random coin b 2 {0,1}. B picks

random exponents ftag�c;ig
‘
i¼1; s2; s3; x 2 Zp. B implicitly sets ~s1 ¼ c and ~x ¼ �bc þ x. B computes a semi-functional ciphertext

under ð~x�b ¼ x�b;1; . . . ; x�b;‘
� �

;MbÞ as follows:

C1 ¼ ðgcÞw1 gf1s2 gd2x; C2 ¼ ðgcÞw2 gf2s2 g�d1x; C3 ¼ ðgcÞa ¼ g~s1
2 ;

C4 ¼ ðgcÞw1/1þw2/2 gf3s2 gðd2/1�d1/2Þx; C5 ¼ gs2 ;

C6;i ¼ uih
x�
b;i

i v tag�
c;i

� �s2

Ys3
i ; C7;i ¼ siu

tag�
c;i

� �s2
; C8 ¼ gs3

4 ;

C9 ¼ ZX � eðg; gcÞc1 �Mb:

The validity of elements C1, C2, and C4 can be checked as follows:

C1 ¼ ðgcÞw1 gf1s2 gd2x ¼ gðd2bþw1Þcgf1s2 � gd2ð�bcþxÞ ¼W~s1
1 Fs2

1 � gd2~x;

C2 ¼ ðgcÞw2 gf2s2 g�d1x ¼ gð�d1bþw2Þcgf2s2 � g�d1ð�bcþxÞ ¼W~s1
2 Fs2

2 � g�d1~x;

C4 ¼ ðgcÞw1/1þw2/2 gf3s2 gðd2/1�d1/2Þx ¼ g½ðd2/1�d1/2Þbþðw1/1þw2/2Þ�cgf3s2 � gðd2/1�d1/2Þð�bcþxÞ ¼ g~s1
2 Fs2

3 � gðd2/1�d1/2Þ~x:

If Z = e(g, g)abc, then the element C9 can be computed as follows:

C9 ¼ ZX � eðg; gcÞc1 �Mb ¼ eðg; gÞXabc � eðg; gÞc1c �Mb ¼ eðg1; g2Þ
~s1 �Mb:

In this case, the challenge ciphertext is a valid encryption under ð~x�b;Mb). Thus, B is playing Gameq with A. On the other
hand, if Z is random, C9 is randomly distributed. Thus, B is playing GameFinalM with A.

Guess B receives a bit b0 2 {0,1} and outputs 0 if b0 = b.
Analysis As mentioned above, if Z = e(g, g)abc, the challenge ciphertext is distributed as in Gameq, whereas if Z is random,

the challenge ciphertext is distributed as in GameFinalM . It follows that under the DBDH assumption, these two games are
indistinguishable. h

Let k = 1, . . . , ‘ and let Game1
M ¼ Game1

~x;0.

Lemma 4. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game1
~x;k�1 and

Game1
~x;k with non-negligible advantage.

Proof. Suppose that there exists an adversary A which can attack our HVE scheme with non-negligible advantage �. We
describe an algorithm B which uses A to solve the DLIN problem with advantage �. On input
ðg; gz1 ; gz2 ; gz1z3 ; gz4 ; ZÞ 2 G6; B interacts with A as follows:

Setup B selects random exponents a; c; fAi; yi; li, ti; fig‘i¼1; fcig
3
i¼1, fwi; di; /ig2

i¼1; ffig3
i¼1 in Zp; B sets

W1 ¼ gz1 gw1 ; W2 ¼ gw2 ; F1 ¼ gf1 ; F2 ¼ gf2 ; F3 ¼ ðgz1 Þf3 ;

g2 ¼ ga; g3 ¼ ðgz1 Þ/1þw2 gw1/1þw2/2 ; g4 ¼ gz1 ;

Yi ¼ ðgz1 Þyi ði ¼ 1; . . . ; k� 1; kþ 1; . . . ; ‘Þ; Yk ¼ ðgz2 Þyk ;

ui ¼ gli ði ¼ 1; . . . ; k� 1; kþ 1; . . . ; ‘Þ; uk ¼ ðgz2 Þyk glk ;

hi ¼ gti ; si ¼ ðgz2 Þ�Ai gfi ; v ¼ gc2 ; u ¼ gz2 gc3 ; K ¼ eðgc1 ; gaÞ:

Note that the values fAig‘i¼1 are information-theoretically hidden. B (implicitly) sets

c ¼ z1; ~yi ¼ yiz1 ði ¼ 1; . . . ; k� 1; kþ 1; . . . ; ‘Þ; ~yk ¼ ykz2;

~f 3 ¼ f3z1; ~w1 ¼ z1 þw1; ~/2 ¼ z1 þ /2; X ¼ ðd1z1 þw1d1 þw2d2Þ=a;

b ¼ ð/1 þw2Þz1 þ ðw1/1 þw2/2Þ; g1 ¼ gc1 :

Notice that each public key element is independently and uniformly distributed as in the actual construction. Also, we can
see that
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~w1d1 þw2d2 ¼ ðz1 þw1Þd1 þw2d2 ¼ d1z1 þw1d1 þw2d2 ¼ aX;

~w1/1 þw2
~/2 ¼ ðz1 þw1Þ/1 þw2ðz1 þ /2Þ ¼ ð/1 þw2Þz1 þ ðw1/1 þw2/2Þ ¼ b:

Key Generation Phases A issues token queries for vectors. B generates a semi-functional token for the requested vector
~ri. B handles this in one of two way.

Case I: k R Sð~riÞ.

B picks random exponents r1; r2; r3; r4; k; tagkð–Rj2Sð~riÞAjÞ in Zp. It implicitly sets

~r3 ¼ r3z1; ~r5 ¼ r3ðRj2Sð~riÞyjz1Þ:

Note that the equation

ðRj2Sð~riÞ~yjÞ~r3 ¼ ðRj2Sð~riÞyjz1Þr3z1 ¼ z1 � r3ðRj2Sð~riÞyjz1Þ ¼ c~r5

is satisfied. B generates the semi-functional token as follows:

K1 ¼ gd1r1 g/1r2�w2k ¼ gd1r1 g/1r2 � g�w2k ¼ gd1r1 g/1r2 � g�w2k;

K2 ¼ gd2r1 ðgz1 Þr2þkg/2r2þw1k ¼ gd2r1 gðz1þ/2Þr2 � gðz1þw1Þk ¼ gd2r1 g~/2r2 � g ~w1k;

K3 ¼ gc1 ðgz1 Þd1r1=agðw1d1þw2d2Þr1=a ¼ g1gXr1 ;

K4 ¼ gr2 ;

K5 ¼ Kf1
1 Kf2

2 ðgz1 Þ�f3r2 ðgz1 Þc2r3 ðgz2 Þr4 gc3r4 ¼ Kf1
1 Kf2

2 gr2ð Þ�f3z1 ðgc2 Þr3z1 ðgz2þc3 Þr4 ¼ Kf1
1 Kf2

2 K�
~f 3

4 v~r3ur4 ;

K6 ¼ ðgz1 Þ
r3 Rj2Sð~ri Þ

ðljþtjrjÞþc2tagk

h i
ðgz2 Þr4ð�Rj2Sð~ri Þ

AjþtagkÞgr4ðRj2Sð~riÞ
fjþc3tagkÞ

¼
Y

j2Sð~riÞ
glj gtjrj � gc2tagk

0@ 1Ar3z1 Y
j2Sð~riÞ

ðgz2 Þ�Aj gfj � ðgz2 gc3 Þtagk

0@ 1Ar4

¼
Y

j2Sð~riÞ
ujh

rj

j � v
tagk

0@ 1A~r3 Y
j2Sð~riÞ

sj �utagk

0@ 1Ar4

;

K7 ¼ ðgz1 Þr3 ¼ g~r3 ; K8 ¼ gr4 ;

K9 ¼ ðgz1 Þr3ðRj2Sð~ri Þ
yjÞ ¼ gr3ðRj2Sð~riÞ

yjz1Þ ¼ g~r5 :

Note that B can generate a normal token5 for vectors in Case I, even though B computes the semi-functional token. This is
because B can simply set the exponent ~r4 to not include the unknown terms z1 or z2. However, the semi-functionality of tokens
is necessary for handling queries in the next case.

Case II: k 2 Sð~riÞ.

For notational convenience, we define bS ¼ Sð~riÞ=fkg:B picks random exponents r1; r2; r3; r4; k; tagkð–Rj2Sð~riÞAjÞ in Zp. It
implicitly sets

~k ¼ k� r3ykz2

f3ðRj2Sð~riÞAj � tagkÞ
; ~r2 ¼ r2 þ

r3ykz2

f3ðRj2Sð~riÞAj � tagkÞ
;

~r3 ¼ r3z1; ~r4 ¼ r4 þ
r3ykz1

Rj2Sð~riÞAj � tagk
; ~r5 ¼ r3 ykz2 þ R

j2bS yjz1

� �
:

Note that the equation

ðRj2Sð~riÞ~yjÞ~r3 ¼ ykz2 þ R
j2bS yjz1

� �
r3z1 ¼ z1 � r3 ykz2 þ R

j2bS yjz1

� �
¼ c~r5;

is satisfied. For notational convenience, we let U ¼ yk=ðRj2Sð~riÞAj � tagkÞ. B generates the semi-functional token as follows:

5 This fact will be used in proving Claim 2.
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K1 ¼ gd1r1 g/1r2�w2kðgz2 Þðr3/1þr3w2ÞU=f3 ¼ gd1r1 g/1ðr2þr3Uz2=f3Þ � g�w2ðk�r3Uz2=f3Þ ¼ gd1r1 g/1~r2 � g�w2
~k;

K2 ¼ gd2r1 ðgz1 Þr2þkg/2r2þw1kðgz2 Þðr3/2�r3w1ÞU=f3 ¼ gd2r1 gðz1þ/2Þðr2þr3Uz2=f3Þ � gðz1þw1Þðk�r3Uz2=f3Þ ¼ gd2r1 g~/2~r2 � g ~w1
~k;

K3 ¼ gc1 ðgz1 Þd1r1=agðw1d1þw2d2Þr1=a ¼ g1gXr1 ;

K4 ¼ gr2 ðgz2 Þr3U=f3 ¼ g~r2 ;

K5 ¼ Kf1
1 Kf2

2 ðgz1 Þ�f3r2 ðgz1 Þc2r3 ðgz2 Þr4 gc3r4 ðgz1 Þc3r3U ¼ Kf1
1 Kf2

2 gr2 ðgz2 Þr3U=f3
� ��f3z1

ðgc2 Þr3z1 ðgz2þc3 Þr4þr3Uz1 ¼ Kf1
1 Kf2

2 K�
~f 3

4 v~r3u~r4 ;

K6 ¼ ðgz1 Þ
r3 Rj2Sð~ri Þ

ðljþtjrjÞþc2tagk

h i
ðgz2 Þr4ð�Rj2Sð~ri Þ

AjþtagkÞgr4ðRj2Sð~riÞ
fjþc3tagkÞðgz1 Þr3UðRj2Sð~riÞ

fjþc3tagkÞ

¼
Y
j2bS glj gtjrj � ðgz2 Þyk glk gtkrk � gc2tagk

0B@
1CA

r3z1 Y
j2Sð~riÞ

ðgz2 Þ�Aj gfj � ðgz2 gc3 Þtagk

0@ 1Ar4þr3Uz1

¼
Y

j2Sð~riÞ
ujh

rj

j � v
tagk

0@ 1A~r3 Y
j2Sð~riÞ

sj �utagk

0@ 1A~r4

;

K7 ¼ ðgz1 Þr3 ¼ g~r3 ; K8 ¼ gr4 ðgz1 Þr3U ¼ g~r4 ;

K9 ¼ ðgz2 Þr3yk ðgz1 Þ
r3ðR

j2bS yjÞ
¼ g

r3ðykz2þR
j2bS yjz1Þ

¼ g~r5 :

Note that B cannot generate a normal token for vectors in Case II, which is because B is forced to set the exponent ~r4 to
include z1. From this starting point, B eventually has to use the additional terms for semi-functional token6 in generating the
component K2.

Challenge Ciphertext A outputs two vectors ~x�0;~x
�
1 and two messages M0, M1. B picks a random bit b 2 {0,1}. B selects

random s1; x 2 Zp, random R1; . . . ;Rk�1 2 G, and random RT 2 GT , and it sets tag�c;i ¼ Ai for i = 1, . . . , ‘. B implicitly sets
~s2 ¼ z4; ~s3 ¼ z3; ~x ¼ xþ f3z4=d1:

B computes a semi-functional ciphertext CTsf for ((r1, . . . , rk�1 , rk or x�b;k; x
�
b;kþ1; . . . ; x�b;‘), Mb) as follows:

C1 ¼ ðgz1 Þs1 gw1s1 ðgz4 Þf1 gd2xðgz4 Þf3d2=d1 ¼ gðz1þw1Þs1 gf1z4 � gd2ðxþf3z4=d1Þ ¼Ws1
1 F~s2

1 � gd2~x;

C2 ¼ gw2s1 ðgz4 Þf2 g�d1xðgz4 Þ�d1 f3=d1 ¼ gw2s1 gf2z4 g�d1ðxþf3z4=d1Þ ¼Ws1
2 F~s2

2 � g�d1~x;

C3 ¼ gas1 ¼ gs1
2 ;

C4 ¼ ðgz1 Þð/1þw2Þs1 gðw1/1þw2/2Þs1 ðgz1 Þ�d1xgðd2/1�d1/2Þxðgz4 Þðd2/1�d1/2Þf3=d1

¼ ðgz1 Þ/1þw2 gw1/1þw2/2

� �s1
ðgf3z1 Þz4 � g½d2/1�d1ðz1þ/2Þ�ðxþf3z4=d1Þ ¼ gs1

3 F~s2
3 � gðd2/1�d1

~/2Þ~x;

C5 ¼ gz4 ¼ g~s2 ;

C6;i ¼ Ri ði ¼ 1; . . . ; k� 1Þ; C6;k ¼ Zyk � ðgz4 Þlkþtkx�
b;k
þc2 tag�

c;k ;

C6;i ¼ ðgz4 Þliþtix
�
b;i
þc2tag�

c;i ðgz1z3 Þyi ¼ ðgliþtix
�
b;i
þc2tag�

c;i Þz4 ðgyiz1 Þz3 ¼ ðuih
x�

b;i

i v tag�
c;i Þ~s2 Y~s3

i ði ¼ kþ 1; . . . ; ‘Þ;

C7;i ¼ ðgz4 Þðfiþc3tag�
c;i
Þ ¼ ðgz2 Þ�Ai gfi ðgz2 gc3 Þtag�

c;i

� �z4
¼ ðsiu

tag�
c;i Þ~s2 ði ¼ 1; . . . ; ‘Þ;

C8 ¼ gz1z3 ¼ g~s3
4 ; C9 ¼ RT :

6 This fact will be used in proving Claim 2.
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B cannot compute a normal ciphertext as a challenge, because it is required to use the additional term gðd2/1�d1
~/2Þ~x for

semi-functional ciphertext in order to remove gz1z4 derived from F~s2
3 ¼ ðgz1z4 Þf3 . At first glance, the term gz1z4 can also be can-

celed out by making the exponent s1 include z4, but in that case, the component C1 ¼Ws1 Fs2
1 ¼ gðz1þw1Þs1 gf2s2 has the term gz1z4 .

As a result, B has to generate the challenge ciphertext in a semi-functional form. Notice that C6,i for i = 1, . . . , k � 1 can also be
generated in the right form7 as in C6,i for i = k + 1, . . . , ‘, but by the hybrid argument these elements are replaced with random
group elements in G. In case of C9, B can generate the element in the right form8, but it can also be replaced with a random
element in GT .

If Z ¼ gz2ðz3þz4Þ, then C6,k is computed as follows:

C6;k ¼ ðgz2ðz3þz4ÞÞyk � ðgz4 Þlkþtkx�
b;k
þc2tag�

c;k ¼ gykz2þlk gtkx�
b;k gc2tag�

c;k

� �z4
ðgykz2 Þz3 ¼ ðukh

x�
b;k

k v tag�
c;k Þ~s2 Y~s3

k :

In this case, B generates the semi-functional ciphertext for the vector r1; . . . ; rk�1; x�b;k; . . . ; x�b;‘
� �

, so B plays GameFinal~x;k�1

with A. On the other hand, if Z ¼ gz2ðz3þz4Þgp for some (non-zero) p 2 Zp, then B has that

C6;k ¼ ðgz2ðz3þz4ÞgpÞyk � ðgz4 Þlkþtkx�
b;k
þc2tag�

c;k ¼ ðukh
x�

b;k

k v tag�
c;k Þ~s2 Y~s3

k � g
pyk :

In this case, B generates the semi-functional ciphertext for the vector ðr1; . . . ; rk�1; x�b;k þ r0k; x
�
b;kþ1; . . . ; x�b;‘Þwhere r0k is a dis-

crete logarithm satisfying gpyk ¼ gtkz4r0
k ¼ ðhr0

k
k Þ

~s2 . Since p is uniformly distributed at random, so is x�b;k þ r0k. This means that B
plays GameFinal~x;k with A.

Guess B receives a bit b0 2 {0,1} and outputs 0 if b0 = b.
Analysis As mentioned above, if Z ¼ gz2ðz3þz4ÞB is in GameFinal~x;k�1 , whereas if Z ¼ gz2ðz3þz4ÞgpB is in GameFinal~x;k . It follows that

under the Decision Linear assumption, these two games are indistinguishable. h

By combining the results of Lemmas 1–4, we obtain the following security result:

Theorem 1 (Case 1). Assume the DLIN and DBDH assumptions hold in G. Then, our HVE scheme is (attribute-hiding) secure in
Case 1.

Case 2: (Proof idea) We give a key idea behind the security proof in Case 2. When given the challenge ciphertext, the
adversary aims to decide which one of the two pairs ~x�0;M

� �
and ~x�1;M

� �
is associated with the challenge ciphertext. As in

Case 1, the basic step is to change the challenge ciphertexts into semi-functional one, but the difference is that tokens are
changed from normal to semi-functional ones or vice versa during the security game. The main obstacle comes from the fact
that the adversary can query matching tokens for both the challenge vectors~x�0 and~x�1 simultaneously. This means that the
adversary can use the matching tokens to decrypt the challenge ciphertext that would be an encryption of~x�b for a random bit
b 2 {0, 1}. However, under the fair rule of the security game, we know that the matching tokens are associated with the vec-
tor components such that x�0;i ¼ x�1;i for i 2 {1, . . . , ‘}. Also, for the other pairwise-distinct vector components, tokens cannot be
matching for~x�0 and~x�1 simultaneously, and thus they are not helpful to the adversary when trying to decrypt the challenge
ciphertext. This observation shows that when tokens are generated with at least one pairwise-distinct component, we can
generate the resulting tokens in a semi-functional form.

At each position k 2 {1, . . . , ‘}, we consider two cases depending on x�0;k ¼ x�1;k or not. In any case, all tokens including any
kth component can be semi-functional and the other tokens not including any kth component are normal until the challenge
phase. In the case where x�0;k – x�1;k, there should be no matching token including kth component as we observed above. Also,
even if the challenge ciphertext is semi-functional, other matching tokens not involving kth component (if possible) will de-
crypt the challenge ciphertext correctly. Thus, we can change the k-th component x�b;k in the challenge ciphertext into a ran-
dom one by the similar simulation to the one of Case 1, and then we move onto the next position k + 1. In the other case
where x�0;k ¼ x�1;k, we will perform the same process in generating tokens until the challenge phase. However, when the adver-
sary outputs ~x�0;M

� �
and ~x�1;M

� �
where x�0;k ¼ x�1;k, then we cannot construct the semi-functional challenge ciphertext since

the adversary can be already given semi-functional tokens associated with the k-th component x�0;k ¼ x�1;k. Fortunately, in that
case, we can move onto the next position k + 1 without generating the challenge ciphertext at position k, which is because
the challenge ciphertext at position k has exactly the same distribution as that in the previous position k � 1 (or further pre-
vious position). Before moving onto the next position k + 1, we return all semi-functional tokens into normal ones to prepare
for generating tokens in the next position. In this way, we can proceed to the last vector component.

The simulator considers a sequence of hybrid games as follows:

Game2
Real: This is the actual HVE security game in Case 2. All tokens will be normal and the challenge ciphertext will be a

normal challenge ciphertext on a pair ~x�b;M
� �

, where b 2 {0, 1} is a random bit and M = M0 = M1.

Game2
0: All tokens will be normal, but the challenge ciphertext will be a semi-functional ciphertext on a pair ~x�b;M

� �
.

7 This fact will be used in proving Claim 2.
8 This fact will be used in proving Claim 2.
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Game2
1: All tokens will be normal, and the challenge ciphertext will be a semi-functional ciphertext on a pair

r1; x�b;2; . . . ; x�b;‘
� �

;M
� �

, where r1 is a random element from R if x�0;1 – x�1;1 and otherwise r1 ¼ x�b;1.

..

. ..
.

Game2
‘ : All tokens will be normal, and the challenge ciphertext will be a semi-functional ciphertext on a pair ((r1, r2,

. . . , r‘), M), where for i = 1, . . . , ‘, ri is a random element from R if x�0;i – x�1;i and otherwise ri ¼ x�b;i.

In Game2
Real, the normal challenge ciphertext on a pair ð~x�b;MÞ is given to the adversary. On the other hand, in Game2

‘ , the
challenge ciphertext given to the adversary is a semi-functional ciphertext corresponding to ((r1, . . . , r‘), M) that leaks no
information about~x�b. Note that ri is random for each i such that x�0;i – x�1;i, so that the final vector (r1, r2, . . . , r‘) does not help

the adversary to tell between ~x�0 and ~x�1. We will show that no polynomial time adversary is able to distinguish between
Game2

Real and Game2
‘ by proving that the transitions between the sequence of games above are all computationally indistin-

guishable under the DLIN assumption.

Lemma 5. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game2
Real and

Game2
0 with non-negligible advantage.

Proof. The proof of Lemma 5 is identical to that of Lemma 1. h

Next, in order to prove that distinguishing between two games Game2
k�1 and Game2

k for k = 1, . . . , ‘ is computationally hard,
we consider two cases (for each k) depending on whether x�0;k – x�1;k or x�0;k ¼ x�1;k when A outputs two challenge vectors

~x�0 ¼ x�0;1; . . . ; x�0;‘
� �

and ~x�1 ¼ x�1;1; . . . ; x�1;‘
� �

. In the first case, A should not issue token queries for ~ri ¼ ðri;1; . . . ;ri;k; . . . ;ri;‘Þ
such that k 2 Sð~riÞ and P‘ ~ri;~x�0

� �
¼ P‘ ~ri;~x�1

� �
¼ 1. This means that tokens including k-th component ri,k as non-wildcard

should not be matching queries on either~x�0 or~x�1. Thus, the tokens including ri,k do not help A decrypt the challenge cipher-
text correctly. The impossibility of decryption allows the simulator to change the tokens from normal to semi-functional
even if the challenge ciphertext will also be semi-functional. However, other tokens remain normal so that A is able to
use the other normal tokens to decrypt the challenge ciphertext successfully. Once the tokens including the k-th component
ri,k and the challenge ciphertext will be semi-functional, the k-th component x�b;k for a random bit b 2 {0,1} is replaced with a

random element. This is performed in a game defined (below) as Game2
k�1;F , and then the tokens return back to the normal

type necessary for the next intermediate game Game2
k . On the other hand, the second case when x�0;k ¼ x�1;k makes two inter-

mediate games equal, i.e., Game2
k�1 ¼ Game2

k . Thus, we can naturally move onto the next intermediate games in Case 2.
Now, it remains to show how the simulator behaves in the case where x�0;k – x�1;k. Let qk be the number of token queries for

vectors f~rigqk
i¼1 such that k 2 Sð~riÞ. Then the simulator considers a sequence of hybrid games as follows:

Game2
k�1: All tokens will be normal, and the challenge ciphertext will be a semi-functional ciphertext on a pair

r1; . . . ; rk�1; x�b;k; . . . ; x�b;‘
� �

;M
� �

, where the elements {ri} for i = 1, . . . , k � 1 are random from R if x�0;i – x�1;i and otherwise

ri ¼ x�b;i.

..

. ..
.

Game2
k�1;j: The first j tokens in f~rigqk

i¼1 will be semi-functional and the other tokens will be normal, and the challenge

ciphertext will be a semi-functional ciphertext on a pair r1; . . . ; rk�1; x�b;k; . . . ; x�b;‘
� �

;M
� �

.
..
. ..

.

Game2
k�1;qk

: All tokens in f~rigqk
i¼1 will be semi-functional and the other tokens will be normal, and the challenge ciphertext

will be a semi-functional ciphertext on a pair r1; . . . ; rk�1; x�b;k; . . . ; x�b;‘
� �

;M
� �

.

Game2
k�1;F : All tokens in f~rigqk

i¼1 will be semi-functional and the other tokens will be normal, and the challenge ciphertext

will be a semi-functional ciphertext on a pair r1; . . . ; rk�1; rk; x�b;kþ1; . . . ; x�b;‘
� �

;M
� �

, where rk is random.

Game2

k�1;dqk�1
: The first qk � 1 tokens in f~rigqk

i¼1 will be semi-functional and the other tokens will be normal, and the chal-

lenge ciphertext will be a semi-functional ciphertext on a pair r1; . . . ; rk; x�b;kþ1; . . . ; x�b;‘
� �

;M
� �

.

..

. ..
.
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Game2

k�1;bj : The first j tokens in f~rigqk
i¼1 will be semi-functional and the other tokens will be normal, and the challenge

ciphertext will be a semi-functional ciphertext on a pair r1; . . . ; rk; x�b;kþ1; . . . ; x�b;‘
� �

;M
� �

.

..

. ..
.

Game2
k: All tokens will be normal, and the challenge ciphertext will be a semi-functional ciphertext on a pair

r1; . . . ; rk; x�b;kþ1; . . . ; x�b;‘
� �

;M
� �

.

The following claims show that all these hybrid games are indistinguishable under the DLIN assumption, so that distin-
guishing between Game2

k�1 and Game2
k is computationally infeasible.

Let j = 1, . . . , qk and Game2
k�1 ¼ Game2

k�1;0.

Claim 1. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game2
k�1;j�1 and

Game2
k�1;j with non-negligible advantage.

Proof. The proof of Claim 1 is almost identical to that of Lemma 2. The difference is that the first j � 1 tokens in f~rigqk
i¼1 are

generated as semi-functional ones, and the j-th token is generated using the target element Z of a DLIN problem, and the
other tokens are generated as normal ones. h

Claim 2. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game2
k�1;qk

and
Gamek�1,F with non-negligible advantage.

Proof. The proof of Claim 2 is almost identical to that of Lemma 4. The difference is that all tokens in f~rigqk
i¼1 are generated as

semi-functional ones and the other tokens are generated as normal ones. In constructing the challenge ciphertext, the ele-
ments fC6;igk�1

i¼1 are generated in the right form if x�0;i ¼ x�1;i for i = 1, . . . , k � 1 and C9 is also generated in the right form. h

Let j ¼ qk; . . . ;1;Game2
k�1;F ¼ Game2

k�1;bqk
, and Game2

k ¼ Game2

k�1;b0 .

Claim 3. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game2

k�1;bj and
Game2

k�1;cj�1
with non-negligible advantage.

Proof. The proof of Claim 3 is identical to that of Claim 1 (Lemma 2), except that the k-th component x�b;k is replaced with a
random element in generating the challenge ciphertext. h

By putting the results of claims all together, we obtain the security result of Lemma 6. Let k = 1, . . . , ‘.

Lemma 6. Suppose that the DLIN assumption holds. Then no polynomial time adversary A can distinguish between Game2
k�1 and

Game2
k with non-negligible advantage.

By combining the results of Lemmas 5 and 6, we obtain the following security result of Case 2:

Theorem 2. (Case 2) Assume the DLIN assumption holds in G. Then, our HVE scheme is (attribute-hiding) secure in Case 2.

5. Comparison to other HVE schemes

Table 1 gives a comparison of the different features in previous HVE schemes and ours when encrypting ‘-dimensional
vectors. Any IPE scheme can be straightforwardly transformed into an HVE scheme by expanding the dimension of vectors
from ‘ to 2‘ [28], so we consider the previous IPE schemes [28,36,30,38,35,34] handling 2‘-dimensional vectors as HVE
schemes handling ‘-dimensional vectors. We point out that [34] is an independent work that has recently suggested a fully
secure IPE scheme. In terms of achieving full security, [30,18,35] are weakly attribute-hiding in the sense that an adversary
can make token queries such that P‘ ~x�0; ~ri

� �
¼ P‘ ~x�1; ~ri

� �
¼ 0 for all queried vectors f~rig, where ~x�0 and ~x�1 are vectors chal-

lenged by the adversary. [18] suggested another HVE scheme which is secure in the opposite sense of security modelling
where P‘ ~x�0; ~ri

� �
¼ P‘ ~x�1; ~ri

� �
¼ 1 for all queried vectors f~rig. In any case, our HVE scheme (as well as the independent work

[34]) is the first one that is fully secure in the security model where both matching and non-matching token queries are val-
idly considered in a single security game.

Regarding efficiency, the schemes in [40,29,34] and ours have the property that both token size and the number of pairing
computations (necessary for decryption) do not depend on the dimension ‘ of attribute vectors. As mentioned before, these
schemes are desirable in applications where ‘ increases to deal with more expressive access control. Table 1 simply shows
the comparison of ‘ conjunctive equality predicates, but when we consider access control along with conjunctive
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combination of comparison and subset predicates, the efficiency impact is stronger. For instance, if a subset predicate is de-
fined over a set of n elements, one subset predicate leads to a token of size O(n) and pairing computations of size O(n). Thus, if
an access control is a conjunctive combination that consists of ‘1 equality, ‘2 comparison, and ‘3 subset predicates, the token
size and pairing computations for such an access control increase with O(‘1 + ‘2 + n‘3) in other HVE schemes. However, in
[40,29,34] and ours, these two factors remain O(1) regardless of the numbers of conjunctions.

6. Conclusion

We presented the first HVE scheme that is fully secure under the DBDH and DLIN assumptions. Our HVE scheme required
O(1)-sized private keys and O(1) paring computations for decryption, regardless of the dimension of vectors. These advan-
tages are attractive to the query server as the dimension increases to support more expressed access control. This was
achieved by first constructing a novel type of (tag-based) dual system encryption. New techniques were then applied to both
conceal vector components from ciphertexts and compress tag values into one. Our HVE scheme also yielded an anonymous
IBE scheme that is fully secure under the standard assumptions.

It was difficult to extend our HVE (and anonymous IBE) scheme to support a hierarchical delegation mechanism. Thus, it
is still an open problem to construct an HVE scheme supporting delegation, while preserving full security under standard
assumptions. Another interesting open problem is to create an IPE scheme that is fully secure under standard assumptions
in a way that both matching and non-matching key queries are allowed. It would also be interesting to show how to reduce
the number of pairing computations to O(1) in an IPE scheme, which has seemed difficult to achieve.
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