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A facile synthesis of novel 3D porous V2O5 hierarchical microspheres has been developed, based on an 

additive-free solvothermal method and subsequent calcination. Due to their unique structure, these V2O5 

microspheres display a very stable capacity retention of 130 mA h g–1 over 100 cycles at a current rate of 

0.5 C, and show excellent rate capability with a capacity of 105 mA h g–1 even at the 30 C-rate. The good 

electrochemical performance suggests that this unique hierarchical V2O5 material could be a promising 10 

candidate as a cathode material for lithium-ion batteries. 

1. Introduction 

Lithium-ion batteries (LIBs), currently the predominant power 

source for portable electronics, are continuing to attract great 

interest as the promising power source for electric vehicles (EVs) 15 

and hybrid electric vehicles (HEVs), owing to their high energy 

density and long lifespan.1, 2 Their commercial use in EVs, 

however, is still hindered by their low power density and poor 

rate performance.2 To meet the demands for use in EVs and 

HEVs, substantial efforts have been dedicated to finding new 20 

competitive electrode materials and new structures.1-4  

 Among the potential cathode materials, V2O5 has been 

intensively studied in recent years for application in LIBs, due to 

its high energy density, ease of synthesis, and low cost.5-10 V2O5 

still suffers, however, from low electric conductivity (10–2 to 10–3 25 

S cm–1), poor structural stability, and a low Li+ ion diffusion 

coefficient (~10–12 cm2 s–1), resulting in limited long-term cycling 

stability.11 In recent years, various structures reported with 

different performance suggest that the characteristics of V2O5, 

such as the dimensions, morphology, porosity, and texture, are 30 

critically important to the electrochemical performance of the 

electrodes.5, 12-17 In particular, V2O5 nanostructures (such as 

nanotubes, nanofibers, nanoparticles, nanowires, nanorods, and 

mesoporous structures) have been demonstrated effective to 

improve the electrochemical kinetics, shorten the diffusion 35 

distance for Li+ ions, and buffer the volume change during the 

lithium insertion and extraction processes, as compared with non-

nanostructured materials.5, 10, 12, 16, 18 Nevertheless, dispersed 

nanoparticles may only give very low volumetric energy density, 

which makes them unsuitable for LIBs in EVs and other large-40 

scale applications.15 Additionally, some undesirable side 

reactions or poor thermal stability can emerge due to the extended 

contact between the electrolyte and the nanosized materials with 

large surface area, leading to safety hazards and poor cycling 

stability.19, 20 Generally, the method of using microsized spherical 45 

particles is one possible approach towards high packing density 

and decreasing the polarization of the electrolyte in the active 

layer.9, 15, 21-26 By comparing the response of micro and nano 

LiMn0.85Fe0.15PO4 based electrodes, Sun et al. have clearly 

demonstrated that the former, due to its compact configuration, 50 

largely surpasses the latter in terms of volumetric energy density 

and rate capability.20 The ordered superstructures, which are self-

assembled and transformed from nanostructures, not only 

maintain the nanostructural features, but also avoid some side-

effects common to nanostructures such as low volumetric energy 55 

density and poor thermal stability.19, 20 Recently, the electrode 

materials with these structures have been found to be the most 

suitable for improving the electrochemical performance of 

LIBs.15, 21, 27-30 It is therefore highly desirable to prepare 

microsized V2O5 spherical structures composed of nanostructures 60 

for the design of high-performance LIBs with both high 

volumetric energy density and high gravimetric energy density, 

as well as good rate capability.  

 In this work, we report a facile additive-free solvothermal 

method followed by a calcination process for mass production of 65 

V2O5 microspheres consisting of porous nanofibers. When 

evaluated as a cathode material for LIBs, the three-dimensional 

(3D) porous V2O5 microspheres manifest significantly improved 

electrochemical performance in terms of specific capacity, 

cycling stability, and rate capability. 70 

2. Results and discussion 

The detailed preparation process for the V2O5 microspheres 

(V2O5-ms) can be found in the Electronic Supplementary 

Information (ESI). The precursor of V2O5-ms was first prepared 

by a solvothermal method, and then heated to obtain the porous 75 

structure of V2O5-ms. V2O5 nanoparticles (V2O5-np) were also 

synthesized by a similar procedure but with a longer reaction 

time. The crystal phase of both V2O5 samples is first confirmed 

by their X-ray diffraction (XRD) patterns, as shown in Fig. 1A 

with the peaks labeled, which demonstrates that all the reflections 80 

of the samples are in good agreement with the standard pattern of  
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Fig. 1 (A) X-ray diffraction patterns of V2O5-np and V2O5-ms. FESEM 

images of the precursor of V2O5-ms (B, C), V2O5-ms (D, E), and V2O5-np 

(F). 

pure orthorhombic V2O5phase (JCPDS card no. 89-0612). No 5 

other phases or impurities are detected in the patterns. The 

morphologies of the two samples are then studied by field-

emission scanning electron microscope (FESEM). As shown in 

Fig. 1B, the as-prepared precursor of V2O5-ms consists of 

microspheres with good uniformity and a diameter of about 4-10 10 

µm. The high magnification image of a single sphere presented in 

Fig. 1C shows that the sphere is composed of uniform nanofibers. 

After the calcination process, the structure of the microspheres is 

perfectly retained (Fig. 1D), while the nanoporous structure of the 

nanofibers arises from the decomposition of the precursor. As 15 

shown in Fig. 1E, the 3D microspheres are constructed from these 

nanoporous fibers. This will endow the material with shorter 

diffusion pathways and easier Li+/electron transport, leading to 

enhanced electrochemical performance. A FESEM image of 

V2O5-np obtained with an extended solvothermal reaction time of 20 

24 h is shown in Fig. 1F. It can be observed that the microsphere 

structure is damaged and porous fibers with a length of several 

micrometers are loosely distributed over a large domain. In a 

high-magnification FESEM image, it is easily observed that the 

V2O5-np fibers consist of nanoparticles with a diameter of 40-100 25 

nm, as indicated in Fig. S1 (see ESI).  

 The formation of the V2O5-np and V2O5-ms nanostructures is 

further evidenced by transmission electron microscope (TEM) 

observations. The primary particle size of V2O5-np (Fig. 2A) is in 

the range of 40-100 nm, while that of V2O5-ms (Fig. 2B) can be 30 

as small as 5-20 nm. In addition, Brunauer-Emmett-Teller (BET)   

  
Fig. 2 TEM images of V2O5-np (A) and V2O5-ms (B). 

 
Fig. 3 Schematic illustration of the formation of 3D porous V2O5 35 

hierarchical microspheres.  

measurements show that the specific surface area of V2O5-ms and 

V2O5-np is 41.6 and 29.2 m2 g–1, respectively.  

It was reported that nanostructured materials can grow into 

self-assembled microstructures based on an oriented aggregation 40 

mechanism.31-34 Fig. 3 illustrates the proposed growth process for 

the synthesis of 3D porous V2O5-ms, involving the following four 

steps: (1) nucleation and growth. In the solvothermal process, the 

overall reaction of vanadium (V) oxytriisopropoxide (VO(OiPr)3) 

and acetic acid (HAc) leads to formation of ROVOOR′ (R = H or 45 

CH3CO; R′ = (CH3)2CH or H), according to the following 

reactions: 31 

 VO(OiPr)3 + xCH3COOH → (CH3COO)xVO(OiPr)3-x + 

x(CH3)2CHOH                            (1) 

 CH3COOH + (CH3)2CHOH → CH3COOCH(CH3)2 + H2O (2) 50 

 =VO-OR + H2O → =VO-OH + ROH  

(R = CH3CO or (CH3)2CH) (3) 

 =VO-OR + =VO-OR′ → =VO-O-VO= + R-O- R′ 

(R = H or CH3CO; R′ = H or (CH3)2CH) (4) 

VO(OiPr)3 will first react with HAc to produce unstable 55 

vanadium acetate complexes (CH3COO)xVO(OiPr)3-x by ligand 

exchange/substitution (eq. 1). Afterwards, water will be 

synthesized by the reaction between isopropanol and HAc (eq. 2). 

Then, due to the hydrolysis-condensation and nonhydrolytic 

condensation processes, V-O-V bonds would form (eq. 3 and 4).  60 

During the reaction, numerous precursor nuclei form quickly and 

then grow into fiber-like nanocrystals, as shown in the FESEM 

image of the intermediate product after solvothermal reaction for 
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5 min (Fig. S2, see ESI). (2) After that, driven by minimization of 

the overall surface energy, these fiber-like nanocrystals self-

aggregate and form microstructured spheres or fan-like 

structures.33, 34 As shown in Fig. S3 (see ESI), fan-like bundles of 

the precursor can be observed after prolonging the reaction time 5 

to about 15 min. (3) Oriented aggregation. With longer reaction 

time, the precursors further aggregate and develop into 

microsized spheres composed of nanofibers (Fig. S4, see ESI). 

(4) During the calcination process, the precursors decompose to 

form the porous V2O5 structure. 10 

  
Fig. 4 Charge-discharge voltage profiles of V2O5-np (A) and V2O5-ms (B) 

at the current rate of 0.5 C for the selected cycles indicated. (C) Cycling 

performance of V2O5-np and V2O5-ms at different current rates (10 C and 

20 C). (D) Rate capability of V2O5-np and V2O5-ms at various current 15 

rates. 

  To demonstrate the possible structural advantages, we have 

evaluated the electrochemical lithium storage properties of the 

two samples as cathode materials for LIBs. Fig. 4A shows 

representative discharge/charge voltage profiles of the V2O5-np at 20 

a current rate of 0.5 C (75 mA g–1) within a cut-off voltage 

window of 2.5-4.0 V, which are in good agreement with previous 

reports.7, 8, 14 The first discharge of the V2O5-np electrode is found 

to be 140.3 mA h g–1. As shown in Fig. 4B, the V2O5-ms 

electrode shows similar plateaus, but exhibits a larger capacity in 25 

the first cycle compared to V2O5-np. Specifically, the first 

discharge capacity is 146.3 mA h g–1, which reaches nearly its 

theoretical capacity for the transformation from V2O5 to LiV2O5 

(147 mA h g–1).  

 The cycling performance of the V2O5-np and V2O5-ms at a 30 

current rate of 0.5 C is shown in Fig. S5 (see ESI). The V2O5-np 

sample shows relatively stable capacity retention, although the 

capacity drops to 111 mA h g–1 at the end of the 100th cycle. The 

V2O5-ms sample shows significantly improved cycling 

performance under the same conditions, as illustrated by its stable 35 

capacity retention of 130 mA h g–1after 100 cycles. The cycling 

performance of the two materials was also investigated at current 

rates of 10 C and 20 C, as shown in Fig. 4C. When the current 

rate is increased to 10 C, the capacity retention of V2O5-ms upon 

prolonged cycling is significantly improved over that of V2O5-np. 40 

A high reversible capacity of 118 mA h g–1 is retained after 100 

cycles, which corresponds to a capacity loss of only 0.085% per 

cycle, while the V2O5-np electrode suffers a capacity fading rate 

of 0.165% per cycle. Upon further increasing the current rate to 

20 C, a capacity of 113 mA h g–1 can still be delivered for V2O5-45 

ms initially, and the capacity is as high as 101 mA h g–1 at the end 

of the 100th cycle. In contrast, the discharge capacity of V2O5-np 

drops dramatically from 114 to 82 mA h g–1. The relevant 

volumetric capacity at 20 C is presented in Fig. S6 (see ESI). It 

can be observed that the V2O5-ms electrode exhibits significantly 50 

higher volumetric capacity with excellent cycling stability 

compared to the V2O5-np electrode. Additionally, the rate 

capability of V2O5-ms is also much better than that of V2O5-np, 

as demonstrated in Fig. 4D. With the benefits of its unique 

structures, the V2O5-ms sample exhibits excellent cycling 55 

response to a continuously varying current rate. Even when 

cycled at the very high rate of 30 C, a high capacity of 105 mA h 

g–1 can still be maintained, as shown in Fig. 4D, while a capacity 

of only 75 mA h g–1 is delivered by the V2O5-np sample under the 

same conditions. After the deep cycling at 30 C, the V2O5-ms 60 

material can recover nearly the same initial capacity when the 

current rate is reduced back to 0.5 C. Obviously, the V2O5-ms 

sample exhibits higher capacity at each current rate. The 

electrochemical performance of the V2O5-ms electrodes is good 

compared to that of many published V2O5 electrodes, in terms of 65 

high-rate capability and cycling performance (Table S1, see ESI). 

To investigate the effects of the unique structure on the 

conductivity, electrochemical impedance spectroscopy (EIS) 

measurements (Fig. S7, see ESI) were carried out. The charge-

transfer resistance Rct for V2O5-ms (46 Ω cm–2) is less than 70% 70 

of that for V2O5-np (73 Ω cm–2), indicating enhanced charge 

transfer in the V2O5-ms electrode. The better performance of 

V2O5-ms is also likely due to the unique structural features. 

Apparently, the porous nanostructure with high surface area is 

favourable for alleviating the volume change during 75 

charging/discharging processes, as well as for increasing the 

amount of reactive sites and electrode-electrolyte interface. The 

hierarchical porous structure thus not only facilitates the kinetics 

for Li+ ion diffusion and electron transport by shortening the 

diffusion pathways to the nanoscale, but also improves the 80 

electrode stability because of the reduced lattice strain associated 

with lithium intercalation.35, 36 Moreover, the structural 

robustness of the V2O5 microspheres is also perhaps responsible 

for the improved electrochemical performance.14, 20 

3. Conclusions 85 

We have successfully prepared 3D porous V2O5 hierarchical 

microspheres on a large scale by an additive-free solvothermal 

method followed by annealing at 350 °C in air. The as-

synthesized V2O5 microspheres are composed of well-defined 

porous nanofibers that arrange themselves in an oriented manner 90 

and form a highly porous hierarchical structure. Such porous 

microspheres give rise to high surface area and high volumetric 

energy density. Meanwhile, the electronic/ionic transport and the 

ability to buffer the volume variation are also improved due to the 

unique porous structure of the microspheres. When evaluated as a 95 

cathode material for lithium-ion batteries, the V2O5 microspheres 

display relatively stable capacity retention at different current 

rates. They also show excellent rate capability, with a capacity of 

105 mA h g–1 at the 30 C-rate. The excellent electrochemical 

performance suggests that these unique hierarchical V2O5 100 

microspheres could be a promising cathode material for lithium-

ion batteries. 
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