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A nonconjugated bridge in dimer-sensitized solar cells retards charge
recombination without decreasing charge injection efficiency

Abstract
Dye sensitized solar cells (DSSCs) employing a dimer porphyrin, which was synthesised with two porphyrin
units connected without conjugation, have shown that both porphyrin components can contribute to
photocurrent generation, that is, more than 50 % internal quantum efficiency. In addition, the open-circuit
voltage (Voc) of the DSSCs was higher than that of DSSCs using monomer porphyrins. In this paper, we first
optimized cell structure and fabrication conditions. We obtained more than 80% incident photon to current
conversion efficiency from the dimer porphyrin sensitized DSSCs and higher Voc and energy conversion
efficiency than monomer porphyrin sensitized solar cells. To examine the origin of the higher Voc, we
measured electron lifetime in the DSSCs with various conditions, and found that the dimer system increased
the electron lifetime by improving the steric blocking effect of the dye layer, whilst the lack of a conjugated
linker prevents an increase in the attractive force between conjugated sensitizers and the acceptor species in
the electrolyte. The results support a hypothesis; dispersion force is one of the factors influencing the electron
lifetime in DSSCs.
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ABSTRACT 

Dye sensitised solar cells (DSSCs) employing a dimer porphyrin, which was synthesised with two 

porphyrin units connected without conjugation, have shown that both porphyrin components can 

contribute to photocurrent generation, that is, more than 50 % incident photon to current conversion 

(IPCE) efficiency. In addition, the open-circuit voltage (Voc) of the DSSCs was higher than that of 

DSSCs using monomer porphyrins. In this paper, we first optimized cell structure and fabrication 

conditions and obtained more than 80 % IPCE from the dimer porphyrin sensitized DSSCs and higher 

Voc and energy conversion efficiency than monomer porphyrin sensitized solar cells. In order to examine 

the origin of the higher Voc, we measured electron lifetime in the DSSCs with various conditions, and 

found that the dimer system increased the electron lifetime by improving the steric blocking effect of the 

dye layer, whilst the lack of a conjugated linker prevents an increase in the attractive force between 

conjugated sensitisers and the acceptor species in the electrolyte. The results support a hypothesis; 

dispersion forces are one of the factors influencing the electron lifetime in DSSCs.  

 

KEYWORDS: dimer, dye sensitised solar cells, electron lifetime, porphyrin, dispersion force.  
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INTRODUCTION 

Sensitisation of nanocrystalline oxides with organic and inorganic light harvesting compounds is a 

promising pathway for the development of low cost renewable energy conversion devices.[1] One of the 

challenges in the development of highly efficient dye-sensitised solar cells (DSSCs) is to retard charge 

recombination.[2] Whilst the recombination process is dependent on a range of factors, one of the key 

materials controlling this reaction has been shown to be the sensitisers themselves.[3-4] We have 

previously reported that the open circuit voltage (Voc) of porphyrin-based DSSCs is typically lower than 

those of other efficient ruthenium complex dyes.[5] This was attributed to a short lifetime of TiO2 

electrons primarily recombining with triiodide (I3
-) ions, the acceptor species in the electrolyte. This 

recombination reaction has been found to be a general problem for many organic sensitisers limiting 

their open circuit voltage.[6-7] The major reason for this lower photovoltage is that adsorption of 

sensitisers on the TiO2 surface acts to facilitate charge recombination with the redox mediator. It has 

been proposed that one origin of this enhanced recombination is the dispersion forces on the sensitiser 

attracting the acceptor species to the TiO2 surface region and increasing the probability of reverse 

charge transfer.[8] Since this dispersion force scales with the length of the π conjugation unit,[9] 

sensitisers with a smaller size are desired to minimize recombination. However such dyes have narrow 

absorption spectra, which prevent their use as efficient sensitisers in solar cells. Most previous attempts 

to decrease the charge recombination in DSSCs have therefore concentrated on insulating the TiO2 with 

surface treatments,[10-12] small co-adsorber molecules,[13-16] or to add alkyl chains to sensitisers to 

prevent the approach of the electron acceptor species to the TiO2 surface.[17-20] Recently, such strategies 

were incorporated into the design of a porphyrin sensitiser to produce a record power conversion 

efficiency of 12.1%.[21]  
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     Recently, dimer sensitisers have been paid attentions. One motivation to apply dimers for DSSCs is 

to increase the absorption spectrum. For this purpose, two molecules are connected with a conjugated 

linker. The other motivation is to increase light absorption coefficients of sensitisers. For this case, 

molecules are connected using a non-conjugated bridge. By increasing the coefficients, the thickness of 

the porous electrodes can be reduced. Table 1 summarizes recently published data for dimer sensitised 

solar cells.[22-26] As expected, using conjugated linkers results in the enhancement of the absorption 

spectrum, while it seems to result in the decrease of Voc. On the other hand, dimer sensitisers using non-

conjugated linkers showed higher Voc than monomer sensitisers. If the blocking effect of dye layers 

dominates the process of charge recombination, employing dimers is always expected to result in a 

higher Voc due to their larger molecular size. However, the data on Table 1 show that it is not always the 

case. If dispersion forces affect the charge recombination and the influence of such forces can compete 

with the blocking effect, then the results on Table 1 would be more easily rationalized. On other hand, 

the dispersion force theory has not been accepted widely as one of the factors influencing the 

recombination. One of the aims of this paper is to examine the role of dispersion forces in charge 

recombination by using a non-conjugated bridge in dimer sensitised solar cells. 

 

Table 1. Summary of reported performance of DSSCs employing dimer sensitisers. 

Authors Dye IPCEmax 
(%) 

IPCE Onset 
(nm) 

Jsc (mA 
cm-2) 

Voc 
(mV) Efficiency Ref 

# 
Warnan et. al. Dimer 40 745 11.6 535 4.6 22 

  Monomer 30 730 9.25 545 3.6   

Park et. al Dimer 40-50 700 10.9 600 4.2 23 
  No monomer data reported   

Wu et. al Dimer 30 900 9.66 680 4.7 24 

 Monomer 1 80 650 16.5 734 5.8  

  Monomer 2 80 720 16.8 758 8.8   

Mai et. al  Dimer 70 710 12.9 650 5.2 25 
  Monomer 60-70 680 10.9 710 5.1   

Liu et. al Dimer 60 850 14.3 550 5.2 26 
  No monomer data reported   
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EXPERIMENTAL 

Materials. Figure 1 shows the structure of dyes employed in this study. Porphyrin dyes P12 

(5,10,15,20-Tetra(3,5-dimethylphenyl)-2-(2-(4-carboxylphenyl)ethenyl)porphyrinato zinc (II)), P199 

((5,10,15-tri(4-methylphenyl)-20-(4-(2-cyano-2-carboxylethenylphenyl)porphyrinato zinc (II)) and 

dimer P10 were prepared as previously reported.[27] 

DSC Fabrication. TiO2 films were prepared on fluorine-doped tin oxide (FTO) substrates (Nippon 

Sheet Glass, Rs ≤ 9.5 Ω sq-1) using a doctor-blade technique and were sintered at 550°C for 30 minutes 

in air. DSSCs for high efficiency were prepared with a TiO2 nano-particle paste from Sumito Osaka 

Cement Co. Ltd for a transparent layer and with a 400 nm TiO2 particles (CCIC, Japan) for a scattering 

layer. Thickness of TiO2 electrode, dye bath immersion time, and concentration of chenodeoxycholic 

acid (CDCA) were varied. DSSCs for lifetime measurements were prepared using around 5.4 μm 

transparent TiO2 layer (Nanoxide-T, Solaronix) without scattering layer. Dye sensitisation was achieved 

by immersion of TiO2 films at around 80 oC into 0.2 mM or 0.02 mM ethanolic solutions of porphyrin 

dyes without CDCA and leaving at room temperature for 2 hours or 30 min, respectively. Sandwich-

type DSSCs were assembled using a thermal adhesive film and Pt-sputtered FTO-glass counter 

electrodes. Electrolyte solutions of varying composition were injected between the electrodes to 

complete devices. Electrolyte compositions employed in this study included: 

Ia 0.6 M 1,2-dimethyl-3-propylimidazolium (DMPImI), 0.5 M 4-tert-butylpyridine (tBP), 0.1  M 

LiI and 0.05 M I2 in acetonitrile  

Ib 0.6 M 1-butyl-2-methyl-3-propylimidazolium (BMPImI), 0.5 M 4-tert-butylpyridine (tBP), 0.1      

     M LiI and 0.05 M I2 in acetonitrile  

II 0.7 M BMPImI, 0.3 M tBP and 0.05 M I2 in acetonitrile      

III 0.7 M DMPImI and 0.05 M I2 in acetonitrile      
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DSSC Characterization. Current-voltage curves were recorded using a Keithley 2400 source 

measure unit with a simulated 100 mW cm-2 air mass AM 1.5 light source (YSS-100A, Yamashita 

Denso). 

   Electron Lifetime and Diffusion Coefficient Measurements. Electron lifetimes and diffusion 

coefficients were determined using stepped light-induced measurements of photocurrent and photo-

voltage transients (SLIM-PCV).[28] Measurements were performed using a 635 nm diode laser 

illuminating the entire DSSC active area.  Photocurrent and photovoltage transients were induced by the 

small stepwise (≤10%) change of the laser intensity, controlled by a PC using a digital-to-analogue 

converter. Induced transients were measured by a fast multimeter (AD7461A, Advantest). Electron 

densities at each laser illumination intensities were determined by a charge extraction method in which 

the light source is switched off at the same time the DSSC is switched from open to short circuit.[29] The 

resulting current was integrated, with the electron density calculated from the amount of charge 

extracted. 

 

 
 

Figure 1: Chemical structures of porphyrin dyes P10, P12, P199 employed in this study. 
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RESULTS AND DISCUSSION 

Optimising Device Fabrication Conditions for Dimer-sensitised Solar Cells  

First, we checked the effect of dye bath concentration and immersion time on solar cells performance 

(Figure S1 and S2 in Supporting Information) using electrolyte Ia. With initial increases in both 

concentration and time, the values of Jsc were increased for both the dimer and monomer sensitised solar 

cells. Further increases in these parameters then resulted in a decrease in the values of Jsc. The decreased 

Jsc could be due to an undesired interaction among adsorbed dyes. Secondly, we examined the effect of 

co-adsorbent and immersion time. The concentration of dye was fixed and electrolyte Ia was employed. 

Table 2 summarizes the performance. The addition of CDCA increased the Jsc for DSSCs using both the 

dimer and monomer. However, longer immersion times again resulted in a decrease of the Jsc. The 

concentration ratio of CDCA to dye was varied and a 10:1 ratio was found to give the highest Jsc. The 

addition of a scattering layer to the TiO2 films increased the Jsc by 20 %. The thickness of the 

transparent layer was varied between 3.5 and 5.6 µm, and comparable values were obtained from 4.8 

and 5.6 µm, suggesting the optimal thickness exists around these values. The DSSCs using the dimer 

always showed higher values of Voc than those of DSSCs using monomers. Figure 2 shows the I-V 

curves and IPCE of the optimized DSSCs using dimer and monomers. Both the dimer and monomer 

DSSCs showed more than 80 % IPCE while the dimer DSSCs showed higher values of Voc. The dimer 

DSSCs resulted in 5.5 % energy conversion efficiency, and the value was higher than those of the 

monomer DSSCs. The trend of the Voc was the same to what we reported previously.[27] Comparable 

values of Jsc from both the dimer and monomer DSSCs at optimized cells are expected because the 

range of their respective absorption spectra is the same. However, we note that more than 80 % IPCE 

from the dimer DSSCs was quite unexpected, as the dimer was made by connecting two monomers 

having similar LUMO levels and the bridge was not conjugated. We have shown previously that both 

the monomer and dimer examined here suffer from sub-nanosecond charge recombination.[27] Thus, the 
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increased IPCE using CDCA is probably caused by the retardation of the fast recombination with dye 

cations. 

 

 

Table 2. Performance of DSSCs under one sun conditions. 

Dye Dye/CDCA 
ratio[a] 

Dye bath 
immersio

n time 
/min 

Thickness[b] 
/ µm Voc/ V Isc / 

mAcm-2 FF Efficiency
[c] / % 

P10 1:0 45 4.7+6 0.655 8.8 0.73 4.2 
P10 1:0 120 4.7+6 0.651 9.6 0.71 4.5 
P10 1:2 45 4.4+6 0.677 9.8 0.73 4.8 
P10 1:2 120 4.4+6 0.668 9.8 0.68 4.4 
P10 1:2 360 4.0+6 0.677 8.6 0.68 4.0 
P10 1:10 45 4.6+6 0.685 10.4 0.71 5.1 
P10 1:10 120 4.8+6 0.685 10.1 0.68 4.7 
P10 1:10 360 3.7+6 0.677 8.6 0.68 4.0 
P12 1:0 45 4.8+6 0.634 7.3 0.73 3.4 
P12 1:0 120 5.5+6 0.622 8.9 0.72 4.0 
P12 1:0 360 4.8+6 0.596 6.6 0.74 2.9 
P12 1:2 45 4.4+6 0.647 8.5 0.73 4.0 
P12 1:2 120 4.6+6 0.622 8.9 0.74 4.1 
P12 1:2 360 3.8+6 0.617 8.4 0.72 3.8 
P10 1:2 45 4.8+0 0.681 7.9 0.68 3.7 
P12 1:2 45 4.7+0 0.651 6.1 0.71 2.8 
P10 1:10 45 3.5+4 0.702 10.3 0.70 5.1 
P10 1:10 45 4.8+4 0.698 11.0 0.71 5.5 
P10 1:10 45 5.6+4 0.698 10.8 0.72 5.5 
P12 1:10 45 5.6+4 0.638 9.5 0.74 4.5 
P199 1:10 45 5.6+4 0.634 10.1 0.73 4.6 
P10 1:100 45 5.7+4 0.694 9.9 0.73 5.0 

[a] Concentration ratio in dye bath. The concentration of dye was fixed at 0.2 mM in EtOH. 

[b] Thickness of transparent and scattering TiO2 layers. 

[c] A mask was placed on the cells. The projected area of the TiO2 was about 0.2 cm2, and the aperture 
area of the mask was 0.160 cm2. 
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Figure 2. I-V curves (a) and IPCE (b) of the optimized DSSCs using dimer (P10) and monomers (P12 
and P199). 

 

 

Electron Lifetime in DSSCs 

In previous section, while the cell fabrication conditions were varied, the values of the Voc from the 

dimer DSSCs were always higher than the values from the monomer DSSCs. The electron lifetime in 

the DSSCs were also measured, showing the electron lifetime in the dimer DSSCs always showed 

longer values regardless of the co-adsorption of CDCA and the addition of scattering layers to the TiO2 

films (Figure S3 and S4). In order to examine the origin of the longer electron lifetime, we compared 

here the electron lifetime in the DSSCs with various electrolyte conditions and different amount of dyes. 

To simplify the system, we employed cells without any scattering layers or CDCA. The performance of 

the DSSCs employing electrolyte Ia without scattering layer and CDCA are shown in Table 3 and 

Figure S5, and the trend was the same with the I-V curves in Figure 2. 

 

Electron lifetimes and diffusion coefficients for DSSCs prepared using the monomer and dimer 

porphyrin sensitisers are shown in Figure 3. All measurements were performed 3 times, with the error in 

the resultant data points found to be less than 30 % of the values. At a matched electron density of 6 × 

1017 cm-3, the lifetime of dimer DSSCs was found to be higher than that of both monoporphyrins by an 
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order of magnitude. The increased electron lifetime using the dimer may originate from slower electron 

transport within the TiO2 in a trap-controlled recombination mechanism.[30] Figure 3(c) shows that there 

are only minimal differences observed in the diffusion coefficients of DSSCs constructed from each dye 

system when plotted as a function of Jsc. This result indicates that variation in the charge transport is not 

the main origin of the increased lifetime for the dimer DSSCs. The plots of Voc versus electron density 

in the TiO2 film displayed no differences in either the slope or the y-intercept for DSSCs employing any 

of the three dyes (Figure 3(d)). This result demonstrates that the density of trap states[31] and the TiO2 

conduction band-edge potential (ECB) are nearly identical for DSSCs prepared using porphyrin dyes 

P199, P12 and P10. The improved device Voc observed in the dimer DSSCs is due to an increased 

electron density in the TiO2 film caused by the increased electron lifetime. 

 

 

Figure 3. Electron lifetime versus (a) Jsc, or (b) electron density; electron diffusion coefficient versus 
(c) Jsc, and (d) Voc versus electron density for DSSCs prepared with P199 (circles), P12 (triangles) and 
P10 (squares). Measurements using reduced dye surface concentrations of P199 (open circles) and P10 
(open squares) are also shown. 
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Previous studies have proposed that the following three parameters are the major factors which 

influence the TiO2 electron – I3
- recombination reaction: (i) a steric blocking effect which reduces the 

concentration of I3
- at the interface of dye-covered TiO2 by physically blocking its approach;[6, 32] (ii) an 

increased I3
- concentration at the TiO2 interface due to electrostatic forces, for example attraction of the 

negatively charged acceptor species in the presence of partial charges on the dye molecules;[6] and (iii) 

an increased I3
- concentration at the TiO2 interface due to dispersion forces, for example attraction of the 

acceptor species to the highly polarisable π-conjugated segments of dyes.[8] In order to distinguish 

between these causes and to gain further insights into the origin of the longer electron lifetime observed 

for the dimer DSSCs, the composition of the redox electrolyte was varied. In addition to the 

measurements performed with the standard composition of Electrolyte Ia, DSSCs were also prepared 

using an electrolyte without LiI (0.7 M BMImI, 0.3 M tBP, 0.05 M I2 in acetonitrile, referred to as 

Electrolyte II) and without LiI and tBP (0.7 M DMPImI, 0.05 M I2 in acetonitrile, referred to as 

Electrolyte III). The Li+ and tBP concentrations were varied since such species are known to have an 

influence on the charge recombination kinetics in DSSCs.[33-35] Furthermore, lithium cation has also 

been reported to interact with dye molecules,[36] and could therefore impact the recombination kinetics 

in the dimer DSSCs and monomer DSSCs differently. Photovoltaic performances for DSSCs containing 

each of these electrolytes are shown in Table 3. It should be noted that we have ascertained that varying 

the cation from BMImI to DMPImI makes very little difference to the photovoltaic performance (see 

Elecrtolytes Ia and Ib in, Table 3), charge transport and recombination dynamics (data not shown). 

They can therefore be used interchangeably in Electrolytes II and III. 
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Table 3. Photovoltaic performance parameters for DSSCs constructed from monoporphyrins P12 and 
P199 and dimer P10 with different electrolyte compositions. 
 

Dye Electrolyte [a-d] Thickness[e] 
(μm) 

Voc          
(mV) 

Jsc             
(mA cm-2) 

FF η (%) 

P10 Ia 5.5 624 7.6 0.65 3.1 

P199 Ia 5.4 585 6.6 0.67 2.6 

P12 Ia 5.2 575 6.0 0.65 2.3 

P10 
(reduced dye 

amount) 
 

 

Ia 5.4 536 1.5 0.66 0.54 

P199 
(reduced dye 

amount) 

Ia 5.2 456 0.84 0.59 0.23 

P10 Ib 5.3 624 6.8 0.64 2.7 

P199 Ib 5.3 571 6.5 0.68 2.5 

P12 Ib 5.3 563 6.3 0.66 2.4 

P10 II 5.4 592 1.6 0.64 0.6 

P199 II 5.2 553 1.6 0.65 0.58 

P12 II 5.5 541 0.84 0.57 0.26 

P10 III 5.4 539 2.3 0.60 0.74 

P199 III 5.2 522 2.2 0.62 0.69 

P12 III 5.2 473 1.4 0.56 0.36 

[a] Electrolyte Ia is 0.1 M LiI, 0.6 M DMPImI, 0.5 M tBP and 0.05 M I2 in acetonitrile. 
[b] Electrolyte Ib is 0.1 M LiI, 0.6 M BMImI, 0.5 M tBP and 0.05 M I2 in acetonitrile. 
[c] Electrolyte II is 0.7 M BMImI, 0.5 M tBP and 0.05 M I2 in acetonitrile. 
[d] Electrolyte III is 0.7 M DMPImI, and 0.05 M I2 in acetonitrile. 
[e] Cells were made without scattering layer and CDCA. 

               

Figure 4 shows the electron lifetime for all dyes measured for DSSCs containing Electrolytes II and III. 

For DSSCs with Electrolyte II, the trend in the electron lifetime appears to be the same as Electrolyte I, 

with the dimer DSSCs exhibiting a longer lifetime than the monomer DSSCs. This result indicates that 

the Li+ cation is not the origin of the difference between the dimer and monoporphyrin lifetimes. We 

note that the shorter lifetime values observed in Figure 4 (with Electrolyte II) compared to those in 

Figure 3 (with Electrolyte I) are likely due to the higher TiO2 conduction band edge potential in the 

electrolyte without Li+ as observed in previous studies,[37] and determined in this study from the Voc vs 
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electron density plots at matched electron density (Figure 5). A higher conduction band potential 

provides a larger excess free energy driving force for the recombination between TiO2 electrons and the 

acceptor in the redox electrolyte, leading to increased recombination kinetics, and therefore a shorter 

electron lifetime. This negative conduction bands shift is also considered responsible for the significant 

reduction in the photocurrent observed from devices containing Electrolytes II and III in comparison to 

those containing Electrolyte Ib. The more negative conduction band reduces the overlap between the 

dye LUMO and the density of acceptor states in TiO2, resulting in a reduced photocurrent.  

.  

Figure 4. Electron lifetime vs electron density for DSSCs using P199 (circles), P12 (triangles) and P10 
(squares) with Electrolyte II (closed) and Electrolyte III (open). 
 
 
 

 

Figure 5. Voc vs electron density for DSSCs using P199 (circles), P12 (triangles) and P10 (squares) and 
containing Electrolyte Ib (grey, closed) with Electrolyte II (black, closed) and Electrolyte III (open). 
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Conversely for devices prepared without tBP using Electrolyte III, Figure 4 indicates that the lifetime of 

dimer DSSCs was comparable to that of the monomer DSSCs. Furthermore, a comparison between all 

dyes for devices containing Electrolytes II (with tBP) and III (no tBP) shows that the electron lifetime 

of all dyes is improved in the presence of tBP. This improvement is most pronounced for the dimer 

molecule, leading to its longer lifetime in comparison to the monomer DSSCs. This observation implies 

that the presence of tBP in the electrolyte affects the dimer and monomer differently. We note that tBP 

molecule has recently been reported to interact with dye molecules.[38-39] One possible explanation for 

such an effect is an interaction of tBP molecules with the porphyrin dyes, creating a bulky dye structure. 

We have indeed observed a systematic red-shift in the absorption spectra of similar porphyrin dyes as 

the concentration of tBP is increased (data not shown), implying their interactions. If the tBP does 

indeed interact with the dye molecules for these sensitisers, then the bulky structure could then prevent 

the approach of I3
- acceptor species to the TiO2 surface. Since the dimer has multiple Zn atoms, this 

effect could be enhanced in comparison to the monoporphyrin dyes. Another effect could be that the 

coordination to the Zn atom would reduce the electrostatic force between the Zn cation and I3
-. 

 

To investigate whether the source of the dimer lifetime enhancement is a pure steric blocking affect (i), 

or whether partial charges (ii) or dispersion forces on the dye (iii) also influence the lifetime, 

measurements were performed at reduced dye loadings. A physical blocking effect is expected to be 

effective at high dye loadings and diminish largely at low dye surface coverage, whilst electrostatic or 

dispersive attraction forces decrease linearly with the amount of dyes. Therefore, at low dye surface 

coverages, parameters (ii) and (iii) are expected to be dominant in comparison to parameter (i). 

Accordingly, the concentration of monoporphyrin P199 and dimer P10 on the TiO2 surface was 

therefore reduced by approximately 95 % (referred to as ‘reduced’ dye loading) of the dye coverage 

obtained under standard sensitisation conditions (referred to as ‘full’ dye-loading). This was achieved by 

decreasing the dye bath concentration and shortening the dye uptake time from 2 hours to 30 minutes. 

When the dye loading of P10 and P199 was reduced, the electron lifetime became shorter for both dyes 
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with respect to the ‘full’ coverage devices (Figure 3(b)). This result is attributed to a more sparsely 

covered surface with lower packing density, which allows the approach of the I3
- to the TiO2 surface 

more readily. As seen for the ‘full’ dye coverage devices, there were no major differences between the 

P10 and P199 devices in the D (Figure 3(c)) or the TiO2 ECB values (Figure 3(d)) at ‘reduced’ surface 

loadings. Furthermore, there was no longer a difference observed in the electron lifetimes between the 

dimer and monomer-sensitised devices at these ‘reduced’ dye loadings. This result supports that the 

longer electron lifetime observed for the P10 ‘full’ coverage devices is due to a steric blocking effect. 

The similar values of the lifetime at the reduced dye loading conditions suggests that both the dimer and 

monomer similarly attract acceptor species, implying no increase in dispersion force for the dimer. One 

concern raised by an anonymous reviewer is if a change in the orientation of the dyes affects the above 

considerations. At full dye loading conditions, based on the measured amount of adsorbed dyes, the 

dimers are expected to be nearly orthogonal to the TiO2 surface.[27] If the orientation of dimers changed 

to parallel to the TiO2 surface at the reduced conditions, the concentration of porphyrin units near the 

surface would double, attracting more acceptor species and thus resulting in shorter electron lifetime in 

comparison to the case of the monomer under the same conditions and molar concentrations. Similarly, 

if the dimer exhibited larger attraction, e.g. dispersion, force and oriented more parallel to the TiO2 

surface, more acceptors at the vicinity of the TiO2 surface would be expected. The similar observed 

lifetime values (and no increase in the attraction force) in Figure 4 imply that the dimer maintains its 

nearly orthogonal orientation even at reduced dye loading conditions. 

 

Implications to the strategy to improve the efficiency of dye-sensitized solar cells 

In order to retard charge recombination in DSSCs, the local concentration of I3
- at the TiO2 surface 

should be minimized to reduce the probability of reverse charge transfer. This condition can be achieved 

by a careful consideration of the photosensitiser chemical structure. Dye molecules should ideally 

possess functional groups that enhance the blocking effect (i) and screen the electrostatic (ii) and 

dispersion forces (iii), since each of these conditions will reduce the amount of I3
- attracted to the TiO2 
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surface. In addition, it is often desirable to enlarge the dye molecules in order to increase the absorption 

spectrum onset into the infrared spectral region. However, this strategy can be problematic for 

maintaining low recombination rates since it also increases the undesirable dispersion forces due to the 

higher polarizability of the larger dye molecules. To maximise the blocking effect and dye absorption 

spectrum whilst preventing an increase in the dispersive forces, attaching sterically encumbering groups, 

which do not exhibit π-conjugation to the core dye structure, has been shown to be an effective 

approach.[40] We note that the dimer molecule studied here also conforms to this design strategy. The 

two porphyrin units do not maintain conjugation across both chromophores since they are oriented near-

orthogonal to each other as we have previously shown using computational modelling.[9] Thus, we have 

been able to introduce the blocking effect in dimer P10 without increasing the dispersion forces of the 

molecule which attract I3
- to the TiO2 surface, leading to the observed increase in the electron lifetime of 

this dye. Coupled with improved light harvesting in the dimer-sensitised solar cells, these results 

indicate that the multichromophore approach without π conjugation among each unit presents a pathway 

towards further efficiency improvements in dye sensitised solar cells, providing a new strategy to design 

sensitisers with enhanced absorption coefficients without facilitating charge recombination in DSSCs. 

 

CONCLUSIONS 

Increased electron lifetime by one order of magnitude at matched electron density has been reported for 

a porphyrin dimer-sensitised TiO2 solar cell in comparison to its monoporphyrin-sensitised analogue. 

This increase, which results in an improved open circuit voltage in operational devices, has been 

attributed to a steric blocking effect caused by the bulky dimer. This was evidenced by the decrease in 

the electron lifetime for the dimer at low dye surface concentrations. Furthermore, since the two 

porphyrin units are oriented orthogonal to each other, there is no overall increase in dispersion forces in 

the dimer which could counteract the steric blocking effect. The increased open circuit voltage is an 

additional benefit to the improved short circuit current produced by the enhanced light harvesting in the 
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covalently linked porphyrin dimer, and suggests that the multichromophore dye approach without π 

conjugation among each unit can be used to further increase device efficiency by allowing enhanced 

light absorption without facilitating additional charge recombination.  
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SUPPORTING INFORMATION AVAILABLE 

The change in Voc, Jsc and IPCE for monomer (P199) and dimer (P10) DSSCs sensitised using various 

dye bath concentrations and dye uptake times (Figures S1 and S2). The effect of chenodeoxycholic acid 

(CDCA) co-adsorber and a TiO2 scattering layer on the electron diffusion coefficients, lifetime and the 

Voc vs electron density plots for DSSCs sensitised with monomer P12 and dimer P10 (Figure S3). The 

effect of dye immersion time between 90 and 360 minutes on the electron diffusion coefficients, lifetime 

and the Voc vs electron density plots for DSSCs sensitised with dimer P10 (Figure S4). Current density – 

voltage curves measured under AM 1.5 illumination and in the dark for DSSCs constructed without 

CDCA coadsorber and TiO2 scattering layers using monomers P199 and P12, and dimer P10. This 

information is available free of charge via the Internet at http://pubs.acs.org 
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