
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2013

Providing metrics and automatic enhancement for hierarchical taxonomies Providing metrics and automatic enhancement for hierarchical taxonomies

Ghassan Beydoun
University of Wollongong, beydoun@uow.edu.au

Francisco Garcia-Sanchez
University of Murcia

Cristin M. Vincent-Torres
University of Murcia

Antonio A. Lopez-Lorca
University of Wollongong, aall645@uowmail.edu.au

Rodrigo martinez-Bejar
University of Murcia

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Beydoun, Ghassan; Garcia-Sanchez, Francisco; Vincent-Torres, Cristin M.; Lopez-Lorca, Antonio A.; and
martinez-Bejar, Rodrigo, "Providing metrics and automatic enhancement for hierarchical taxonomies"
(2013). Faculty of Engineering and Information Sciences - Papers: Part A. 223.
https://ro.uow.edu.au/eispapers/223

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37015429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/223?utm_source=ro.uow.edu.au%2Feispapers%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages

Providing metrics and automatic enhancement for hierarchical taxonomies Providing metrics and automatic enhancement for hierarchical taxonomies

Abstract Abstract
Taxonomies enable organising information in a human-machine understandable form, but constructing
them for reuse and maintainability remains difficult. The paper presents a formal underpinning to provide
quality metrics for a taxonomy under development. It proposes a methodology for semi-automatic
building of maintainable taxonomies and outlines key features of the knowledge engineering context
where the metrics and methodology are most suitable. The strength of the approach presented is that it is
applied during the actual construction of the taxonomy. Users provide terms to describe different domain
elements, as well as their attributes, and methodology uses metrics to assess the quality of this input.
Changes according to given quality constraints are then proposed during the actual development of the
taxonomy. (C) 2012 Elsevier Ltd. All rights reserved.

Keywords Keywords
hierarchical, enhancement, automatic, metrics, taxonomies, providing

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Beydoun, G., Garcia-Sanchez, F., Vincent-Torres, C. M., Lopez-Lorca, A. A. & martinez-Bejar, R. (2013).
Providing metrics and automatic enhancement for hierarchical taxonomies. Information Processing &
Management, 49 (1), 67-82.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/223

https://ro.uow.edu.au/eispapers/223

 1

Providing Metrics and Automatic Enhancement for

Hierarchical Taxonomies

Abstract Taxonomies enable organising information in a human-

machine understandable form, but constructing them for reuse and

maintainability remains difficult. The paper presents a formal

underpinning to provide quality metrics for a taxonomy under

development. It proposes a methodology for semi-automatic building of

maintainable taxonomies and outlines key features of the knowledge

engineering context where the metrics and methodology are most suitable.

The strength of the approach presented is that it is applied during the

actual construction of the taxonomy. Users provide terms to describe

different domain elements, as well as their attributes, and methodology

uses metrics to assess the quality of this input. Changes according to given

quality constraints are then proposed during the actual development of the

taxonomy.

Keywords: Incremental knowledge development, taxonomies, ontology

evaluation, data models, knowledge monitoring.

1 INTRODUCTION

Taxonomies are a restricted form of domain specific knowledge where relations between

domain specific entities are all of the form Is-A. They have been important for modelling

database schemas, knowledge-based systems and semantic vocabularies (Guarino and

Welty 2001). They often come from different organisations and persons with varying

agendas with varying quality criteria. Interest in their evaluation in the context of their

design within semantically enabled technologies increased in recent years. Some examples

of this can be found in (Middleton 2004) where a similarity system as a prelude to

evaluation is presented, or in (Staab et al. 2001), where the authors propose a complex

framework of various characteristics across content, language, development methodology,

building tools, and usage cost. The need for a taxonomy evaluation is identified in three

scenarios (Borst, 1997): where both users and machines need a taxonomy assessment guide

to suit their needs; where designers need practical guides to build and evaluate taxonomies

before publishing them, or where automatic taxonomy machine-learning requires

identifying a suitable option among varying different possibilities, to adjust the parameters

of the learning algorithms appropriately. Although there are some examples of evaluation

approaches in literature which accommodate the psychological/mental/real processes that

take place in create taxonomies, very few of them provide a formal structure (Brewster et

al. 2004). This paper presents a formalization that is well suited in all three scenarios. More

importantly, it presents an evaluation approach which targets the scenario where designers

are helped during the evolution of the taxonomy and before it is delivered. We present a

 2

well-founded evaluation framework for automatic structural assessment of hierarchical

taxonomies by means of a set of formalised metrics and sketch how it can be deployed in

the context of the knowledge models development. We present and illustrate an algorithmic

methodology for building taxonomies with formally specified content.

The rest of the paper is organised as follows: Section 2 presents related. Section 3 presents

the formalization to enable description of taxonomies precisely. Section 4 uses the

formalization to describe quality criteria and uses these to create concomitant evaluation

and correction algorithms. Section 5 presents an illustration how the algorithms can be used

and outlines how the work can be integrated in an incremental knowledge development

process. Section 6 concludes with a discussion of future extensions to this work.

2 RELATED WORK

Taxonomies are envisioned to be developed by domain experts having limited or no skills

in knowledge engineering. Therefore, it is important to provide supporting and appropriate

techniques and tools to enable their effective development and evaluation. To this end,

evaluation of knowledge models generally have been discussed in the literature for more

than twenty years, e.g. (Grogono et al. 1991). We identify two categories of evaluation

approaches, domain dependent and domain independent approaches. The existing domain

dependent approaches provide formal metrics e.g. (Menzies 1998; Brewster et al. 2004).

Menzies (1998) provides a domain dependent statistical assessment of a classification

system. This can only be applied only during or after deployment of the system. Brewster et

al. (2004) define conditions related to concept boundaries based on philosophical issues

such as identity, unity, essence, dependency, and rigidity. The domain dependent

approaches identify structural features of the knowledge base but can only be used once a

knowledge model is sufficiently mature e.g. (Ning and Shihan 2006; Punera et al. 2006).

For example, Punera et al. (2006) provide a characterization of what a ―good‖ knowledge

model is once it is completed rather than during its construction as we propose to be done

in this work. Software engineering goals checking techniques, after the development of the

taxonomies have also been proposed in (Nick et al. 1999; Sadrei et al. 2007). These target

knowledge management goals in an organisation, and they are of little use in classification

tasks as in taxonomies where there is exactly one goal, that of classification. Our work is

distinguished from previous work that it targets at evaluation during construction of the

taxonomy model. It is most suited in settings where the human expert is still present during

the development. Moreover, we assume that the expert providing the expertise is not

necessarily aware of knowledge engineering issues and this lack of awareness will be

compensated through our automatic support. This paper provides quantitative measures to

evaluate taxonomies and uses these to support a domain expert improves his knowledge

engineering outcome, the taxonomy.

The formalization of taxonomies presented in this paper is not completely new, for

example, a system that checks taxonomical relationships in background, giving information

about possible inconsistencies is presented in (Voelker et al. 2005). Another system to

describe the structure of an ontology so that a developer can make decisions to improve it is

presented in (Ning and Shihan 2006). However, in our approach, once a problem is spotted,

our approach also provides support for re-arrangements of relationships involving the ill-

represented concepts. We apply a formalization similar in scope to the one used in

 3

(Guarino and Welty 2004) which analyzes a taxonomic ontology by using meta-properties

representing intended meaning of classes, properties and relations, and its purpose is to

obtain the correct taxonomic category for each class in the ontology. Our formally specified

algorithm to fix malformed taxonomies is also valuable in settings where taxonomies are

developed on the fly by non-computer literate users e.g. collecting user preferences

(Chamiel and Pagnucco 2008; Balke and Wagner 2004). Well formed taxonomic structure

are a key technology in Semantic Web (Chamiel and Pagnucco 2008) where every concept

in the hierarchy (not only leaves) can be referred to, not only as an abstract concept

(probably through the set of properties it contains), but also as a data concept— a concept

which can be associated with asserted instances (i.e., real web objects). A hierarchical

musical genre system is of this kind: an album can be identified as Progressive Rock which

is a leaf concept but at the same time an album can be identified with the concept Rock

even though it serves as an abstract concept. Various other similar examples can be found

in the literature e.g. in (Schickel-Zuber and Faltings 2006; Beydoun et al. 2011; Fortuna et

al 2007).

3 MODELLING MAINTAINABLE TAXONOMIES

In this section, we present our taxonomy formalisation structured around concepts, IS-A

relations, and axioms. The election of terms is incrementally user-guided, so it ends up

being closer to the users‘ wishes, making resultant taxonomies easier to use. Our emphasis

is on mathematical modelling to build (well-based) taxonomies. We use set theoretic

definitions to formally describe the components (concepts, attributes and their values) of a

taxonomy and put these together to formally define a taxonomy. We first introduce

definitions 1 and 2 to formalise attributes requirements:

Definition 1: Well-defined attribute: Let A be an attribute of some concept c so that V

stands for the alphabet used to form terms in a certain domain, n represents the maximum

length allowed for any term, and M is a user-definable set among N, Z, Q, and R. A is said

to be well-defined, written well-defined(c,a), if there exists a function, written

POSSIBLE_VALUES (c, A), defined as V
n
 x V

n
 F and such that the following conditions

hold:

i) c A

ii) Cardinal(F) 1 where Cardinal(F) refers to the number of elements in F

iii) {c} POSSIBLE_VALUES (c, A) =

iv) {a} POSSIBLE_VALUES (c, A) =

The range of values an attribute can have depends on the level of abstraction associated

with the definition of the attribute. This leads to Definition 2:

Definition 2: Attribute abstraction: Let a be a well-defined attribute of a concept c. Then,

the level of abstraction of a, a_abstraction (c,a), is defined as follows:

otherwise (F) Cardinal

} ,{ F if

} , ,{ F if

),ion(a_abstract CD

d

ac R

QZN

where F is defined according to Definition 1 and holding that Cardinal(F) < d < D;

F {N,Z} means that F has countable infinite elements; and

 4

F {Q,R} means that F has uncountable infinite elements.

For well-defined attribute, a, of a concept c, a is a constant attribute, written if

a_abstraction (c,a) = 1. Otherwise, it is said to be an abstract attribute.

To formalise notions used to describe individual concepts, definitions 3 to 5 are introduced:

Definition 3: Conceptual internal structure/well-defined concept: Let c be a concept; let

ai be a well-defined attribute for c; let V be the alphabet used to form both terms a and c;

and let n be the maximum length allowed for the terms. The internal structure of c, IN(c), is

defined as V
n
 P(V

n
) with IN(c) = { ai| well_defined (c, ai)}

and c is said to be a well-

defined concept.

Definition 4: Concept abstraction: Let c be a well-defined concept and let IN(c) be its

internal structure. Then, the level of abstraction of c, written c_abstraction(c), is defined as

the vector [a_abstraction (c, a1),…, a_abstraction (c, am)] where ai is i-th element of IN(c)

in Cardinal(IN(c)).

Note for a concept c, c is said to be an instance if x IN(c), a_abstraction (c, x) = 1. On

the other hand, c is said to be an abstract (concept), if x IN(c), a_abstraction (c,x) > 1.

Definition 5: Completely/incompletely defined instance: Let c be an instance with IN(c)

being its internal structure. c is said to be incompletely defined, written

incomplete_instance(c), if the following conditions hold:

i) x IN(c) s.t. its value is precise though unknown (at the moment of modelling). Then,

we say that POSSIBLE_VALUES(c,x) = {unknown}

ii) Cardinal({x s.t. POSSIBLE_VALUES(c,x) = {unknown}) < Cardinal(IN(c))

It is natural to use (sub)categories in understanding or explaining a new concept. Hence, we

present in a step-by-step process our definition of concepts from this category-centered

point of view. To deal with categories of concepts, definitions 6 and 7 are introduced:

Definition 6: Upper/lower level category: Let c and c’ be two different well-defined

concepts, with IN(c) and IN(c’) being their respective internal structures. c’ is said to be an

upper level category of c, written upper(c’,c), if all of the following conditions hold:

i) IN(c’) IN(c)

ii) x IN(c’), a_abstraction(c,x) a_abstraction(c’,x)

iii) y IN(c’) s.t. a_abstraction(c,y) < a_abstraction(c’,y)

Definition 7: Upper/lower level conceptual context: Let C be a non-empty set of well-

defined concepts. The upper level conceptual context of a given concept c C, written

upper_context(c,C), is defined as {c’ C s.t. upper(c’,c)}. Similarly, the lower level

conceptual context of a given concept c C, written lower_context(c,C), is defined as {c’

C s.t. lower(c’,c)}.

Example 1: Illustrating definitions 1 to 7

In the set of well-defined concepts C={vehicle, bicycle, car, truck}, the concept ―bicycle‖

has the following attributes {number_of_wheels, capacity_of_load, trademark,

number_of_passengers} The attributes of the concept ―truck‖ are {number_of_wheels,

capacity_of_load, trademark}.

 5

POSSIBLE_VALUES(bicycle, number_of_wheels)=2
POSSIBLE VALUES(bicycle, capacity_of_load)=200 Kg
POSSIBLE_VALUES(bicycle, trademark)= {Any string}
POSSIBLE_VALUES(bicycle, number_of_passengers)={1,2}
POSSIBLE_VALUES(truck, number_of_wheels)={4,6,8}
POSSIBLE VALUES(truck, capacity_of_load)=100000 Kg
POSSIBLE_VALUES(truck, trademark)= {Any string}

The concept ―car‖ would be well-defined if we assume that it has an internal structure

formed by ―number_of_wheels‖, ―load_capacity‖ and ―trademark‖. Definition 2 is applied

to the concepts case. The level of abstraction of the concept ―car‖ is the vector [1,D,d].

c_abstraction(car)=[1,D,d] means that two attributes are abstract and one constant. ―car‖

is an abstract concept. Suppose we define a new concept ―my_car‖ with the attributes:

number_of_wheels=4, load_capacity=1000 Kg and trademark=‖Ford”. ―my_car‖ is an

instance because all attributes are defined and were a defined instance of ―my_car‖ is

―Ford‖. With the given concept definitions, it is also easy to check that they are well-

defined and that the following relations hold: upper(vehicle, bicycle), upper(vehicle, car),

upper(vehicle, truck), lower(bicycle, vehicle), lower(car, vehicle) and lower(truck,vehicle).

Therefore:

 upper_context(car,C)=upper_context(bicycle,C)=upper_context(truck,C)={vehicle}

 lower_context(vehicle,C)={bicycle,car,truck)

lower_context(bicycle, C)= lower_context(car,C)=upper_context(truck, C)= .

 A taxonomy in our framework is a set of well-defined concepts hierarchically

presented with a set of axioms (i.e., laws that always hold between the attributes of the

same or different concepts). We now extend our formalisation to model taxonomies:

Definition 8: Well–connectedness: Let C be a non-empty set of well-defined concepts.

These are said to be well-connected, written well-connected(C), if the following conditions

hold: (i) x C, categorical_context(x,C) ; and

(ii) y C s.t. top_level(y,C).

Definition 9: Upper/lower level set: Let C be a non-empty set of well-defined concepts,

and let S be a non-empty subset of C, S C. The upper level set of concepts for S in C,

written upper_set(S,C) is defined as
S c

C)ext(c,upper_cont . Similarly, the lower level set of

concepts for S in C, written lower_set(S,C), is defined as
S c

C)ext(c,lower_cont

Definition 10: Well-defined axiom: Let C be a non-empty set of well-defined concepts,

and let AX be a rule/law defined over a non-empty set of concepts S C through the

relationships between the attributes of the elements of S. AX is said to be well-defined for S

in C, written well-defined(AX,S,C) if the following conditions hold:

i) x S, abstract(x); and

ii) scope(lower_set(S,C), AX).

where scope(y,z) stands for the logical sentence ‗the set of concepts y hold the axiom z’

 6

Definition 11: Taxonomic ontology structure: Let C be a non-empty set of well-defined

and well-connected concepts, and let AX be a set of well-defined axioms over a subset S

C. A taxonomic ontology structure, written TAX, is defined as the pair <C, AX>.

Example 2 illustrating Definitions 8 to 11:

Let C be the set {vehicle, bicycle, car, van, truck, racing_bicycle, mountain_bicycle,

touring_bicycle, family_car, sportwagon}, and let S be the set {mountain_bicycle, car}.

Then:

categorical_context(vehicle,C)={ bicycle, car, van, truck}

categorical_context(bicycle,C)={vehicle, car, van, truck}

categorical_context(car,C)={vehicle, bicycle, van, truck}

categorical_context(van,C)={vehicle, bicycle, car, truck}

categorical_context(truck,C)={vehicle, bicycle, car, van}

top_level(vehicle,C) holds.

So, well-connected(C) holds.

upper_set(S, C)=upper_context(mountain_bicycle, C) upper_context(car, C) = { vehicle,

bicycle} {vehicle} = {vehicle, bicycle};

lower_set(S,C)=lower_context(racing bicycle, C) lower_context(car,C) = {family

car, sportwagon} = {family car, sportwagon}.

Let S’ be {car}. Then, the axiom A=“the maximum number of car passengers is 8” is a

well-defined one.

We can also define a taxonomic structure as follows:

The following taxonomy might be defined: <C,AX>= <{vehicle, bicycle, car, van, truck,

racing_bicycle, mountain_bicycle, touring_bicycle, family_car, sportwagon, sport_car},

{“the maximum number of car passengers is 8”}>.

In the next section, we extend the definitions of this section to produce quality metrics that

can then be algorithmically applied. This is also shown in the next section.

4 MODELLING TAXONOMY QUALITY AND ALGORITHMIC EVALUATION OF TAXONOMIES

We define formal parameters for assessing taxonomic ontologies. We deal with the issue of

defining a set of concepts grouped into different categories by attending to their respective

degree of abstraction. We make use of the ‗closest category‘ concept following Aristotle-

based terminology in order to precisely classify concrete/abstract entities.

4.1 Modelling Quality Features

A taxonomic ontology is well-categorised when attributes of all concepts in the taxonomy,

have their range of possible values formed by the union of ranges of possible values in

corresponding children concepts. This is formalised in the following:

Definition 12: Well-categorised: A non-empty set C of concepts is well-categorised if C is

a taxonomic ontology structure with the following property:

i) c C, a IN(c),

 7

ii) POSSIBLE_VALUES(c,a) =
)(' cchildrenc

POSSIBLE_VALUES(c’,a)

Definition 13: Closest upper/lower context: Let c and c’ be well-defined concepts. c’ is

the closest-up-context of c, written Closest_upper(c’,c) if all the following conditions hold:

i) IN(c) = IN(c’);

ii) x IN(c), a_abstraction(c,x) a_abstraction(c’,x); and

iii) Cardinal({x IN(c) s.t. a_abstraction(c,x) < a_abstraction(c’,x)})=1.

Similarly, Closest_lower(c’,c) can be defined as holding the following conditions:

i) IN(c) = IN(c’);

ii) x IN(c), a_abstraction(c,x) ≥ a_abstraction(c’,x); and

iii) Cardinal({x IN(c) s.t. a_abstraction(c,x) > a_abstraction(c’,x)})=1.

Through definitions 15 to 19, we formalise quality criteria for taxonomic ontologies. One

indicator for quality is how ‗real‘ the concepts are. This can be assessed by examining how

easy it is to instantiate them. We ue the notion of ‗usefulness‘ to describe how useful some

(abstract) categories are for classifying others (i.e., more concrete ones). The presence of

both types abstract and instance concepts will be considered. Another indicator of a ‗good

taxonomic ontology‘ is the depth of abstraction. The more levels of abstraction (including

that of instances) in a taxonomy, the better it is.

Definition 14: Instantiated/abstract taxonomic ontology structure: Let T be a well-

categorised taxonomic ontology structure with C being its set of well-defined and well-

connected concepts. T is said to be instantiated, written instantiated(T), if x C s.t.

instance(x). T is said to be abstract, written abstract_t(T), if x C ,abstract(x).

Example: Let T be a well-categorised taxonomic ontology structure whose concepts are

{car, sport_car, family_car, sportwagon, my_family_car, my_sportwagon}. We define

―my_family_car‖ as number_of passengers=6, number_of_wheels=4, load_capacity=1000

Kg and trademark=Ford and we define “my_sportwagon” as number_of passenger=4,

number_of:wheels=4, load_capacity=2000 Kg and trademark=Peugeot. T is instantiated

because instance(my sportwagon) and instance(my family car) are true.

Definition 15: Completely/partially instantiated taxonomic ontology structure: Let T

be an instantiated taxonomic ontology structure with C being its set of well-defined and

well-connected concepts. T is said to be completely instantiated, written c_instantiated(T),

if the following holds:

x C s.t. lower_context(x,C) = instance(x).

Otherwise, T is said to be partially instantiated, namely,

T is partially instantiated, written p_instantiated(T), if

Cx s.t.)(),(_ xabstractcxcontextlower

We can define a measure for the degree of instantiation associated to the taxonomic

ontology. We consider the set of instances with respect to the set of abstract concepts

situated at the lowest abstraction level:

 8

Definition 16: Degree of instantiation: Let T be a well-categorised taxonomic ontology

structure with C being its set of well-defined and well-connected concepts; let LOWER(C)

= {x C s.t. lower_context (x,C) = } and let INSTANCES(C) = {x C s.t. instance(x)}.

Then, the degree of instantiation of T, written degree_inst(T), is defined as

Cardinal(INSTANCES(C))/ Cardinal(LOWER(C)).

Example: Suppose that T={bicycle, racing_bicycle, mountain_bicycle}.

―mountain_bicycle‖ and ―racing_bicycle‖ are instances, whereas

lower(mountain_bicycle)=lower(racing_bicycle)= . So, degree_inst(T)=2/3=0.66

Another parameter we use to measure the quality of a taxonomic ontology is the

completeness. This checks if the sub-categories cover the entire domain to be categorised.

A concept c is complete if for every attribute there are two or more child concepts. A

category is complete if all its concepts are complete.

Definition 17: Well-built taxonomic structure: Let T be a taxonomic ontology structure

with C being its set of well-defined and well-connected concepts. T is a well-built

taxonomic structure, written well-built(T), if
()(())2xCabstractxCardChildrenx

children(c) as the set of all c’ such that child (c’, c), where child(c, c’) holds if i) upper(c,

c’) ii) not (x C s.t. upper(x, c’) upper(x, c))

Example: Let C= {vehicle, bicycle, car, sport_car, family_car, racing_bicycle,

mountain_bicycle}, then C is well-built because:

ABSTRACT(C)= {x C s.t. abstract(x)}={vehicle, bicycle, car}

Children(vehicle)={bicycle, car, sport_car, family_car, racing_bicycle, mountain_bicycle}

then Cardinal(children(vehicle))=6

Children(car)={sport_car, family_car} then Cardinal(children(car))=2

Children(bicycle)={racing bicycle, mountain_bicycle} then Cardinal(children(bicycle))=2

Then C is a well-built TAX.

Furthermore, we can define a measure similar to usefulness for measuring the degree of

completeness based on the concepts a taxonomic ontology contains.

Definition 18: Degree of completeness: Let T be a taxonomic ontology structure with C

being its set of well-defined and well-connected concepts. Let ABSTRACT(C)={x C s.t.

abstract(x)} and CHILDREN(C)={x C s.t. children(x}}. The degree of completeness of T,

written degree_completeness(T), is defined as Cardinal(ABSTRACT (C))/

Cardinal(CHILDREN(C)).

Example: ABSTRACT(C)={x C s.t. abstract(x)}={vehicle, bicycle, car}

CHILDREN(C))={bicycle, car, sport_car, family_car, racing_bicycle, mountain_bicycle}

then degree_completeness(T)=Cardinal(ABSTRACT (C))/

Cardinal(CHILDREN(C))=3/6=1/2.

Building and evaluating our taxonomy algorithmically is presented in this section. Building

the ontology is based on two concept refinement processes, a bottom-up process generating

an upper category from a given concept and a top-down process generating lower

 9

categories from a given concept. The automatic taxonomic evaluation and refinement of

the taxonomic structure is based on identifying a well defined set of concepts by analysing

the similarities of all involved attributes. This structure then evolves by using the bottom up

and top down refinement operations that may be invoked by humans or software agents.

4.2 Bottom Up Taxonomy Construction

The algorithm proposed to form an upper category from a given concept c (i.e., to go up in

the taxonomic ontology) is the following:

For every well-defined concept, c, selected by the user:

1. Generate closest_Upper (CURRENT_PARENTS, c) /* per definition 13 */
2. Generate all possible parents in the set TOTAL_UP). Each element in the

set has attribute from c ‘undefined’ but it includes the range of values to
satisfy it (that is, the property of being closest_up).

3. If TOTAL_UP = Ø check each new concept to be formed, c’, c

closest_down(c’). As follows:
L= closest_upper_categories=TOTAL_UP\CURRENT_PARENTS

For this operation: the objective is to compare ranges of
attributes (since the name of the concept is irrelevant at this
stage and the attributes names are the same). The range
‘undefined’ (in total_up) will be taken as having the same value
as the corresponding attribute of current_parents.

IF L = Ø propose to the user these two options:

 Modify the range of one of the current parents and revise
name if required (c’ holding the property of closest-up of c).

 OR: select c as one of the closest_up and break out of the
‘for’ loop

 IF L ≠ Ø

 If the user selects some concept of L as the closest_up,
name it and break

 Else let the user build c’ ensuring that c closest_down(c’)

That is TOTAL_UP is the following procedure:

Input: a concept c

Output: a set of concepts P

 P = getParents(c)

 While (exists x P such that getParents(x)) do

 P = P getParents(x)

4.3 Top Down Taxonomy Construction

The algorithm proposed to form a lower category from a given concept c (i.e., to go down

in the taxonomic ontology) is the following:

 10

For every user-selected well-defined concept, c:

1. Generate closest_lower (CURRENT_CHILDREN, c) /* per definition 13 */
2. Generate all possible children in the set TOTAL_DOWN. Each child as an

attribute from c ‘undefined’ but it includes the range of values to satisfy it
(that is, the property of being closest_down).

That is, TOTAL_DOWN comes from the following procedure:

Input: a concept c

Output: a set of concepts P

 P = getChildren(c)

 While (exists x P such that getChildren(x)) do

 P = P getChildren(x)

4.4 Fully automatic taxonomic ontology building

Our algorithm proposed to build the ontology is the following:

1. Get the first well-defined concept (c) from the user through procedure acquireConcept

(see below)

2. Set of current concepts (C) = c

3. While user enters concepts do

a) ic = acquireConcept

b) Compare attributes and possible values of the incoming concept (ic) with each

of C, so that the exact position will depend on set of attributes and degree of

abstraction of ic with respect to those of each element of C.

Where acquireConcept is the following procedure:

Procedure acquireConcept

acquire concept-name;
acquire attribute-list;
For each attribute
 acquireAttribute
 check validAttribute;

And acquireAttribute and validAttribute are the following:

Procedure acquireAttribute

acquire attribute-name;
acquire attribute-possible-values;

Procedure validAttribute

 if attribute-name is equal to concept-name, NOT VALID;
 if set of attribute-possible-values is empty, NOT VALID;
 if attribute is in attribute-possible-values set, NOT VALID;

 11

 if concept is in attribute-possible-values set, NOT VALID;
 else is VALID

5 METHODOLOGY APPLICATION IN THE ROAD SAFETY DOMAIN

We illustrate our enhancement methodology with an example. Three concepts and their

corresponding attributes (shown in italics) are used:

Vehicle: Number_of_wheels: N {0}

Car: Number_of_wheels: 4; Load_capacity: 1000 Kg; Trademark: Any string;

Number_of_passengers: {1,2,3,4}.

Sport_car: Number_of_wheels: 4; Load_capacity: 1000 Kg; Trademark: Any string;

Number_of_passengers: {1,2}; Acceleration (2/ sm): less than one (≤1).

The above concepts are our input and are supposed to belong to the same taxonomical

structure so that the links between the closest upper and lower concepts can be discovered.

The first step to find potential upper (respectively lower) relations between the new

concepts and any existing concepts in the taxonomy, which is initially emtpy. The first

processed concept, “vehicle”, is added to the ontology without any taxonomic link. The

next concept, ―car‖, has to be compared with ―vehicle‖. Since upper(vehicle, car) holds (as

opposed to upper (car, vehicle)), we discover that ―car is a type of vehicle‖.

The next concept, ―sport_car‖, is compared to the already included concepts, ―vehicle‖ and

―car‖. It is easily checked that both upper (vehicle, sport_car) and upper (car, sport_car)

hold so that ―sport_car‖ is a type of ―vehicle‖ and ―sport_car‖ is also type of ―car‖. We

could either create these two taxonomic links, or calculate which one is the closest context

to the concept ―sport_car‖. If we try to calculate this, the result will be negative because

―sport_car‖ and ―car‖, and ―sport_car‖ and ―vehicle‖ do not have the same attributes.

More precisely, IN(sport_car) ≠ IN (car) and IN(sport_car) ≠ IN(vehicle). Considering that

―is_a‖ is a transitive relation and in the taxonomy it is already stated that ―car is a type of

vehicle‖, only the link ―sport_car is a type of car‖ will have to be made explicit.

Let‘s suppose now a new concept is input by the user:

Bicycle: Number_of_wheels: 2; Load_capacity: 200 Kg; Trademark: Any string;

Number_of_passengers: {1,2}; Type of road: any path.

Comparing Bicycle to the Sport_car, the following links are found: upper(vehicle, bicycle),

equal(bicycle, car). If we apply the top down algorithm with ―bicycle‖ as input, to extend

the ontology, a new concept called ―tandem‖ will be obtained. This has initially the same

attributes as ―bicycle‖ with of values of its attribute number_of_passengers restricted to one

single value (2):

Tandem: Number_of_wheels: 2; Load_capacity: 200 Kg; Trademark: Any string;

Number_of_passengers: 2; Type of road: any path.

Thus, upper(bicycle, tandem) and upper (vehicle, tandem) hold. It is also checked that

―bicycle‖ is an upper concept for ―tandem‖. The final taxonomic structure of the ontology

is shown in Figure 1.

 12

The OWL implementation of the vehicle ontology can be found in the Annex section.

Another usage of our methodology is to fix and rebuild a malformed taxonomy. This usage

is illustrated in the rest of this section.

Figure 1. The final taxonomic structure for the running example

We use as an example the taxonomy shown in Figure 2 and assume that its concepts have

the following attributes:

Road_sign: Shape: unknown; Colours: unknown; Message: unknown.

Prohibition: Shape: round; Colours: red, white and black; Message: unknown.

Maximum_120Km/h: Shape: round; Colours: red, white and black; Message:

“spped_limit_of_120Km/h”; Maximal_speed: 120Km/h.

Speed_limit: Shape: round; Colours: red, white and black; Message: unknown;

Maximal_speed: unknown.

Obligation: Shape: unknown; Colours: blue and white; Message: unknown.

Obligatory_direction: Shape: round; Colours: blue and white; Message: unknown;

Direction: unknown.

Figure 2. A road sign taxonomy

The top-down algorithm is first applied. With ―road_sign‖ as the root concept of our

taxonomy, we search now for all children concepts. Given that upper(prohibition,

obligation) and upper(obligation, prohibition) return a false value and both have the same

parent, we conclude equal(prohibition, obligation) and the corresponding taxonomic links

are generated. Now, the concept ―prohibition‖ has two children: ―speed_limit‖ and

―maximum_120Km/h‖. However, upper(speed_limit, maximum_120Km/h) is true, because

(1) they have the same attributes (2) two of them have the same values and (3) the values

for other two attributes of the concept ―maximum_120Km/h‖ are included in the range of

values defined for the respective attributes for ―speed_limit‖ as in ―maximum_120Km/h‖.

So, closest_upper(speed_limit, maximum_120Km/h) holds. Then, the taxonomy is

reordered by setting ―maximum_of_120Km/h‖ as a child of ―speed_limit‖. The concept

―obligation‖ has only one child, ―obligatory_direction‖. The predicate upper(obligation,

 13

obligatory_direction) holds, and no changes are required. The taxonomy of Figure 2 is

enhanced to produce the well-defined taxonomy shown in Figure 3.

Figure 3. The corrected road sign taxonomy

5.3. Deployment Guidelines of the evaluation framework

The taxonomy development support framework we provide can be used as a

complementary tool to support and monitor an incremental taxonomy development process.

It can be used to ensure that taxonomies are delivered and ready to use, without the need for

a separate testing phase. Operating during the development of the taxonomy, the framework

has the added advantage that it makes use of domain experts when they are already

available. It therefore does not incur any additional cost in hiring expertise or providing

new testing data later. To illustrate, how it can be applied to a practical setting, let us

consider the following: Let there be given a sequence of n instances (I‘s) representing the

input to the expert in charge of developing a taxonomy. Assume that they were presented in

the given order during the knowledge acquisition process: I1 I2 I3 … IM1 … IM2 … IM3 …

IM4 … IM5 … … IMs … In Where the instances in bold face were misclassified by the partial

taxonomy at the time of first presentation and a new concept to correctly classify the

respective case was added. Viewed across the entire development of the taxonomy, we see

s misclassified cases which resulted in the addition of a maximum number of concepts, s.

E.g., assume that IM3 resulted in a new concept being added which is the parent concept

being added after IMs was incurred. In that situation, we can use the entire sequence of cases

seen between IM3 and In. as input to the amendment support algorithm. To deploy a

monitoring module that operationalises algorithms 1 and 2, the stream of cases has to be

input to the module with the expert‘s amendments to the taxonomy. In particular, the

monitor module requires information on how the data stream is interleaved with the

taxonomy development. Special cases that trigger amendment to the taxonomy need to be

time stamped to enable the sequence regeneration and analysis.

6 DISCUSSION AND FUTURE WORK

We present in this paper a methodology to construct ontologies as well as a formal

approach where the user can define the alphabet where (s)he can form the terms from. The

methodology is flexible. It starts from a set of concepts, which are defined through their

 14

corresponding valued attributes. Similarities between concepts are measured through the

similarity amongst their attributes and their corresponding values to automatically build a

taxonomy ontology. A significant feature of our methodology is that it allows for refining

or evolving the taxonomy by making use of both top-down and bottom-up approaches to

concept discovery during the construction process. This work is of particular significance to

incremental approaches to knowledge models development e.g. in medical systems

(Compton, Peters et al. 2006; Bichindaritz and Montani 2009), in call management

(Wobcke, Chan et al. 2006) and mechanical engineering (Beydoun, Hoffmann et al. 2010).

The concomitant modification of the taxonomy is carried out by following a set of

taxonomic principles. In the bottom-up approach, a ―closest up‖ concept is produced. In the

top-down approach, a ―closest down‖ concept is generated. We adopt both top-down and

bottom up concurrently, accommodating human tendencies in expressing domain

knowledge. The full potential of the methodology has been illustrated through an example

in the traffic domain (i.e., road safety). It has been shown that the methodology allows for

building taxonomies in an automatic way and to refine them either manually or

automatically. It is clear to us that this methodology can also be used to improve the quality

of existing ontologies. The only requirement is that they are written in OWL, which is a

reasonable one, as this ontology language is the standard de facto for ontology development

(Grau et al. 2008). Despite the significance of taxonomies in many software applications, to

support the development of a wider range of knowledge bases and information systems,

richer abstractions are still needed. Therefore, in our future work we will extend the

algorithm presented to include other types of semantic relations such as mereology or

topology as further work. Another extension we are considering is to combine the approach

here presented, with the evaluation of integrated ontologies from multiple sources as we

had illustrated earlier in (Beydoun et al. 2006; Beydoun 2009).

Acknowledgments

This work was supported in part by the Spanish Government (under projects TIN2006-

14780 and PT-2006-055-24ICPP and the Region of Murcia under project BIO-TEC 06/01-

005) and Australian Research Council (Grant DP0878172)

 15

REFERENCES

Balke, W. T., Wagner, M. (2004). ―Through different eyes: assessing multiple conceptual

views for querying web services‖. WWW ’04: Proceedings of the 13th international

World Wide Web, New York, NY, USA, ACM: 196–205

Beydoun, G., Gonzalez-Perez, C., et al. (2006). ―Developing and Evaluating a Generic

Metamodel for MAS Work Products―. Software Engineering for Multi-Agent

Systems IV: Research Issues and Practical Applications. A. Garcia, R. Choren, C.

Lucenaet al. Berlin, Springer-Verlag. LNCS 3914: 126-142.

Beydoun, G. (2009). "Formal concept analysis for an e-learning semantic web". Expert

Systems with Applications 36(8).

Beydoun, G., Hoffmann, A., et al. (2010). "Automating dimensional tolerancing using

Ripple Down Rules (RDR)." Expert Systems with Applications 37(7): 5101-5109.

Beydoun, G., Lopez-Lorca, A. et al. (2011). ―How do we measure and improve the quality

of a hierarchical ontology?‖ Journal of Systems and Software 84 (12): 2363-2373.

Borst, W. (1997). ―Construction of Engineering Ontologies‖. PhD thesis, University of

Twente, Enschede.

Brewster, C., K. O‘Hara, et al. (2004). "Knowledge Representation with Ontologies: The

Present and Future." IEEE Intelligent Systems 19(1): 72-81.

Chamiel, G., Pagnucco, M. (2008). ―Exploiting ontological information for reasoning with

preferences‖ Proceedings of the Fourth Multidisciplinary Workshop on Advances in

Preference Handling.

Fortuna, B., Grobelnik, M., Mladenic, D. (2007). ―OntoGen: Semi-automatic Ontology

Editor”. In Human Interface and the Management of Information. Interacting in

Information Environments. p. 309-318. Springer Berlin / Heidelberg.

Grau, B., Horrocks, I., et al. (2008). ―OWL 2: The next step for OWL, Web Semantics:

Science, Services and Agents on the World Wide Web‖, Semantic Web Challenge

2006/2007, 6(4): 309-322.

Grogono, P., Batarekh, A., et al. (1991). "Expert system evaluation techniques: a selected

bibliography." Expert Systems 8(4): 227-239.

Guarino, N., Welty, C. (2001). ―Supporting Ontological Analysis of Taxonomic

Relationships,‖ Data and Knowledge Engineering, 39 (1): 51-74.

Guarino, N., Welty C. (2004): ―An Overview of OntoClean‖. In S. Staab & R. Studer

(Eds.), The Handbook on Ontologies (pp. 151-172). Berlin: Springer.

http://www-scopus-com.ezproxy.uow.edu.au/authid/detail.url?authorId=6603344672&eid=2-s2.0-80053564197
http://www-scopus-com.ezproxy.uow.edu.au/authid/detail.url?authorId=44061295900&eid=2-s2.0-80053564197
http://www-scopus-com.ezproxy.uow.edu.au/authid/detail.url?authorId=35234375000&eid=2-s2.0-80053564197
http://www.springerlink.com/content/h53431m11152/?p=adc2718792ca4c1cb02585f2d5f1a539&pi=0
http://www.springerlink.com/content/h53431m11152/?p=adc2718792ca4c1cb02585f2d5f1a539&pi=0

 16

Menzies, T. (1998). Evaluation Issues With Critical Success Metrics. 11th Banff

Knowledge Acquisition for Knowledge Base System Workshop (KAW99), Canada,

SRDG Publications.

Middleton, S., Shadbolt, N., De Roure, D. (2004). ―Ontological user profiling in

recommender systems‖. ACM Trans. Inf. Syst., 22(1): 54–88

Nick, M., Althoff, K., et al. (1999). Facilitating the Practical Evaluation of Organizational

Memories Using the Goal-Question-Metric Technique. 12th Banff Knowledge

Acquisition for Knowledge-Based Systems Workshop (KAW99), Canada, SRDG

publications.

Ning, H., Shihan, D. (2006). Structure-Based Ontology Evaluation. IEEE International

Conference on e-Business Engineering (ICEBE‘06): 132-137.

Punera, K., Rajan, S., et al. (2006). Automatic Construction of N-ary Tree Based

Taxonomies. Sixth IEEE International Conference on Data Mining - Workshops

(ICDMW‘06), Austin, University of Texas.

Sadraei, E., Aurum, A., et al. (2007). ―A field study of the requirements engineering

practice in Australian software industry‖ Requirements Engineering 12(3):145-162.

Schickel-Zuber, V., Faltings, B. (2007). ―Using hierarchical clustering for learning the

ontologies used in recommendation systems‖. KDD 2007, 599–608

Staab, S., Schnurr, H. et al. (2001). ―Knowledge Processes and Ontologies,‖ IEEE

Intelligent Systems, 16 (1).

Völker, J., Vrandecic D., Sure, Y. (2005). ―Automatic Evaluation of Ontologies (AEON)‖.

Y. Gil et al. (Eds.): Proceedings of the 4th International Semantic Web Conference

(ISWC 2005), LNCS 3729: 716-731, Springer Verlag Berlin-Heidelberg.

http://www-scopus-com.ezproxy.uow.edu.au/record/display.url?eid=2-s2.0-44949238458&citeCnt=2_DELIM_2_DELIM_CTODS_263908105_DELIM_1&origin=reflist&sort=plf-f&refeid=2-s2.0-44949238458&src=s&imp=t&sid=nCN-Hz6gytHPXr-FF-vBm5S%3a170&sot=ctocbw&sdt=a&sl=15&s=PUBYEAR+IS+2011
http://www-scopus-com.ezproxy.uow.edu.au/record/display.url?eid=2-s2.0-44949238458&citeCnt=2_DELIM_2_DELIM_CTODS_263908105_DELIM_1&origin=reflist&sort=plf-f&refeid=2-s2.0-44949238458&src=s&imp=t&sid=nCN-Hz6gytHPXr-FF-vBm5S%3a170&sot=ctocbw&sdt=a&sl=15&s=PUBYEAR+IS+2011

 17

APPENDIX A

a) OWL implementation of the ―vehicle‖ ontology

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.owl-ontologies.com/Ontology1221644678.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1221644678.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Vehicle"/>

 <owl:Class rdf:ID="Sport_car">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="acceleration"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Car"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="number_of_passengers"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Tandem">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Bicycle"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#number_of_passengers"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Bicycle">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >200</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="load_capacity"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Vehicle"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="number_of_wheel"/>

 </owl:onProperty>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</owl:hasValue>

 18

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#number_of_passengers"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Car">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#load_capacity"/>

 </owl:onProperty>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1000</owl:hasValue>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Vehicle"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >4</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#number_of_wheel"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >4</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#number_of_passengers"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:DatatypeProperty rdf:about="#acceleration">

 <rdfs:domain rdf:resource="#Sport_car"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#number_of_wheel">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Vehicle"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#load_capacity">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Car"/>

 <owl:Class rdf:about="#Bicycle"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="trademark">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Bicycle"/>

 <owl:Class rdf:about="#Car"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 19

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#number_of_passengers">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Bicycle"/>

 <owl:Class rdf:about="#Car"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >5</rdf:first>

 <rdf:rest rdf:parseType="Resource">

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >6</rdf:first>

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-

ns#nil"/>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >8</rdf:first>

 </rdf:rest>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >7</rdf:first>

 </rdf:rest>

 </rdf:rest>

 </rdf:rest>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >4</rdf:first>

 </rdf:rest>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >3</rdf:first>

 </rdf:rest>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</rdf:first>

 </rdf:rest>

 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</rdf:first>

 </owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

 </owl:DatatypeProperty>

</rdf:RDF>

 20

b) A road sign taxonomy

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.owl-ontologies.com/Ontology1222678200.owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1222678200.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Prohibition">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >red, white and black</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Colours"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >round</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Shape"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Road_sign"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Maximum_120km-h">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Maximal_speed"/>

 </owl:onProperty>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >120</owl:hasValue>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >limit_of_velocity_of_120Km/h</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Message"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Prohibition"/>

 </owl:Class>

 <owl:Class rdf:ID="Limit_of_velocity">

 <rdfs:subClassOf rdf:resource="#Prohibition"/>

 </owl:Class>

 <owl:Class rdf:ID="Obligatory_direction">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >round</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Shape"/>

 </owl:onProperty>

 </owl:Restriction>

 21

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Obligation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Obligation">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >blue and white</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Colours"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Road_sign"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:about="#Maximal_speed">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Maximum_120km-h"/>

 <owl:Class rdf:about="#Limit_of_velocity"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Message">

 <rdfs:domain rdf:resource="#Road_sign"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Shape">

 <rdfs:domain rdf:resource="#Road_sign"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Direction">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Obligatory_direction"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Colours">

 <rdfs:domain rdf:resource="#Road_sign"/>

 </owl:DatatypeProperty>

</rdf:RDF>

 22

c) The corrected road sign taxonomy

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.owl-ontologies.com/Ontology1222678200.owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1222678200.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Prohibition">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >red, white and black</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Colours"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >round</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Shape"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Road_sign"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Maximum_120km-h">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Limit_of_velocity"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Maximal_speed"/>

 </owl:onProperty>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >120</owl:hasValue>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >limit_of_velocity_of_120Km/h</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="Message"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Limit_of_velocity">

 <rdfs:subClassOf rdf:resource="#Prohibition"/>

 </owl:Class>

 <owl:Class rdf:ID="Obligatory_direction">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >round</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Shape"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 23

 <owl:Class rdf:ID="Obligation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Obligation">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >blue and white</owl:hasValue>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Colours"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Road_sign"/>

 </owl:Class>

 <owl:DatatypeProperty rdf:about="#Maximal_speed">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Maximum_120km-h"/>

 <owl:Class rdf:about="#Limit_of_velocity"/>
 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Message">

 <rdfs:domain rdf:resource="#Road_sign"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Shape">

 <rdfs:domain rdf:resource="#Road_sign"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Direction">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Obligatory_direction"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#Colours">

 <rdfs:domain rdf:resource="#Road_sign"/>

 </owl:DatatypeProperty>

</rdf:RDF>

	Providing metrics and automatic enhancement for hierarchical taxonomies
	Recommended Citation

	Providing metrics and automatic enhancement for hierarchical taxonomies
	Abstract
	Keywords
	Disciplines
	Publication Details

	y-ATOM

