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Abstract 

The influence of microstructure and composition on permeation of hydrogen in 1.2 and 0.5 wt.% 

Mn X70 pipeline steels after different processing was investigated using an electrochemical 

permeation technique.  

For 1.2 wt.% Mn (standard Mn) steel, the microstructure of normalised transfer bar was coarse 

equiaxed ferrite grains.  This sample exhibited the highest diffusivity, followed by transfer bar, 

with a mixed ferrite - bainitic ferrite microstructure; and hot rolled strip, with fine elongated 

ferrite grains.  

The 0.5 wt.% Mn (medium Mn) strip displayed lower diffusivity than the 1.2 wt.% Mn strip, due 

to hydrogen trapping by finer ferrite grains and a higher density of carbonitride precipitates. 

Moreover, the medium Mn strip exhibited a uniform microstructure and consequently similar 

diffusion coefficients for the edge and centreline regions, whereas the finer grains of the edge 

region of the standard Mn strip resulted in a lower diffusivity than the centreline region. 

 

 

Keywords: pipeline steel, permeability, diffusion, traps, microstructure, grain size, inclusions, 

precipitates, dislocations 
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Effect of Microstructure and Composition on Hydrogen Permeation in X70 

Pipeline Steels 

1. Introduction 

X70 pipeline steels are widely used to transport petroleum and natural gas. The service life of 

pipeline steels is affected not only by the fluid or gas which they transfer, but also by the 

environmental conditions under which they operate.  One of the main reasons for the degradation 

in mechanical properties of steels is the exposure to hydrogen. For example, on exposure to a 

sour gas environment, the steel surface corrodes and produces hydrogen at the surface. This 

hydrogen can be absorbed in the steel and can then start diffusing to regions of stress 

concentration, impairing ductility and promoting brittle behavior (hydrogen embrittlement). 

Since the transport of hydrogen to a critical region is dependent on diffusion, hydrogen transport 

is an important step in the process of embrittlement. Therefore, it is important to determine the 

diffusion rate of hydrogen in pipeline steels in order to predict their mechanical properties and in-

service behaviour.  

The diffusion of hydrogen in steels is affected by the microstructure of the steel: the phase or 

phases present, grain boundaries, grain shapes, vacancies and dislocations, interfaces with non-

metallic inclusions, precipitate particles and voids [1-3]. These features can reduce the mobility 

of hydrogen by acting as traps. Traps are generally classified as reversible and irreversible, based 

on the strength of their bond with hydrogen atoms. Grain boundaries and dislocations and 

microvoids that have low trap binding energies are considered to be reversible traps. Of these, 

grain boundaries can either increase the diffusion of hydrogen by providing faster paths for 

diffusion [4-6] or reduce the mobility of hydrogen by acting as reversible hydrogen trapping sites 

at nodes and junction points [7-10].  As a result of these two contradictory effects, Ichimura et al. 

[11] suggested that the hydrogen diffusion coefficient will be a maximum at an optimum grain 

size and Yazdipour et al. [12] confirmed this by modeling as well as permeation experiments.  

Irreversible traps, on the other hand are those that trap hydrogen permanently at temperatures 

close to ambient and are associated with high binding energies. These traps include non-metallic 

inclusions and precipitates. Several types of inclusions have been identified in pipeline steels 
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such as Al2O3, complex (Fe, Mn)S or double oxide FeO.Al2O3 inclusions, mixed compounds 

containing Al-Mg-Ca-O, Si-ferric carbide and MnS [13-14]. Lee and Lee [15] considered MnS 

inclusions to be strong irreversible trapping sites for hydrogen. However, Garet et al. [16] 

reported that MnS particles act as reversible trapping sites since they have moderate binding 

energies. They also reported that the trapping efficiency increased with sulphur content. In 

addition to inclusions, precipitates of Ti, Nb and V such as TiC, TiN, NbC, VC, complex 

Ti,Nb(C,N), Ti4C2S2 etc., are all considered to be irreversible traps [2, 17-24].   

In the past few decades, several investigations have dealt with the influence of various parameters 

on diffusion in pipeline steels [14, 25-35]. Table 1 summarises diffusion coefficients and other 

parameters obtained, for pipeline steels, by different authors along with other related information 

such as the solutions employed, exit side coating and method used for calculating the diffusion 

coefficient. Andenna and Torella [25] studied the effect of stress on the permeability of X65 

pipeline steels and reported that there was no effect for the base material with a ferrite-pearlite 

microstructure, whereas the hydrogen diffusivity and flux for quenched material comprising a 

bainitic microstructure with martensite-austenite islands decreases with increasing level of stress. 

Park et al. [31] investigated the effect of microstructure on the trapping efficiency of X65 

pipeline steel  and reported that the efficiency of trapping increases in the order: degenerated 

pearlite, bainite and acicular ferrite. The diffusivity of hydrogen and density of traps in X70 and 

X100 steels were estimated by Dong et al. [27-28]; and for X80 by Xue et al. [14]. Kim et al. 

[29] investigated the effect of environmental factors such as H2S partial pressures and pH 

values on the permeation of hydrogen in high strength low alloy (HSLA) steels and found that 

reversible trapping was affected by H2S rather than pH. The effect of precipitates was 

investigated by Koh et al. [30] who reported that diffusion of hydrogen was related to the volume 

fraction of carbonitride precipitates rather than the ferrite microstructure. Huang et al. [13] 

studied the ability of microstructures and inclusions to trap hydrogen in three different X120 

steels having similar amounts of Ti,Nb(C,N) precipitates and found that irreversible hydrogen 

trapping efficiency increases with the volume fraction of non-metallic inclusions such as Al2O3 

and MnS. Skjellerudsveen et al. [35] studied the diffusion of hydrogen in X70 pipeline steel, 

simulated coarse grain heat affected zone (CGHAZ) and weld metal and found that the diffusion 

coefficient decreased in the order: weld metal, X70 steel and HAZ. Further, the change in 

diffusion coefficient with temperature was similar for the three materials. 
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 Since pipeline steels are produced by thermo-mechanically controlled processes (TMCP), a 

range of microstructures can result depending on the actual processing conditions. Consequently, 

the microstructure, grain size, volume fraction of inclusions and precipitates, and dislocation 

density can vary within a particular strength grade. Moreover, segregation of various elements 

can occur (depending on the partitioning tendency of each element) and inclusions can be 

concentrated in the slab centre, which solidifies last. Therefore, alloying elements and inclusions 

tend to be concentrated in the centreline region of transfer bar (TB) and in the hot rolled strip. It 

also follows that the chemical composition and microstructure of the edge differs from that in the 

centreline region. Moreover, the difference in the cooling rates of the edge and centreline can also 

introduce differences in grain size and dislocation density. To minimise the effects of 

segregation, the trend in recent years has been to shift to lower Mn levels [36].  

Therefore, the aim of this study was to investigate the effect of microstructure and composition 

on hydrogen permeation in X70 pipeline steels. Permeation studies were performed on two 

pipeline steels having different compositions, namely standard X70 (1.2 % Mn) and medium X70 

(0.5% Mn).  Samples were investigated from the transfer bar and hot rolled strip stages of 

production, and from different regions (centreline and edge). The diffusion coefficients for the 

different samples were estimated and the observed permeation transients were correlated with the 

microstructural features present in the steel specimens. 

2. Experimental 

2.1 Materials and processing 

Standard X70 and medium Mn X70 grade pipeline steels were used in this investigation. The 

chemical compositions of the steels are listed in Table 2. Samples of size 40 mm x 40 mm and 

thickness slightly greater than 1 mm were obtained by wire cutting parallel to the rolling plane of 

the material as shown in Figure 1. Samples from the edge and centreline regions were taken from 

the TB of standard X70 steel and hot rolled strips of both standard and medium Mn X70 grades 

produced by BlueScope Steel Ltd. To eliminate the effect of residual strain and to obtain a 

normalised structure with equiaxed grains, samples from the edge region of TB were normalised 

in an argon atmosphere at 950C for 20 minutes. The notation used for the samples investigated 

is given in Table 3.  

http://www.sciencedirect.com.ezproxy.uow.edu.au/science?_ob=ArticleURL&_udi=B6TWS-4X01PF1-6&_user=202616&_coverDate=12%2F31%2F2009&_alid=1225362014&_rdoc=1&_fmt=high&_orig=search&_cdi=5570&_sort=r&_st=5&_docanchor=&_ct=294&_acct=C000014118&_version=1&_urlVersion=0&_userid=202616&md5=0fd7cfa0e26ec840a6cf3662e44355cc#tbl1
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2.2 Microstructural investigation 

After the completion of permeability tests, the cross-sections of the samples were cut from the 

region exposed to the electrolyte and prepared for optical metallography using the standard 

procedures. The samples were etched with 2 % Nital solution and the microstructures were 

characterized both by optical microscopy and scanning electron microscopy (SEM) using a JEOL 

JSM 6490LV SEM at an excitation voltage of 20 kV. Since the transport of hydrogen was in the 

normal direction, the grain size, defined in terms of the mean free path in ferrite in the normal 

direction, was measured by the linear intercept technique. The hardness of the samples was 

determined using an INDENTEC Vickers hardness machine at a load of 10 kg.  

2.3 Electrochemical hydrogen permeation test 

Hydrogen permeability measurements were performed by the electrochemical technique 

developed by Devanathan and Stachurski [37]. A modified dual cell made of two polycarbonate 

cells was employed. The specimen was held tightly between the two cells by using rubber gaskets 

in such a way that the entire system remained leak-tight and the solutions on either side of the 

specimen did not mix. The side of the membrane, at which hydrogen was to be generated, was 

maintained at a cathodic potential, whereas an anodic potential was applied on the detection side 

of the membrane. The equipment used for applying the required potentials was the Hyperm Mod 

HM 403.  

The permeability tests were carried out at room temperature. The room temperature was in the 

range 21-23 C, as measured with a thermometer. Both surfaces of the specimen were abraded 

with 500 grit silicon carbide paper and cleaned with methanol. After preparation the final 

thickness of the sample was measured and recorded (the average of ten measurements was 

calculated). No Pd coating was applied at the exit side of the samples. The cleaned sample was 

placed in between the two cells and sealed by tightening the bolts. A circular area of 2.84 cm
2
 

was exposed to the electrolyte. A platinum electrode was placed in the anodic cell and a stainless 

steel electrode in the cathodic cell and the steel specimen formed the working electrode in both 

cells. These electrodes were then connected to the terminals of the Hyperm unit. The anodic side 

or the detection cell was filled with 0.1 N NaOH solution, and polarization was started. A 

background current was observed in the amperometer. With time the background current 
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decreased. When this current decreased to a value below 3 A, it was compensated by means of 

the zero shift using a null potentiostat. In effect, the background current was set to zero. Then the 

cathodic cell was filled with a solution containing 0.1 N NaOH and a promoter, Na2S.9H2O in 

order to accelerate the entry of hydrogen into the steel specimen. Alkaline solution was used for 

the permeation tests in order to reduce the interaction of sulphide inclusions with the electrolyte 

at the steel surface [38]. Initially, concentrations of 1, 10, and 100 g/L of Na2S.9H2O were used 

to study the effect of promoter concentration. The data indicated that an increase in the 

concentration of the promoter increased the steady state current density as well as the permeation 

rate, i.e., the time taken to reach steady state permeation was reduced. The steady state 

permeation current observed for 1 g/L of Na2S.9H2O was very low, close to the lower range of 

the measuring instrument. On the other hand, a higher concentration of promoter, i.e., 100 g/L, 

led to significant specimen corrosion. Therefore 10 g/L of promoter was selected for all the 

experiments.  The solutions were prepared from analar grade chemicals and milli Q water. 

Hydrogen entry into the steel was then facilitated by applying a constant cathodic current of 10 

mA which gave a current density of 3.52 mA/cm
2
. Hydrogen permeated through the specimen to 

the anodic side where it was instantaneously oxidised giving rise to an equivalent current in the 

exit cell which is a direct measure of the output flux of hydrogen. The Hyperm unit was 

connected to a computer through a data logger to record continuous current measurements 

throughout the experiment with data logging every 10 seconds.  

After the application of the cathodic current on the entry side, the permeation current was initially 

zero for a period of time, after which it increased till it reached a steady state value. This is 

referred to as the rise transient. After reaching steady state, the entry side charging current was 

interrupted and the sample was allowed to outgas completely. The current then started decreasing 

and reached a low value after a period of time, giving rise to the decay transient. A second 

transient was then obtained by starting the current in the entry side again. Triplicate tests were 

conducted for each sample. 

2.4 Analysis of permeation transients 
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The permeation transients were expressed in normalised units i.e., in terms of normalised flux 

and dimensionless time [19, 39]. The flux was normalised with respect to the steady state value 

and the dimensionless time was obtained by using the equation,  

 = DLt/L
2
                                     (1) 

where, DL is the coefficient of diffusion of hydrogen in pure ferrite and was taken as  

7.2 x 10
-9

 m
2
/s at room temperature [39-40], t is the time in seconds and L is the thickness of the 

specimen in meters. 

As mentioned earlier, the permeation current density observed at the exit side is a direct measure 

of the output flux of hydrogen. From the steady state permeation current density, 
pi  the 

hydrogen permeation flux or permeability, J , is calculated using the equation: 

ZFpiLJ /
                                       (2)

  

 

where, Z is the number of electrons transferred and F is the Faraday constant (96,487 C mol
-1

). 

The diffusion coefficients can be calculated from the permeation transients using a variety of 

methods as given below. 

Using the breakthrough time bt : 

btb tLD 3.15/2
                                        (3)

 

and in terms of time lag lt : 

lT tLD 6/2
                                    (4)

 

where, tbD is the diffusion coefficient calculated from breakthrough time and TD is the diffusion 

coefficient calculated from time lag. The breakthrough time is obtained from the intersection of 

the tangent at the inflection point of the permeation rate-time curve with the initial permeation 
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level and the time lag is obtained from the time taken for permeation rate to reach 0.63 times the 

steady state value. 

The diffusion coefficient can also be calculated from the rising transient using a plot of  

   ppp iii /ln  against t where, pi  is the measured permeation current at time t and 
pi is the 

steady state permeation rate. This plot has a slope of 1/ 0t , where, DLt 22 /0  .  Therefore, 

D = L
2
/

2
t0                                            (5) 

Another means of calculating the diffusion coefficient is based on the decay transient and 

employs a plot of   
pp ii /ln  against t. Again this plot has a slope of 1/ 0t  from which D can be 

calculated using equation (9).  

The apparent hydrogen solubility Capp (mol H/m
3
) can be determined by, 

Capp = LJ / D                                           (6) 

The trap density was calculated using the equation given by Dong et al. [28] 

RT

E

L
LT

b

e
D

D
NN











 1                                    (7) 

where NT is the number of hydrogen trapping sites per unit volume (m
-3

), NL is the density of the 

interstitial sites in the steel and Eb the hydrogen trap binding energy. The values of NL, and Eb 

were taken as 7.52 x 10
28

 m
-3

 and 0.3 eV respectively [28]. The trap density in this study was 

calculated using the diffusion coefficient calculated from the lag time of the first transient. 

3. Results 

3.1 Microstructural characterization 

Figures 2 and 3 show typical microstructures of the different samples investigated. The samples 

taken from the edge and centreline regions of the standard and medium Mn strips basically 

revealed slightly elongated grains of ferrite-pearlite. For the standard Mn alloy, the edge 

microstructure (SME) and the centreline microstructure (SMC) are shown in Figures 2 (a), (b); 
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and those for the medium Mn alloy MME and MMC are shown in Figures 2 (c) and (d).  The 

optical image taken from the centreline region of the standard Mn strip (Figure 2 (b)) indicates 

that the ferrite grains are more uniform and generally coarser than those in the edge region 

(Figure 2 (a)), which is consistent with the slower cooling rate experienced by the centreline 

region during the hot rolling process, compared to the edge. A closer examination of the 

microstructures indicated that the grain sizes of edge and centreline regions of the standard Mn 

strip were characterized by a bimodal distribution. The edge region exhibited a larger volume 

fraction of fine grains with some larger grains which were approximately 5 times the average size 

of the finer grains. In contrast, the centreline region consisted of a smaller volume fraction of fine 

grains and a larger fraction of coarse grains that were about 3 times the average size of the fine 

grains. Furthermore, the centreline samples also exhibited regions with a banded ferrite-pearlite 

microstructure. The difference in average grain size is also evident from Table 3 which lists the 

grain size in terms of mean free path in the ferrite phase as well as the hardness of the various 

samples. The edge (Figure 2 (c)) and centreline regions (Figure 2 (d)) of the medium Mn strip, on 

the other hand, exhibited a more uniform microstructure with very similar mean grain sizes. This 

observation is quantified in Table 3. Moreover, no banding of the ferrite and pearlite was evident 

in the centreline region of the medium Mn strip.  

The microstructure of the edge region of transfer bar (TBE) exhibited a banded structure 

comprising alternate bands of bainitic ferrite, labelled 1, and polygonal and/or quasi- polygonal 

ferrite, labelled 2 (Figure 3). A magnified image of TBE is shown in Figure 3 (b). The centreline 

region of the transfer bar (Figure 3 (c)) exhibited a microstructure of coarser ferrite plates and 

some quasi-polygonal ferrite which had formed from coarse grained austenite at a relatively slow 

cooling rate. This coarse lath ferrite structure is often described as granular bainite [41]. The 

microstructure of the normalised transfer bar edge sample is shown in Figure 3 (d). The 

microstructure consists of equiaxed ferrite-pearlite grains.  

It is also clear from Table 3 that samples taken from the edge of the standard Mn strip exhibited 

a higher hardness than the samples taken from the centreline regions, whereas the medium Mn 

samples showed uniform hardness values. These values correlate well with the grain sizes of the 

samples. The transfer bar gave the unexpected result that the edge region was softer (170  6 

HV) than the core (189  3 HV). The thickness of the transfer bar ensures a slower near-surface 
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cooling rate than for hot rolled strip, thereby accounting for the lower hardness of TBE. The 

higher than expected core hardness could be due to Mn segregation that lowered the 

transformation temperature and increased strengthening by solute Mn [42]. 

3.2 Permeation transients 

Figure 4 (a) is the complete permeation curve for a typical X70 specimen which includes the first 

transient, the decay and the second transient. In Figure 4(b) both the first and second transients 

are superimposed. The following observations can be made from these plots: 

1. The first transient current increased rapidly, reached a maximum and remained 

steady for a short duration of time (< 10 minutes for the NTB samples and about 

30-40 minutes for the other samples). The current then decreased continuously even 

when the sample was still cathodically polarised.  

2. Although the start of the second transient (the breakthrough time) appeared to be 

shorter, the rise in permeation current was not as rapid (Figure 4 (b)) i.e., the time 

taken to reach steady state was longer. Moreover, it did not reach the same 

permeation current as the first steady state value, which indicates that the 

permeation flux during the second transient is smaller than that observed in the first 

transient.  

These results are similar to those of Manolatos et al. [43] for a pure iron specimen using 0.1 N 

NaOH in both cells. They attributed these observations to a passive oxide layer that forms on the 

exit side of the specimen in the absence of Pd coating when an anodic potential is applied. 

According to the authors, the passive layer formed on the exit side acts as a barrier to hydrogen 

evolution and does not allow the hydrogen concentration on the exit side to stabilise. This 

prevents the attainment of stationary conditions and consequently affects the steady state 

permeation flux. This trend of the permeation transient decreasing with time was also observed 

by Beck et al. [44], Amiot et al. [45] and Iino et al. [38] . Beck et al. [44] attributed it to void 

nucleation at an aggregate of dislocations and Amiot et al. [45] attributed it to the hydrogen flux 

loss through the breakage of surface blisters. However, similar to the present results for all 

samples, Iino et al. [38] did not observe any blisters. Bruzzoni et al. [46] also showed that, in the 
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absence of Pd coating on the exit side, an oxide layer is formed, which reduces the permeation 

flux and also increases the time taken to reach steady state. Moreover, the entry side corrodes 

during the decay since no current is being applied. This alters the conditions at the hydrogen 

entry surface and could result in a lower or delayed hydrogen uptake during the second transient. 

Skjellerudsveen et al. [35] did not observe any significant variation in the permeation curves of 

the first, second and third transients for X70 steel, coated with Pd on the exit side, at room 

temperature. The values of steady state current densities were also similar for the three transients. 

They also applied a positive potential to both sides during decay, contrary to the procedure used 

in the current investigation.   

Our results are in agreement with the conclusions of Manolatos et al. [43] and Bruzzoni et al. 

[46] that, in the absence of Pd coating, the progressive formation of an oxide layer on the exit 

side does not allow a steady state permeation current to be maintained for a prolonged period 

during the permeation test, despite the cathodic polarisation of the sample.  Hence the permeation 

current decreases after a relatively short steady state period during the first permeation cycle, as 

shown in Figure 4 (a). As a consequence of the film on the exit surface, the second permeation 

cycle shows a lower peak permeation current, Figures 4 (a) and (b), before the permeation current 

starts to fall as the barrier effect of the film increases. 

The steady state permeation, in this study, did last for a short period of time, unlike the 

observations by Manolatos et al. [43], and made it possible to determine normalised permeation 

fluxes for carrying out comparisons. Permeation transients obtained for different samples 

investigated were similar to those shown in Figure 4 (a).  The most reliable comparative data 

come from the first transient curve up to the time range of the steady state permeation current, 

because the influence of oxide film formation over this time period remains relatively low.  

Accordingly, the curves comparing the permeation characteristics of the samples tested, shown in 

Figures 6 (a) to (g), are for the first transient up to the steady state period. 

3.3 Diffusion coefficients 

Table 4 compares the diffusion coefficients calculated for the 1
st
 and 2

nd
 transients using the 

measured breakthrough times and lag times, and also from the rising first transient and decay 
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transient for the different samples investigated in this study. There is a spread in the values of the 

diffusion coefficients obtained from the first transient due to the different calculation methods, as 

reported also by Turnbull et al. [39] and Charbonnier et al. [47]. The diffusion coefficients 

calculated from breakthrough times are the largest, whereas the diffusion coefficients calculated 

from lag times and rising first transients are quite similar and lower than the values calculated 

from the breakthrough times. Values calculated from the decay transient are significantly lower, 

consistent with the significantly longer times taken for the decay of hydrogen. Garet et al. [16] 

and Scoppio and Barteri [33] have also observed lower diffusion coefficients from the degassing 

transient and attributed this to hydrogen exchanges between reversible traps in ferritic steels 

which result in slow degassing when the hydrogen supply progressively decreases. Scoppio and 

Barteri [33] therefore suggest that the phenomena occurring during degassing are complex and 

hence the parameters estimated from degassing are less significant compared to the values 

determined from hydrogen uptake. 

The shorter breakthrough time for the second transient, correlates with the consistently higher 

diffusion coefficient (1.11 to 1.79 times higher) than that for the first transient (Table 4). Table 4 

also indicates that there are only minor differences in the diffusion coefficients calculated from 

the breakthrough time for the first transient for the different samples tested. The medium Mn 

edge sample exhibited the lowest diffusivity (1.88 × 10
-10 

m
2
/s) and the normalised transfer bar 

showed the highest diffusivity (5.66 × 10
-10 

m
2
/s). For the standard Mn strip, the samples taken 

from the edge of the strip gave a lower diffusion coefficient than the centreline region, whereas 

the difference between the edge and centreline regions was insignificant for the medium Mn strip. 

The various estimates of diffusivity (excluding Dt0 decay) were in reasonable agreement for a 

given sample. Further, the trend in diffusivity values for the seven samples examined was similar 

for each of the six different calculation methods. For example, the average diffusivity for SMC 

was 2.63 × 10
-10 

m
2
/s with a standard deviation of 0.71. 

Variation in hardness and diffusion coefficient with mean free path has been plotted in Figure 5 

for the standard Mn strip edge, strip centreline and normalized transfer bar, which all had similar 

ferrite-pearlite microstructures. A linear correlation is evident between hardness and mean free 

path and also the diffusivity and mean free path. Consistent with literature, the hardness increases 

as the grain size (the mean free path in ferrite) decreases. In contrast, the diffusivity increases as 
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the mean free path increases. These observations agree with an earlier study [12] which showed 

that the diffusion coefficient decreases with decreasing grain size for grains smaller than 45 m. 

3.4 Trap densities and apparent hydrogen solubility 

The computed values of the density of traps, flux, permeability and the subsurface concentration 

of hydrogen atoms are given in Table 5. The calculated trap densities varied from 1.3 - 3.1 × 10
18

 

m
-3

 for the different samples, being lowest for NTB samples and highest for the MME and MMC 

samples. This trend is consistent with the measured diffusion coefficients since the trap densities 

are inversely proportional to the diffusion coefficients. Furthermore, there was no difference in 

the trap densities of the edge and centreline regions for the medium Mn strip.  

The apparent hydrogen solubility is also inversely related to the diffusion coefficient. Therefore, 

there were only minor differences in the apparent hydrogen solubility of the samples investigated.  

4 Discussion 

4.1 Comparison of the estimated permeation parameters with literature 

In addition to the microstructure and composition of the steel, the diffusion of hydrogen can be 

influenced by other experimental factors including the solution used for permeability testing, the 

concentration of promoter (if any), the method used to calculate the diffusion coefficient and the 

presence or absence of Pd or an other coating on the exit side of the sample. Serna et al. [34] 

have also pointed out that the diffusion coefficient can depend on the charging conditions. 

Therefore, although several researchers have studied the diffusion of hydrogen in micro-alloyed 

pipeline steels, it is not easy to compare the diffusion coefficients. This is also evident from Table 

1 which shows that the diffusion coefficients obtained by different researchers vary significantly.  

Tables 1 and 4 show that the values of diffusion coefficient obtained in this study are an order of 

magnitude higher than those reported by Dong et al. [27] and Skjellerudsveen et al. [35] for X70 

steel. The former researchers used an acidic solution of H2SO4 with 250 mg/L As2O3 and the 

latter 0.1 N NaOH without any promoter. Furthermore, the exit side was coated with Pd by 

Skjellerudsveen et al. [35] and Ni by Dong et al. [27]. The reported microstructures were also 

different.  
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On the other hand, the results obtained from the present study are comparable to those reported 

by Park et al. [31], despite their use of NACE solution for the entry side and Pd coating on the 

exit side. Diffusion coefficients of 2.3 - 3 × 10
-10

 m
2
/s were calculated, in the present study, from 

breakthrough times of the first transient for the standard X70 strip comprising a ferrite-pearlite 

structure. These results are about 3 times lower than the values of 9.27 - 9.38 × 10
-10

 m
2
/s 

obtained by Park et al. [31] for ferrite-degenerated pearlite structures in X65 steel. However, a 

diffusion coefficient of 3.7 × 10
-10

 m
2
/s obtained for the ferrite - bainitic ferrite structure (TBE) in 

this study is close to the value of 4.05 × 10
-10

 m
2
/s reported by Park et al. [31] for their A2 steel 

with a similar microstructure. The present results are also comparable to the values reported by 

Koh et al. [30] for pipeline steels having ferrite-pearlite microstructures.  

Although the diffusion coefficients are of the same order of magnitude, the values of permeability 

and subsurface concentration of hydrogen observed in this study are significantly lower that those 

reported by Park et al. [31]. This is possibly related to the different solutions used for the entry 

side as well as the presence of Pd coating in the case of Park et al. [31] which allows full 

oxidation of the hydrogen arriving at the exit side and gives rise to a higher permeation flux.  

4.2 Comparisons of the different samples studied 

As discussed earlier, the diffusion coefficients of the different samples tested here were of the 

same order of magnitude, with only some minor differences. However, if the first permeation 

transients of the different sets of sample conditions are plotted on the same graph, as shown in 

Figures 6 (a) to (g), clear differences in the permeation behaviour of the samples are more 

noticeable. These differences are discussed below. 

4.2.1 Comparison of standard Mn strip edge and centreline 

Figure 6 (a) shows the first permeation transient of the SME and SMC samples. It is apparent 

from this figure that not only is the breakthrough time longer in the edge samples, but the 

transient is less steep, which implies that it contains a higher density of traps which reduce the 

mobility of hydrogen. Therefore it takes a longer time to fill the traps and consequently reach a 

steady state permeation current.  
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During continuous casting, Mn has a strong tendency to segregate to the centreline region of the 

slab. Escobar et al. [48] have demonstrated by etching with LePera reagent that Mn segregation 

occurs in hot rolled steels. As a result of this segregation, Mn can combine with S during the last 

stages of solidification giving rise to MnS inclusions.  These inclusions have been reported to act 

as moderate to strong trapping sites which can trap hydrogen reversibly [16] or irreversibly [15] 

and thereby reduce the diffusion of hydrogen. Consequently, the centreline samples should 

exhibit a lower diffusion coefficient. However, the samples that were used in the permeation 

studies did not appear to show any pronounced segregation in terms of the presence of MnS 

inclusions. In view of the above, the results obtained here cannot be explained on the basis of 

concentration of MnS particles; rather they can be rationalised on the basis of the microstructure 

of the samples. As seen in Figures 2 (a), (b) and Table 3, both the edge and centreline samples of 

the standard Mn strip show non-uniform microstructures with a bimodal distribution of grains. 

However, the edge sample has a larger number of very fine grains and whereas the fraction of 

grains having a larger size is higher in the centreline samples, resulting in a lower mean free path 

for the edge sample as compared to the centreline sample. As shown in an earlier publication [12] 

for X70 steel, ferrite grain sizes smaller than 45 m can reduce the mobility of hydrogen by 

trapping at nodes and triple junctions; with the extent of this trapping increasing with decreasing 

grain size. Consequently, the large number of finer grains in the edge region could increase the 

trapping of hydrogen and thereby give rise to a lower diffusion coefficient. In addition, it can be 

expected that the edge region of the strip would contain a higher density of dislocations as 

compared to the centreline region, because the faster cooling rate during processing of the strip 

promotes transformation to ferrite at lower temperature with an increase in dislocation density, 

arising from the transformation volume change. Since dislocations act as reversible traps for 

hydrogen, the combined effect of a lower grain size and higher dislocation density of the edge 

region of the strip could result in the lower diffusivity of hydrogen.  

Some banding of ferrite-pearlite grains parallel to the rolling direction of the strip was also 

observed in the centreline samples. Since the samples for permeability tests were obtained by 

cutting slices parallel to the rolling plane, this means that the banding was perpendicular to the 

direction of hydrogen entry and movement. The effective diffusivities of hydrogen in such 

specimens have been reported to be an order of magnitude lower than when hydrogen entry was 

along the direction of banding [49-50].  However, in this study the small amount of banding did 
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not appear to have any significant effect in decreasing the diffusion of hydrogen in the centreline 

samples as compared to the non-banded edge samples. 

4.2.2 Comparison of medium Mn strip edge and centreline 

Comparison of the permeation transients of the two regions of the medium Mn strip  

(Figure 6 (b)) indicates that there is little difference in the form of the transients and therefore 

their hydrogen diffusivity values are similar (Table 4). Examination of the microstructures of the 

two regions revealed that the grain sizes were uniform and comparable, with the edge region 

showing only a marginally lower mean free path. Therefore, the similarity of the mean free paths 

in the ferrite phase for the two regions is consistent with the similarity of the permeation 

transients. 

4.2.3 Comparison of standard Mn and medium Mn strip 

The plot comparing the edge regions of the standard and medium Mn strips is shown in  

Figure 6 (c). The breakthrough time and lag time for the medium Mn edge sample were longer 

than for the standard Mn edge sample, indicating that trapping is more effective in the medium 

Mn strip. An examination of the microstructure of the edge regions of the two steels reveals that 

the standard Mn strip has a larger number of grains having a finer grain size and consequently a 

smaller mean free path in the ferrite phase. As discussed earlier, a finer grain size is expected to 

trap hydrogen and lower its mobility. In view of the grain size effect, the SME samples should 

have shown a lower diffusivity, i.e., longer breakthrough and lag times. However, the permeation 

results show the opposite.  

Recent studies involving precipitate analysis of the two steels using scanning electron 

microscopy [51] have shown that the medium Mn steel exhibits a significantly larger number 

density of precipitates and inclusions. Most of these precipitates were found to be complex 

carbonitrides of Ti and Nb having an average diameter of 0.8  0.8 m. The higher Ti, C and N 

contents of the medium Mn X70 steel were reported to result in a significantly larger fraction of 

carbonitride precipitates. Fine precipitates of TiC, NbC or complex carbonitrides of Ti and Nb 

have been found to act as strong irreversible traps [2, 18, 19]. Permeability studies in pipeline 

steels by Koh et al. [30] have also shown that diffusivity of hydrogen decreases as the density of 
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precipitates increases. Therefore, the lower diffusivity of the medium Mn strip compared to the 

standard Mn strip can be attributed to the presence of these precipitates which trap hydrogen 

effectively and reduce its mobility. This is also consistent with the higher density of traps 

calculated for the medium Mn strip, as seen in Table 5. 

The permeation transients of the centreline regions of the two steels also show a similar trend 

(Figure 6 (d)) with a slightly larger difference in the two strips compared to the edge region. 

Again the lower diffusivity of the medium Mn steel can be attributed to the presence of 

precipitates. In addition, the mobility of hydrogen in the MMC samples is further reduced by the 

contribution to trapping because of a slightly lower mean free path compared to the SMC 

samples (Table 3). Therefore, the permeation transients show a slightly greater difference, 

relative to those for the edge samples. 

4.2.4 Comparison of standard Mn transfer bar edge and centreline 

Figure 6 (e) shows the permeation plots for the edge and centreline regions of the X70 TB. This 

figure indicates that diffusion is faster in the centreline region of the TB than the edge region. 

This effect can be attributed to the coarse granular bainite microstructure formed from coarser 

prior austenite grains of TB centreline samples. In contrast, the edge region has a mixture of finer 

bainitic ferrite laths and quasi-polygonal ferrite. In addition to the bainitic ferrite grains being fine 

with a lower mean free path, the edge microstructure is expected to have a high density of 

dislocations which can also trap hydrogen and reduce its mobility. Therefore, the TBE samples 

exhibit a lower diffusivity compared to the TBC samples.  

4.2.5 Comparison of standard Mn TB edge and normalised TB edge  

The transient for the NTB sample is compared with the TBE sample in Figure 6 (f). Not only is 

the breakthrough time for the NTB shorter, the transient is also significantly steeper than the TBE 

sample, so that the steady state is attained in a shorter time. These observations suggest that the 

diffusion of hydrogen is very fast through the NTB microstructure due to the absence of features 

that can act as effective traps for hydrogen. This is clearly a consequence of the large polygonal 

ferrite grains of the normalised microstructure, which is reflected in its significantly larger mean 

free path (Table 3). In addition, the dislocation density is low due to the normalising treatment so 
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that the trapping potential is minimized for this sample. In contrast, the TBE sample had fine 

bainitic ferrite structure, smaller grains of quasi-polygonal ferrite and a higher dislocation 

density. These factors combine to effectively trap hydrogen and reduce its mobility, giving rise to 

a longer breakthrough time and a less steep permeation transient.  

4.2.6 Comparison of normalised TB and hot rolled strip of the standard Mn steel 

Figure 6 (g) shows a comparison of the first transients obtained for the NTB and SME samples, 

both of which have a ferrite-pearlite microstructure. The normalised microstructure consists of 

coarse equiaxed grains with a relatively low dislocation density whereas the hot rolled strip has 

fine and somewhat elongated grains that are expected to have a higher dislocation density. 

Accordingly, the hardness value of 198  7 HV for the hot rolled strip (Table 3) is significantly 

higher than for the normalised transfer bar (142  9 HV). Relative to the NTB sample, there was 

a substantial increase in the breakthrough time and the time to attain a steady state for the SME 

sample, because the finer grains and the higher density of dislocations effectively trap hydrogen 

and significantly reduce its mobility, compared to the coarse equiaxed grains in the normalised 

microstructure.  

 

5. Conclusions 

 The medium Mn strip showed the lowest diffusivity due to the combined effect of a fine 

grain size and a high density of (Ti,Nb)C,N precipitates. 

 The normalised transfer bar showed the highest diffusivity due to its large ferrite grains 

and a very low dislocation density. 

 Similar grain sizes for the edge and centreline samples of medium Mn X70 strip resulted 

in exhibiting similar hydrogen diffusivities, whereas standard X70 edge samples showed 

lower diffusivities than the centreline samples due to the combination of finer grain size 

and a higher dislocation density. 



 20 

  The low dislocation density and coarser ferrite-pearlite structure of the normalised TB 

edge sample exhibited a significantly higher diffusivity than the SME sample despite the 

similarity of the microstructure. 

  The fine structure of bainitic ferrite and associated high dislocation densities of the TB 

edge sample resulted in a lower diffusivity than the granular bainite formed from coarser 

prior austenite grains of the TB centreline sample.  
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FIGURE CAPTIONS 

 

 Figure 1: Schematic showing the location of edge and centreline samples of the 

strip/transfer bar. 

Figure 2: Optical micrographs of the strip samples (a) standard Mn edge; (b) standard Mn 

centerline; (c) medium Mn edge; and (d) medium Mn centreline. 

Figure 3: Optical micrographs of transfer bar samples (a) edge; (b) its magnified image; (c) 

centerline; and (d) normalised transfer bar. 1 and 2 indicate regions of different 

morphologies: bainitic ferrite and polygonal and/or quasi-polygonal ferrite, respectively. 

Figure 4: Typical permeation curves for samples examined in this study.  

(a) complete plot of two successive permeation cycles for normalised transfer bar sample; 

and (b) a plot showing the first and second transients for the medium Mn edge sample with 

the second transient (dashed line) superimposed on the first transient line. 

Figure 5:  Variation in hardness and diffusion coefficient with mean free path for samples 

having similar ferrite-pearlite structure and composition.  

Figure 6: Comparison of the first permeation transients for (a) standard Mn strip edge and 

centreline samples; (b) medium Mn strip edge and centreline; (c) standard and medium Mn 

strip edge; (d) standard and medium Mn strip centreline; (e) transfer bar edge and 

centreline; (f) transfer bar edge and normalised transfer bar edge; and (g) normalized 

transfer bar and hot rolled strip of standard Mn steel. 

 



Table 1: Summary of permeation parameters for pipeline steel in literature. 

Publication Steel Solution 
Coat-

ing 
Microstructure Method 

D (10
-10

 

m
2
s

-1
)  

J (mol 

H m
-2

s
-1

 

× 10
-7

)  

JL (mol 

H m
-1

s
-1

 × 

10
-10

)  

Capp (mol 

H m
-3

)  

[27] X70 0.5 M H2S04 

+ 

250 mg/l 

NaAsO2 

Ni F+AF  Time lag 0.263 9.85 7.6 28.8 

[28] X100   F+B Time lag 0.01 2.65 1.4 134 

[31] X65 NACE Pd 

  
DP/AF/

B, % 
M/A, % 

Break- 

through 
4.05 – 9.4  

  

  

-- 
  

0.8-1.4 13-28  
F+AF  8.12 5.73 

F+B  9.38 4.45 

F+DP  3.75 1.28 

F+DP  3.93 0.88 

[29] X70 NACE Pd  F +DP+AF, F+AF+BF 
Break- 

through 

0.5-4.3   -- --  -- 

[34] X52 NACE Pd  F+P, AF+P 0.15-0.24   -- -- 
2.6 × 10

5
- 

27.41 

[33]* X65 0.1 N NAOH -- Q&T 
Time 

lag 
0.9-0.96  -- --  -- 

[25]** X65 NACE -- 

F+P 

B+M/A 

Break- 

through 

2.4 

1.1 
 -- -- 

 5.7 

20.1 

F+P 

B+MA 

Time 

lag 

2.5 

1.2 
 -- -- 

 5.5 

15.6 

[30] API NACE Pd F+P, F+B, F+AF   3.5-9.5   -- --  -- 

[14] X80 0.5 M H2S04 Pd F+BF+M/A Time 

lag 

0.2  -- 5.2 26 

[35] X70 0.1 N NAOH Pd F+P+M  0.73-0.79  -- --  -- 

F - Ferrite, AF – Acicular Ferrite, B – Bainite, DP – Degenerated Pearlite, M/A – Martensite/Austenite, P – Pearlite, BF – Bainitic ferrite, 

GB – Granular Bainite, Q&T  – Quenched and tempered . * For 1mm thick samples ** For Zero stress 
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      Table 2: Chemical compositions of the steels investigated (wt. %). 

Steel C P Mn Si Ni Cr Mo Cu Al Nb Ti V S Ca N 

X70 0.074 0.012 1.14 0.22 0.024 0.029 0.1 0.023 0.019 0.06 0.02 0.002 0.002 0.0002 0.0041 

MX70 0.085 0.01 0.5 0.19 0.018 0.26 0.11 0.011 0.04 0.059 0.035 0.003 0.002 0.001 0.0054 
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Table 3: Sample notation, mean free path in ferrite and hardness. 

Sample Notation 
Mean free path 

(m) 

Average Hardness 

(HV) 

X70 Edge SME 2.97  0.12 198  7 

X70 Centreline SMC 4.52  0.18 187  8 

MX70 Edge  MME 3.96  0.37 187  6 

MX70 Centreline MMC 4.05  0.38 186  3 

X70 TB Edge TBE 4.26  0.33 170  6 

X70 TB Centreline TBC 5.28  0.34 189  3 

Normalised TB NTB 8.93  0.89 142  9 
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Table 4: Diffusion coefficients calculated by different methods. 

Sample 

Dtb (× 10
-10

 m
2
s

-1
) DT (× 10

-10
 m

2
s

-1
) 

   Dt0
rise

                    

(× 10
-10

 m
2
s

-1
) 

    Dt0
decay

                  

(× 10
-11

 m
2
s

-1
) 

First Second First Second 

SME 2.29 ± 0.05 4.09 ± 1.5 1.97 ± 0.09 1.77 ± 0.06 2.0 ± 0.09 5.90 ± 0.2 

SMC 3.02 ± 0.07 3.71 ± 0.7 2.25 ± 0.19 2.06 ± 0.17 2.14 ± 0.15 5.62 ± 0.8 

MME 1.88 ± 0.19 3.00 ± 0.44 1.70 ± 0.04 1.57 ± 0.03 1.67 ± 0.07 3.88 ± 0.5 

MMC 2.10 ± 0.21 2.54 ± 0.61 1.71 ± 0.1 1.52 ± 0.11 1.59 ± 0.14 4.82 ± 0.5 

TBE 3.70 ± 0.02 4.58 ± 0.01 2.10 ± 0.19 1.33 ± 0.31 1.68 ± 0.4 3.84 ± 0.8 

TBC 4.87 ± 0.74 5.4 ± 0.63 3.05 ± 0.17 2.15 ± 0.30 2.8 ± 0.19 6.04 ± 0.7 

NTB 5.66 ± 0.23 7.46 ± 0.45 4.01 ± 0.02 3.82 ± 0.13 3.62 ± 0.58 7.87 ± 1.1 
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Table 5: Trap density, flux, permeability and solubility. 

Sample NT (× 10
18 

m
-3

) 
Flux J (× 10

-7
  

mol H m
-2

 s
-1

) 

Permeability  JL (× 

10
-10 

mol H m
-1

 s
-1

)
 

Capp (× 10
-1  

mol H m
-3

) 

SME 2.68 ± 0.12 1.54 ± 0.26 1.66 ± 0.25 8.40 ± 0.93 

SMC 2.37 ± 0.21 1.92 ± 0.22 1.65 ± 0.23 7.38 ± 0.56 

MME 3.12 ± 0.08 1.82 ± 0.26 1.95 ± 0.25 11.5 ± 1.5 

MMC 3.10 ± 0.18 1.58 ± 0.30 1.55 ± 0.35 9.02 ± 1.5 

TBE 2.51 ± 0.23 1.60 ± 0.06 1.67 ± 0.16 8.02 ± 1.5 

TBC 1.70 ± 0.1 2.22 ± 0.26 2.34 ± 0.20 7.69 ± 0.91 

NTB 1.28 ± 0.01 3.43 ± 0.26 2.42 ± 0.03 6.03 ± 0.11 
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