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EQUILIBRIUM STATES ON THE CUNTZ-PIMSNER ALGEBRAS
OF SELF-SIMILAR ACTIONS

MARCELO LACA, IAIN RAEBURN, JACQUI RAMAGGE, AND MICHAEL E WHITTAKER

ABSTRACT. We consider a family of Cuntz-Pimsner algebras associated to self-similar
group actions, and their Toeplitz analogues. Both families carry natural dynamics im-
plemented by automorphic actions of the real line, and we investigate the equilibrium
states (the KMS states) for these dynamical systems.

We find that for all inverse temperatures above a critical value, the KMS states on
the Toeplitz algebra are given, in a very concrete way, by traces on the full group al-
gebra of the group. At the critical inverse temperature, the KMS states factor through
states of the Cuntz-Pimsner algebra; if the self-similar group is contracting, then the
Cuntz-Pimsner algebra has only one KMS state. We apply these results to a number
of examples, including the self-similar group actions associated to integer dilation ma-
trices, and the canonical self-similar actions of the basilica group and the Grigorchuk

group.

1. INTRODUCTION

We study operator-algebraic dynamical systems consisting of an action o of the real
line R on a C*-algebra B. Such systems have been used to model time evolution in
physics, and there the states are positive functionals on B. In models from statistical
mechanics, the equilibrium states are time-invariant states which satisfy a commuta-
tion relation called the KMS; condition, where {3 is a real parameter called the inverse
temperature [3]. However, the KMS condition is purely C*-algebraic, and there is a
great deal of evidence that the KMS states can be very interesting even when the sys-
tem (B, o) is not physical. A famous example is the number-theoretic system studied
by Bost and Connes [2], which exhibits a phase transition like that of a freezing liquid.
Their work generated enormous interest in the computation of KMS states for systems
of purely mathematical origin (see, for example, [11, 13, 16, 15, 5]).

In [17], we analysed the KMS states on a family of Exel crossed products associated to
self-coverings of the torus T?. For an integer matrix A, the covering map e?™ — e?™Ax
induces an endomorphism «s of C(T¢) for which there is a natural transfer opera-
tor L; the Exel crossed product is then, almost by definition [6, 4], the Cuntz-Pimsner
algebra of a Hilbert bimodule M; over C(T¢) defined using «s and L. Both the Cuntz-
Pimsner algebra O(M) and the Toeplitz algebra 7 (M) carry natural actions o of R.
We showed in [17] that the system (7 (M), o) has no KMS states for {3 less than a crit-
ical value 3. := log|det A|, and a large simplex of KMSg states for 3 greater than 3;
when A is a dilation matrix, there is only one KMS state with inverse temperature 3.,
and this state factors through a state of (O(M,), o).

Our analysis in [17] exploited the existence of an orthonormal basis for the right
Hilbert module M; [22, 18], which gives a Cuntz family of isometries {s;} in O(M).
The canonical embedding of C(T?) gives a unitary representation u of Z% in O(My),
and Proposition 3.3 of [17] describes a presentation of O(M, ) in terms of the u,, and s;.
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Our present project started when we noticed that Nekrashevych had defined “Cuntz-
Pimsner algebras” for self-similar groups by specifying a similar presentation [19, 21].
In this paper we extend the analysis in [17] to cover quite general self-similar groups,
with uniqueness at the critical inverse temperature for a class of self-similar actions
that includes the contracting ones.

A self-similar group consists of a group G, a finite set X, and an action of G on the
set X* of finite words in the alphabet X for which there is a map (g, x) — gl satisfying
g-(xw) = (g-x)(glk - w) for w € X* (see §2). Each integer matrix A gives a self-
similar group (Z4, X) in which X is a set of coset representatives for Z/A'Z? (see §2.2),
but there are many more: indeed, self-similar groups have been a fertile source of
interesting examples for infinite group theory (see [20], for example).

For each self-similar group (G, X), we construct a Hilbert bimodule M over the group
C*-algebra C*(G) such that the right module has an orthonormal basis {e, : x € X} and
the left action of C*(G) = span{d,} satisfies 84 - ex = eg.x - dg,. This bimodule has a
Toeplitz algebra 7 (M) and a Cuntz-Pimsner algebra O(M), and both carry canonical
actions o of R. The Cuntz-Pimsner algebra is the same as that of Nekrashevych [21],
but the Toeplitz algebra appears to be new. As previous studies in this general area
have consistently showed [8, 14, 16, 17, 12], the Toeplitz system (7 (M), o) has a much
richer supply of KMS states.

As in [17], there is a critical inverse temperature 3. := log|X]| such that (7 (M), o) has
no KMS states for (3 less than (3.. For {3 larger than (3., we show that the KMS; states
(7 (M), o) are parametrised by the normalised traces on C*(G), and we give a formula
for the values of these states on a set of elements which span a dense subalgebra of
T (M) (Theorems 6.1 and 5.1). When the restrictions g|, of each fixed g form a finite set
(see §2 for details), there is a unique KMSg, state on (7(M), o), and it is the only KMS
state of (7 (M), o) which factors through a state of (O(M), o) (Theorem 7.3). We do not
have an explicit formula for the values of this last state, but we describe a combina-
torial procedure for computing its value on a particular generator, and illustrate this
procedure in some examples (see §8.2).

Since we suspect that many operator algebraists are not familar with self-similar
group actions, we begin in §2 with a review of their basic properties. We then discuss
some key examples, including odometers, actions of Z¢ associated to integer matrices,
and two nonabelian groups called the basilica group and the Grigorchuk group. We
then construct our Hilbert bimodule M over C*(G), and describe presentations of the
Toeplitz algebra 7 (M) (Proposition 3.2) and the Cuntz-Pimsner algebra O(M) (Corol-
lary 3.5).

Our computation of KMS states for § > (. follows the general program devel-
oped in [16], [17] and [12]. We first find an easily verified relation which allows us
to recognise KMS states (Proposition 4.1). We then prove existence of KMS states us-
ing representation-theoretic methods (Theorem 5.1). As in [17], our construction uses
induced representations, but in the setting of self-similar groups, we can use the bi-
module M and ideas from [14] involving Rieffel induction to get a more systematic
approach. We prove surjectivity of our parametrisation in §6, by showing that KMS
states are characterised by their conditioning to a small corner in 7 (M). In §7, we dis-
cuss KMS states on the Cuntz-Pimsner algebra, and then we close with a section on
examples.

2. SELF-SIMILAR ACTIONS

If X is a set, we write X" for the set of words of length n in X, with X° = {2}, and
X* = U2y X™. A self-similar action (G, X) consists of a finite set X and a faithful action
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of a group G on X* such that, for all g € G and x € X, there exist unique y € X and
h € G such that

g-(xw)=y(h-w) forallw e X*. (2.1)
We also assume that g - @ = &, and then taking w = @ shows thaty = g - x. Wecallh
the restriction of g to x and denote it by g|. Thus (2.1) becomes
g-(xw)=(g-x)(gl-w) forallw e X*.

Then for g € G and w = wyw; - - - w,, in X", we have

g-w= (9 'W1)(9’w1 : (WZ e Wn)) == (9 'W1)(9|w1 'WZ) te (9|w1 |w2---|wn,1 'Wn)a

and in particular g - w € X"

Lemma 2.1 ([20, §1.3]). Suppose (G, X) is a self-similar action.
(1) For each (g,v) € G x X", there exists g, € G satisfying

g-(w)=I(g-v)(gh-w) forallweX". (2.2)
(2) For g,h € G and v,w € X*, we have

g|vw = (9|v)|w> gh|v = 9|h~vh|\)) and 9|;1 = 971|g~v-
(3) For every g € G, the map g : X™ — X" is bijective.

Suppose that (G, X) is a self-similar action. We can view X* as the vertices of a rooted
tree Tx with root @ and edges from w — wx, and then (2.2) implies that G acts on
Tx by graph automorphisms. Indeed, since the action is faithful, the action gives an
embedding of G in the automorphism group Aut Tx. Many of the important examples
are constructed by specifying X and the subgroup of Aut Tx.

A self-similar action (G, X) is finite-state if for every g € G \ {e}, the set {g|, : v € X*}
is finite [20, page 11]. Asin [20, §2.11], (G, X) is contracting if there is a finite subset S of
G such that for every g € G there exists n with {g|, : v € X*,|v| > n} C §; the smallest
such set

N=J Mgh:veX, v =n) (2.3)
geGn=0
is then called the nucleus of (G, X).
Suppose that (G, X) is a self-similar action and S is a subset of G that is closed under
restriction. The Moore diagram of S is the labelled directed graph with vertex set E® = S
and a directed edge from g to gl labelled (x, g - x) for each x € X. So an edge

(xy)
9

h

in the Moore diagram encodes the self-similar relation g - (xw) =y(h - w).

We are particularly interested in the Moore diagram of the nucleus, and will use
Moore diagrams to help find the nucleus. Later, we will use larger Moore diagrams to
compute values of KMS states.

Proposition 2.2. Suppose (G, X) is a self-similar action and S is a subset of G that is closed
under restriction. Every vertex in the Moore diagram of S that can be reached from a cycle
belongs to the nucleus.

Proof. Suppose g € G is a vertex in the Moore diagram of S, and there is a cycle of
length n > 1 consisting of edges labelled (x1,y1), (x2,Y2), -y (Xn, Yn) With s(x1,y1) =
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FIGURE 1. The Moore diagram for the nucleus of the odometer with N = 4.

g, 7(xi, Yi) = s(xi+1,Yis1), and v(xn,Yn) = g. By definition of the Moore diagram we
have g- (x1---Xn) =Y1---Yn and gly,..x, = g. Thus g = g(x;..x,)m for all m € N and

ge(Ngh:veX,M>n} = ge |J[hh:veX,p>n)=
n>0 heGn>0
A similar argument shows that if g can be reached from a cycle, then there are arbitrar-
ily long paths ending at g. O

In the rest of this section, we discuss some key examples of self-similar actions.

2.1. Odometers. Fix an integer N > 1, and let Xy ={0,1,---,N — 1}. We consider the
multiplicative free abelian group G with generator g, so that G = {g* : k € Z}. We
define an action of G on X{, by

y— (Vi +T)va -y ifvi<N-—1
g-v= O 0wk + 1w+ --vyy ifvi=---=vw3=N—-Tandve <N-—-1.
Then (G, Xy) is a self-similar action with g|; = e fori < N — 1 and g|n_1 = g. This

action is contracting with nucleus N = {e, g, g '} indeed, if k > 0 and |w| > log, k,
then g¥|,, is either e or g, and if k < 0 and [w| > log,, k|, then g*|,, is either e or g~'. The
Moore diagram for N for N = 4 is shown in Figure 1.

The self-similar action (G, Xn) is called an odometer. To see why, identify X{, with
{0,1,---N™ — 1} by sending v to ) I, viN""!, and then the action of g on X}, adds 1
(mod N™).

2.2. Integer matrices. Suppose that A € M4(Z) has N := |det A| > 1, and write B :=
At for its transpose. We choose a set I of coset representatives for the quotient Z4¢/BZ¢,
and we assume that 0 € X. For n € Z¢, we write c(n) for the representative of n + BZ¢
in X. We note that detB = det A = N, and hence I has cardinality N.

We now fix an integer k > 1. Then the set I* gives a parametrisation

{br(w) =w; +Bw, + - B 'wy + B¥Z* 1 w € £¥}

of Z¢/B*Z*. The following straightforward lemma tells us how the different bijections
by combine.

Lemma 2.3. Write B for the injective homomorphism B : Z¢/B*Z4 — 79 /B¥"1 74 which takes
m + B*Z4 to Bm + B Z4. Then for x € £ and w € I* we have by1(xw) = x + B(by(w)).

Proposition 2.4. The actions of the additive abelian group 7% on its quotients Z.¢ /B¥Z* com-
bine to give an action of Z* on £* such that

n-w=>b.'(n-b(w)) fork>1andw e I* (2.4)
The pair (Z°, %) is a self-similar action, and for n € Z4, x € £ we have

n-x=cn+x) and nly=B"(n+x—c(n+x)). (2.5)
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FIGURE 2. The Moore diagram for the nucleus of the basilica group.

If A is a dilation matrix (in the sense that all its complex eigenvalues A satisfy |\| > 1), then
(Z4, £) is contracting.

Proof. Since
(m+n)- (p+BZY) =(m+n)+p+BZ*=m-(n+p+BzZY
—m-(n-(p+BZY),
the formula (2.4) gives an action of the additive group Z% on I*. To establish (2.5), we
take x € £, w € ¥, and compute:

b (- (xw)) =n + x4+ Bwy - - - + Bfwy + B 74
=cn+x)+Mm+x—cn+x))+Bw; -+ B w4+ B17¢
=c(n+x)+BB ' (n+x—cn+x))+w; -+ B w+B*Z),
=c(n+x)+B(bk(B'(n+x—c(n+x)) -w)),

which by Lemma 2.3 is by (c(n +x)B'n+x—cn+x))- w)). Thus
n-(xw)=cm+x)B'n+x—cn+x)) -w),

which implies that (Z4, £) is self-similar, and gives (2.5).

Now we suppose that A is a dilation matrix. For x € %, the virtual endomorphism ¢,
associated to x € X (as in [20, §2.5]) is the map n — nl, from the stabiliser of x into Z¢;
the stabiliser is BZ4, and for n € BZ¢, ¢(n) = B 'n. Thus the linear transformation
Q® ¢ : QY - Q! considered in [20, Theorem 2.12.1] has matrix B~'. Since detB =
detA # 0, the eigenvalues of B~ are the inverses A~ of the eigenvalues of B. Since
A is a dilation matrix, we have |]A\7'| < 1 for all such A, and B~" has spectral radius
p(B~') < 1. Thus [20, Theorem 2.12.1] implies that (Z4, £) is contracting. O

2.3. The basilica group. Let X be the set {x,y} with [X| = 2, and consider the rooted
homogeneous tree Tx with vertex set X*. We recursively define two automorphisms a
and b of Tx by

a-(xw)=y(b-w) a-(yw) =xw (2.6)
b (xw) =x(a-w) b (yw) =yw
for w € X*. Then the basilica group B is the subgroup of Aut Tx generated by {a, b}. The
pair (B, X) is then a self-similar action.
We now show that the basilica action (B, X) is contracting and compute the nucleus.

This is probably well-known, but since our answer seems to contradict an assertion in
[20, page 111], we give a detailed proof.
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Proposition 2.5. The basilica group action (B, X) is contracting, with nucleus
N ={e,a,b,a”’ ;b " ab”! ba"};
the Moore diagram of N is in Figure 2.

Proof. Let S = {e,a,b,a ", b~ ab™", ba™'}, for which we have the Moore diagram in
Figure 2. Since this Moore diagram has a cycle at every vertex, Proposition 2.2 implies
that S € V. So we have to prove N’ C S,

We claim that every g € B \ {ab~', ba™'} which can be written as a reduced product
of two elements of T := {a, b, a~', b~'} has the property that g|, € TU{e} for every word
v € X2. There are 12 non-trivial length-two words in G; we delete ab~',ba™' from the
list, and compute the other restrictions to x and y. We find that

a’y=b a’ly="> ably=ba  ably=e
a?,=b" a_zly =b! a'bly=a a_lbly =b!

a'by=a' a'b! ly = b~! baly,="Db bal, =a
b?|, = a? bzly =e b 'al,=b b~ aly = a”

b la,=e b 'a™ ly = a b’ b2, = a? b_zly =e.

Now we observe that further restrictions of b'a™', ab, b and b2 are all in TU{e}, and
we have justified our claim.

Next we suppose that n > 3 and that g can be written as a reduced product of n
elements of T, and take v € X2. We claim that g|, can be written as a product of at most
n — 1 elements of T. We factor off the last two elements of T, say g = g’h. Since g|, =
g’[hvhly, the claim in the previous paragraph implies that, unless (h,v) = (ab~',xy) or
(ba™',yx), we have hl, € T. Since g’|., is a product of at most n — 2 elements of T, we
have gl, = g'lnvhl, written as a product of n — 1 elements of T. So we have to deal with
(h,v) = (ab ", xy) and h = (ba™',yx). Now, since g’ is a product of n — 2 elements of
T and n > 3, we can pull one element t out of g’, and it suffices for us to prove that
(tab )]y and (tba™")|yx can be written as products of two elements of T. We compute:

(azb_]”x = a|(ab*1)~x(ab_])|x = Cl|yb(1_] = bCl_]
(b 'ab M, =b""|y(ba’) =ba"’
(bab™")|, = bl,ba™! =ba™
(a_1ba_1|y =a'yab'=ab™
(b?a™")lyx = (bl(ab™ "))k = (a(ab ") = alyba™ =ba™"
(aba )|y = (akab ")l = (bab ")y = blyba™' =ba .
This completes the proof of the claim.
Successive applications of the claim in the previous paragraph show that if g is a
product of n elements of T and n > 3, then g, is a product of at most 2 elements for
every v with [v| > 2(n — 2). Now the calculations in the first paragraph show that a

further restriction to a word in X? gets us into S. Thus for [v| > 2(n — 1), we have
gly € S. So the inside intersection in (2.3) is contained in S, and so is V. O

Our next proposition says that B has a large abelian quotient. We believe this is
known, but we do not know where a proof has been published.

We want to use the presentation of B found by Bartholdi and Virdg [1, Lemma 11],
building on work of Grigorchuk and Zuk [10]. We consider the collection Y* of all
nonempty words in Y := {a,b,a”',b"'}, and the transformation o : Y* — Y* which
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FIGURE 3. The Moore diagram for the nucleus of the Grigorchuk group.

replaces every appearance of a by bb, every a~' by b-'b"!, every b by a, and every b™!
by a™'. For ¢,d € Y*, we write ¢ for the word obtained by formally inverting ¢, and
[c, d] for the word c"'d~"'cd. Then [1, Lemma 11] says that B has the presentation

B = (a,b:0"([a,b'ab]) = e foralln € N). (2.7)

Proposition 2.6. Let [B, B] be the commutator subgroup of the basilica group B, and let q :
B — B/[B, B] be the quotient map. Then there is an isomorphism ¢ of B/[B, B] onto 7 such

that (q(a)) = (1,0) and $(q(b)) = (0, 1).

Proof. Since a’ := (1,0) and b’ := (0,1) commute, we have o™([a’, (b')'a'b’]) =
for all n. Thus there is a homomorphism of B into Z? taking {a, b} to {a’,b’}, and this
factors through a homomorphism ¢ : B/[B,B] — 72

Since [a,b] and [a,b™] belong to the commutator subgroup, q(a) commutes with
q(b) and q(b~"), and hence for every g € B = (a,b), there are k,1 € Z such that
q(g) = q(a*bl). Since ¢p(q(a*b')) = (k, 1), we deduce both that ¢ is surjective and that
¢ is injective. U

2.4. The Grigorchuk group. We again consider the set X = {x,y} and the associated
rooted tree Tx with vertex set X*. We define automorphisms a, b, ¢, and d of Tx recur-
sively by

a-(xw) =yw a-(yw) =xw (2.8)
b-(xw)=x{a-w)  b-(yw)=ylc-w)
c-(xw) =x(a-w) c:(yw) =y(d-w)
d-(xw) =xw d-(yw) =y(b-w)

Then the Grigorchuk group G is the subgroup of Aut Tx generated by {a, b, c, d}.
The first assertions of the next proposition are also in the proof of [20, Theorem 1.6.1];
the assertion about the nucleus is stated without proof on page 57 of [20].

Proposition 2.7. The generators a, b, ¢, d of G all have order two, and satisfy cd = b = dc,
db = ¢ = bdand bc = d = cb. The self-similar action (G, X) is contracting with nucleus
N ={e,a,b,c,d}.

Proof. The first two relations in (2.8) imply that a* = e. Now the other relations imply
that

w)=xw b’ (yw) =y(c*-w)
w)=xw - (yw) =y(d*-w)
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d” - (xw) =xw d’- (yw) = y(b* - w),

and we can prove by induction onn = |v| that b* - v=c?-v=d?-v=vforallv € X*.
Thus b? = ¢ = d*> = ein G C AutTy. In particular, every element of G is a product of
generators {a, b, c, d}.

Next we note that a is determined by the first two relations in (2.8), and then the
other six determine (b, c,d). A computation shows that (b’,c’,d’) = (cd, db, bc) satis-
fies the same six recurrence relations, and hence we have cd = b, db = c and bc = d.
Since the generators all have order two, inverting gives dc = b, bd = cand cb = d.
Thus the only elements of G which are products of two generators are the elements of

R:={ab,ba,ac,ca,ad,da}.

Twelve calculations show that for every g € R, both gl and g|, belong to {e, a, b, c, d}.
Thus if g is a product of n generators, we have g|, € {e, a, b, c, d} for every word v with
lv| > n — 1. This proves that (G, X) is contracting, and that the nucleus is contained in
{e,a,b,c,d}.

Since every vertex in the Moore diagram of {e, a, b, ¢, d} in Figure 3 can be reached
from a cycle, Proposition 2.2 implies that {e, a, b, c, d}is contained in the nucleus. [J

3. UNIVERSAL ALGEBRAS ASSOCIATED TO A SELF-SIMILAR ACTION

Suppose that (G, X) is a self-similar action, and let C*(G) be the full group C*-algebra
of G generated by the unitary representation {6, : g € G}. We are interested in two
C*-algebras associated to (G, X), which we construct as the Toeplitz algebra and the
Cuntz-Pimsner algebra of a Hilbert bimodule M over C*(G).

As a right Hilbert C*(G)-module, M is the direct sum M = @, ., C*(G); thus M =
{m = (Mmy)xex : M € C*(G)}, with module action (my) - a = (m,a) and inner product

(myn) = 3 min.
xeX
Fory € X we define e, € M by

(e) . 1(:*(@):66 le:y
Y00 otherwise,

and then {e, : x € X} is an orthonormal basis for M with reconstruction formula

m= Z e - (ex,m) form e M. (3.1)

xeX

The left action of C*(G) on M will be the integrated form of the unitary representation
T in the next proposition.

Proposition 3.1. Let (G, X) be a self-similar action, and let g € G. Then there is an adjointable
operator Tg on M such that

Tg(ex - a) =egx - (0g,a) forx € Xand a € C*(G), (3.2)
and T : g — Ty is a unitary representation of G in L(M).
Proof. We define Ty : M — M by

Ty(m) = Z egy - (Og), (€y, m)).

yex
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For a € C*(G) and m € M, we have
Zegy S/, (€y, M- @) Zegy 81, (€y, M)a) = Ty(m) - a,
yeXx yex
and hence T, is C*(G) linear. The computation
glex-a) Z €y~ gh (ey,ex- >) = egx - (89, @)
yeX

shows that T, satisfies Equation (3.2).
We next show that T, is adjointable with T; = T;-1. Let g € G, x,y € Xand a,b €
C*(G). Then

(Tg(ex - a),ey-b) = (egx - (8g,a),€y-b)
(54.a)"b ify=g-x
0

otherwise
) a*dg,b ify=g-x
1o otherwise
_ 9_1|g-xb lfy = g - X
1o otherwise

a*dg1,b ifx=g" -y
0 otherwise

= (ex - a,eq 14051 b)

= (ex-a, Ty-1(ey - b)).

which implies that Ty is adjointable with Ty = T,-1. Next we let g,h € G, and the
calculation

9y

Tgnlex - a) = e(gnyx - (Ogn, @)
€g-(hx) * (Ogl nx@) by Lemma 2.1
= Tg(eh-x : (6h|X a))
=TyTn(ex - a).
shows that Ty, = T, Ty. Since Ty =Ty, this implies that each T is unitary, and that T

is a homomorphism of G into the unitary group &/£(M), or, in other words, a unitary
representation in £(M). O

By [26, Proposition C.17], the unitary representation T: G — UL(M) has an inte-
grated form mr: C*(G) — L£(M) satisfying 7i1(84) = Ty, and with the left action defined
by a - m = mir(a)m, M becomes a Hilbert bimodule over C*(G).

A representation of M in a C*-algebra B consists of a linear map 1y : M — B and a
homomorphism 7t : C*(G) — B satisfying

P(x-a) =v(x)r(a),
Y(x)"P(y) = ((x,Y)c+(c)), and
Pla-x) = m(a)P(x)

(a
for all x,y € X and a € C*(G) (se [9 Section 1]). A representatlon (P, ) of M in B
induces a homomorphism (), 71)!" : (M) — B such that (, 1) (0y,,) = Y(m)d(n)*
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for m,n € M [9, Proposition 1.6], and (\p, ) is Cuntz-Pimsner covariant if!
(B, 1)V (7tr(a)) = (a) whenever mir(a) € K(M).

By [9, Proposition 1.3], the Hilbert bimodule M has a Toeplitz algebra 7 (M) gen-
erated by a universal representation (im,ic-(g)) : M — T(M); if (\, 7) is a represen-
tation of M in B, we write 1} x 7 for the homomorphism of 7 (M) into B such that
(P x ) oim =P and (P x 7) o ic+(g) = m. The Cuntz-Pimsner algebra O(M) is the
quotient of 7 (M) which is generated by a universal Cuntz-Pimsner covariant represen-
tation (jm,jcr(g)). We call T(G, X) := T(M) and O(G, X) := O(M) the Toeplitz algebra
and Cuntz-Pimsner algebra of the self-similar action (G, X). It will follow from Corol-
lary 3.5 below that O(G, X) is the same as the universal Cuntz-Pimsner algebra Og in
[21, Definition 3.1].

We will use the following presentation of 7 (G, X).

Proposition 3.2. Let (G, X) be a self-similar action, and set ug := ic-(g)(d4) for g € G, and
sx = 1m(ey) for x € X. Then

(1) u: G = T(G, X) is a unitary representation of G,

(2) {sx : x € X} is a Toeplitz-Cuntz family of isometries in T (G, X), and

(3) UgSx = SgxUyg), for g € Gand x € X.
The set {ug : g € G} U{sy : x € X} generates T (G, X), and (T (G, X), (u, s)) is universal for
families{Ug : g € G}and {Sy : x € X} satisfying (1), (2) and (3).

Proof. The map u is a unitary representation because 6 : G — UC*(G) is, and ic+(g) is a
unital homomorphism (which follows from [4, Corollary 3.3]). We have

1 ifx =y
0 ifx#uvy,
which implies that {s, : x € X} is a Toeplitz-Cuntz family. For (3), we compute

UgSxy = iC*(G)(ég)iM(ex) = iM(ég : ex) = iM(Tg(ex))
(egx - 8g) = imleg)ic(6)(g,) = Sgxltg-

— iy
The ug4 generate ic-(g)(C*(G)), and for m € M, the reconstruction formula (3.1) gives

im(m) = iM(Z ex - (ex, m}) = Z im(e)ic e ((ex, m)).
xeX xeX
Thus C*(ug,sy) contains all the generators of 7(G,X) = 7(M), and must be all of
T(G,X).

To see the universal property, suppose D is a C*-algebra, and {Uy} C D and {S,} C D
satisfy (1), (2) and (3). We have to find a homomorphism 7y s : 7(G, X) — D such that
mus(ug) = Ug and my s(sy) = Sx. Let my : C*(G) — D be the integrated form of U. Since
each element of M has a unique expansion ) __, e, - a,, there is a well-defined linear
function { : M — M such that (e, - a) = S,mry(a) for x € X and a € C*(G).

We claim that (1, 7, ) is a representation of M. Let a € C*(G) and x € X. Then

U((ex-a)-b) =le,- (ab)) = Symu(ab) = (Sxru(a))mu(b) =(ey - a)mu(a).

Next we consider the left action of b = §,4, which is implemented by the operator T, of
Proposition 3.1. We calculate using relation (3):

11)(59 : (ex : Cl)) = d)(eg-x : (69‘)((1)) = Sg-xﬂu(ég\xa)

This is Pimsner’s original definition [24]; many authors use a slightly different definition due to
Katsura, but the two definitions give the same algebras for the bimodules we consider.

*

SxSy = iM(ex)*iM(ey) = :LC*(G)(<€><) ey>) = {
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= Sg-xug\xﬂu(a) = U.QSXTC(G) = 7Tll(ég)ll)(ex ) a))
which implies that P (a - m) = 7t(a)P(m) for a € C*(G) and m € M. For the inner
product, we have

mu(a*b) ifx =y
x - Uy b)) = .
mu((e. - a €y )) {O ifx £y
= 1y (a)"SSymtu(b) = (Sxmu(a))(Symu(b))
—ple,- ) Pley - b).
So (P, my) is a Toeplitz representation of M, as claimed. Thus there is a homomorphism
P xmy:T(G,X)=T(M) — D. We have
(W x 1) (ug) = (b X 7u) (icv(6)(8g)) = mu(dy) = Uy,
and similarly (\ x 7ry)(sy) = Sx. Thus s := P x 7y has the required properties. [J
We now recall some standard notation for working with the Toeplitz-Cuntz family
{sx : x € X}. Forv € X", we write s, := s,,s,, ---s,,. Then for each n, {s, : v € X"} is
a Toeplitz-Cuntz family, so we have 1 > 3 | .. s,s}. For vyw € X*, the product s}s,,

vanishes unless either v = wv’ or w = vw’, and then collapses down to s, or s,,/. The
relation (3) in Proposition 3.2 extends to uys, = sq. g, forv € X*.

Corollary 3.3. Let (G, X) be a self-similar action, and take (u, s) as in Proposition 3.2. Then
T (G, X) =span{s,ugs;, : v,w € X*, g € G}.

As usual, we prove that A := span{s,ugs},} is a *-subalgebra of 7 (G, X), and then
since A, contains all the generators {14} U{s,}, its closure has to be all of 7 (G, X). Since
Ay is closed under taking adjoints, it remains to show that {s,uys},} is closed under
multiplication. Since we will need the result of the computation, we state it separately:

Lemma 3.4. For v,w,y,z € X*and g,h € G, we have

Sv(gy’)Ugl, /hS7 ify=wy’
(svugsy,) (syunsz) = Q SvUgm, y )Sin 10y U W=yw’ 3.3)
0 otherwise.

Proof. We have s;,s, = 0 unless either y = wy’ or w = yw’, and hence a computation
using the relations ug4s,, = sq.wlg,, gives

Svug Sy /uhSZ if y = Wy !
SvUgSy, SyUnS, = ¢ SyUgsh ups;  if w =yw’
L 0 otherwise
( " .f B ,
SvSqy/Ug|,, UnS, ify =wy
= S"ug(sh’]~w’uh*‘\w,)*sz ifW — yW/
(0 otherwise.
( X ,
Sv(g'y’)ug\y/hsz ify=wy
_ . o
— Svug(mh—],w,)sz(hfl,w/) lfW = ‘yW
(0 otherwise,
as required. -

Corollary 3.5. Let (G, X) be a self-similar action, and take (u, s) as in Proposition 3.2. Then
O(G, X) is the quotient of T (G, X) by the ideal 1 generated by 1 — 3 _, sys:.

xeX
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Proof. Since {e, : x € X} is an orthonormal basis for M, it follows from [7, Lemma 2.5]
that a Toeplitz representation (1, 7r) is Cuntz-Pimsner covariant if and only if

1= vledbled =Y W xmlinleiule) = x (Y ssi),

xeX xeX xeX

and hence if and only if 1 x 7t vanishes on I. O

We write uy and s, also for the images of the generators in O(G,X). Since 1 =
2 vex SxSs in O(G, X), the image of the Toeplitz-Cuntz family {s, : x € X} in O(G, X)
is a Cuntz family. The same is true of the Toeplitz-Cuntz families {s, : v € X"}, so for
everyn € Nwehavel =} . s,s}in O(G,X).

Remark 3.6. As we observed earlier, Corollary 3.5 implies that O(G, X) is the universal
Cuntz-Pimsner algebra Og in [21, Definition 3.1]. It is not necessarily the same as the
Cuntz-Pimsner algebra in [19], which is generated by a Cuntz family {s, : x € X}
and a unitary representation u of G which factors through a particular “permutation
representation” of C*(G).

Corollary 3.7. Let (G, X) be a self-similar action with nucleus N'. Then
O(G, X) =span{s,ugs;, : v,w € X*,g € N} (3.4)

Proof. Since O(G, X) is a quotient of 7 (G, X), Corollary 3.3 implies that the elements
{syunsy, : v,w € X*,;h € G} span a dense subspace of O(G, X). We will show that each
syupss, belongs to the right-hand side of (3.4). Since (G, X) has nucleus N, there exists
n € Nsuch that hly € N for ally € X". But then the Cuntz relation 1 = 3 . sys;,

gives
SyUnSy, = svuh( Z SyS y> Z Sy(hy) Uhly Sy
yexn yexn
which belongs to the right-hand side of (3.4). O

Corollary 3.8. If (G, X) is contracting with trivial nucleus N' = {e}, then O(G,X) is the
Cuntz algebra O\,.

Proof. If N' = {e}, then Corollary 3.7 implies that O(G, X) is generated by the Cuntz
family {sx : x € X}, and hence by the uniqueness theorem for the Cuntz algebra is
canonically isomorphic to O;. O

3.1. Universal algebras associated with integer matrices. We consider a matrix A €
Mq4(Z) with N = |det A| > 1, and the associated self-similar group (Z¢, X) of §2.2. We
want to show that 7(Z%, ) and O(Z4, £) are the Toeplitz algebra 7 (C(T?), xa, L) and
Exel crossed product C(T?) x4, 1 N studied in [17].

As in [17] and [7], we consider the the N-to-1 covering map o4 : T¢ — T9 such that
oa(e’™) = eAx and the endomorphism «a : f — fo oa of C(T?). The function
L: C(T?) — C(T?) defined by

Zf
O'A)Z

is a transfer operator for «s, and (C(T%), «xa, L) is the Exel system studied in [7] and
[17]. Following [4], we write M for the associated Hilbert bimodule over C(T?), with
inner product and operations given by

(myn):=L(m'n), f-m:=fm and m-f:=moa(f)
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for myn € My and f € C(T%). It is shown in [18, Lemma 3.3] that M, is complete in
the norm defined by the inner product. The Toeplitz algebra 7(C(T?), xa, L) in [17] is
by definition the Toeplitz algebra 7 (M, ), and the Exel crossed product C(T%) x4, 1 N
is the quotient O(M) (by [4]).

In [17, Proposition 3.1], we showed that 7 (M ) is the universal algebra generated by
a unitary representation u: Z¢ — U7 (M_) and an isometry v satisfying

(El) VU, = UgmV,
g1, if me BZd

E2) v* =
(E2) viuumy 0 otherwise.

We will use this presentation and that of Proposition 3.2 to identify 7(Z4, £) with
T(My). (The use of the same letter u for the unitary representation of Z¢ in both pre-
sentations should not cause problems because our isomorphism takes one u, to the
other w,.)

Proposition 3.9. Suppose that A € Mq4(Z) has |det A| > 1, write B := A", and consider the

bimodule My constructed above. Define b : £* — Z4 by b(w) = wy + Bw, + - - + B Twy

for w € I¥. Then there is an isomorphism 6 of T(Z%, L) = C*(u, s) onto T (M) = C*(u,v)
such that

O(syUnSi,) = Up(y)prnVV Uy, (3.5)

= ub(y)vkv*lult(w)-&-Bln (36)

forye £F, we £, n e Z4

Proof. We begin by building a representation of 7(Z4, £) in 7(M_) = C*(u,v). We have
the u,, and they satisfy condition (a) of Proposition 3.2 because u : Z¢ — T (M) is a
unitary representation. For x € X, we define S, = u,v. Then for x,y € L, property (E2)
gives
* ik ok . uBfl(y—x) lfy —X & BZd
SIS, = . = V=
xOy =V UadlyV = VY {O otherwise;

since both x and y are in X, y — x € BZ? if and only if x = y. Thus the {S,} are
isometries with orthogonal ranges, and form a Toeplitz-Cuntz family, as required in
Proposition 3.2 (b). Next we use (E1):
UnSx = UnixV = Ue(nx) Untx—c(nix)V

= U¢(n4+x) VUB—T (ntx—c(n+x))

- Sc(n—&-X)uB*] (n+x—c(n+x))»
which is Sy, by (2.5). Now the universal property of (7(Z% Z),u,s) gives us a
homomorphism 6 = 0,5 : T(Z%,£) — T (M) such that 6(s,) = u,vand 8 ou = u. The
range contains all the generators u, and v = Sy, and hence 0 is onto.

To see that 0 is injective, we build an inverse. We define V := so. Then V is certainly
an isometry. For m € Z¢, an application of (2.5) gives
UgmV = UpmSo = Sc(0+Bm)WBm|y = SOUB-T1(Bm+0—c(Bm+0)) — Vum)
which is (E1). For (E2), we use (2.5) again:
VUV = sqUinSo = S3Sc(m)Us—1 (m—c(m));

since the s, have mutually orthogonal ranges, this last term vanishes unless c(m) =0,

or equivalently m € BZ¢4, in which case it is sjsoup-1,, = Up-1,,. Now the universal
property of 7 (M) gives a homomorphism 0’ : T(M) — T (Z¢, £) such that 6'(w,,) =
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Uy and 6’(v) = V. Then 0’ 0 8(s,) = 0'(uv) = u,So = sy, 50 0’ 0 0 is the identity, and 6
is injective.

To check the formulas for 6 on spanning elements, we take y € ¥, w € L' and
n € Z4. Then

B(syunsy,) = Blsy, sy, -+ Sy, Unsy, ) = Uy, Vity, V- - Uy Vs,
= %1uBy2V2 . uykvuns*
= Wy, 4By +--+BR Ty, Y “unvtug, Wi +Bwy 4B Twy
= Uy, 4By, ++B* Ty, +BknV V*lu* 1+Bwo 4B Ty
which is the first formula (3.5). For (3.5), instead of pulling w, past v* using (E1) at the
last step, pull it past v*! using the adjoint of (E1). O

Corollary 3.10. Suppose that A and My are as above. Then the isomorphism © of Proposi-
tion 3.9 induces an isomorphism 6 of O(Z4, L) = C*(un, sx) onto O(My) = C*(iiy, V) such
that

—xl — %

O(svunsy,) = Tpw) iV V0 (-

Proof. We know from Corollary 3.5 that O(Z4, £) is the quotient of T (Z4, £) by the ideal
I generated by 1 —} | _; s«s}, and from [17, Proposition 3.3] that O(M} ) is the quotient
of T(M_) by the ideal ] generated by 1 — » - (u,v)(u,w)*. Since 8(sy) = Wp)V = WyV,

we have
9(1 - SXSi) =1-=> (uww)(uw),
XeX xXeX
so 0(I) = J, and the result follows. O

4. A CHARACTERISATION OF KMS STATES

Let (G, X) be a self-similar action. The Toeplitz algebra 7(G,X) = 7 (M) carries
a strongly continuous gauge action y : T — Aut(7 (G, X)) such that y,(ic+(g)(a)) =
ic+(g)(a) for a € C*(G) and v.(im(m)) = zim(m) for m € M. We define 0 : R —
Aut(T(G, X)) by 0y = v,it. In terms of the presentation of Proposition 3.2, we have

oi(uy) =uy and oy(s,) = e'Ms,

We also write o for the induced action of R on O(G, X). Our main goal is to find the
KMS states of (7(G, X), o) and (O(G, X), o). In this section, we give a characterisation
of KMS states which will make them easier to identify.

Our conventions for KMS states are the same as those of [16] and [17], and are ex-
plained at the beginning of [16, §7], for example. For our purposes, a state ¢ of a system
(B, R, o) is a KMS state with inverse temperature 3 (a KMSg state) if ¢(ab) = p(boyg(a))
for all a,b in a family F of analytic elements which span a dense subspace of B. We
distinguish between KMS,, states, which are by definition limits of KMS; states as
f — oo, and ground states, for which z — ¢(ax,(b)) is bounded in the upper-half
plane for all a,b € F. (This distinction is not made in the standard references [3, 23].)

The spanning elements s,ugys;, € 7 (G, X) are analytic for o since

oi(syugsy,) = et Mgy 7 4.1)
and the function z — e#M~" is entire. Thus a state ¢ is KMS; for o if and only if
$((svugsy,) (syunst)) = b ((syunst)ois(svugss,))
= e P ((syunsy) (syugsy,)). (4.2)
We now have the following analogue of [16, Lemma 8.3] and [17, Proposition 4.1].
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Proposition 4.1. Let (G, X) be a self-similar action and suppose that o : R — Aut T (G, X)
satisfies (4.1).

(1) For 3 < log|X|, there are no KMSg-states for o.
(2) For 3 > loglX|, a state ¢ is a KMSg-state for o if and only if

Plugus) = bluryy) forg,he G 4.3)

and
e PMp(ug) ifv=w

4.4
0 otherwise (44)

d)(svugsjv) = {

Proof. Suppose that ¢ is a KMSg-state. First, for g,h € G we have
(b(uguh) = (b(uhﬁi(s(ug)) = (b(uhug)-
Next, we take v, w € X* and calculate
d)(svugsj\;) — ¢(ugS:VGiﬁ(Sv))
e M (ugsys,)  ifv=wv orw=ww’
0 otherwise

e M (syoip(ugss,))  ifv=wv orw=ww’
0 otherwise

B {e_ﬁm_"”')d)(svugs;‘v) ifv=wv orw =w’
0 otherwise.
Thus
d(syugsy,) #0 = [v[ = |w| and eitherv =wv' orw =ww' & v=w.
If v=w, then
b(svugsy) = d(ugsoig(sy)) = e PP (ugs)s,) = e PV (uy).
Since {sy : x € X} is a Toeplitz-Cuntz family, we have

T=0(N = (Y sst) =) dlssi) =Y ePdlsis) =) e =[Xle ™,

xeX xeX xeX xeX

so that 3 > log |X]|. This completes the proof of (1) and the forward implication in (2).

For the backward implication in (2), suppose ¢ is a tracial state on C*(G) satisfying
(4.3) and (4.4). We aim to show that ¢ satisfies (4.2). We first suppose that [y| > |wl.
Since y is longer than w, the product sj s, in the middle of the left-hand side of (4.2)
vanishes unless y = wy’. If y = wy’, then Lemma 3.4 implies that

d)((svugsa)(syuhSZ)) = d)(SV(gy’)uglyth;)»
which by (4.4) vanishes unless z = v(g-y’). Fory = wy’ and z =v(g-y’), we compute
b ((svugsy,) (Syuns;)) = (Sv(gy g, ms3)
— e*BIV(g-U’)\d)(ugly/uh)
= e‘ﬁ(lv‘ﬂy/')d)(uhug‘y,) (using (4.3))
= e_ﬁ(lva/l)eﬁly‘d)(syuhug\y,s;) (using (4.4))
— e P o (s g5 s5)

= e_ﬁ(M_‘WU¢(Syuh(sy/u97] \g'y, )*S;kv)
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(9y )u' —]|g'y/)*8* )

(s wpst) (svuy sw)) (4.5)
To complete the proof of (2), we observe that
d)((syuhSZ)(Svug )) 7é 0

= eitherv=2zv'and w =y(h-v'),orz=vz'and y = w(g
1

-1 Z/)

= z=vz'andy=w(g ' -z') (because [y| > [w])
— z=v(g-y)andy =wy’ (withy' =g 2.
Thus if there is no y’ satisfying y = wy’ and z = v(g - y’), we have
e PV o ((5yun87) (syitgsty)) = 0 = b (511485 ) (syuns?)). (4.6)

Together, (4.5), which holds when there exists y’ such that y = wy’ and z = v(g - y’),
and (4.6), which holds otherwise, imply (4.2) for |[y| > [w].

We now suppose that [y| < [w|, and take adjoints to reduce to the case in the previous
paragraph. Since ¢(a) = ¢(a*), we have

d)((svugsjv) (SyuhSZ)) = d)((szuh*1 S;)(Swug*‘ St))

= e Pl (5,105 157) (2145 157) )

= e PIEM ¢ ((syuns?) (svigs),))- 4.7)
The calculation in the previous paragraph shows that the right-hand side of (4.7) van-
ishes unless w = yw’ and v = z(g~' - w'), in which case v| — |z] = W’| = w| — |y| and

lz| — ly| = [v| — [w|. Thus

d((syugsy,) (syunst)) = e P ((syunst) (svugss)),

and we have proved (4.2) in the remaining case [y| < |w|. a

5. EXISTENCE OF KMS STATES ABOVE THE CRITICAL INVERSE TEMPERATURE

Theorem 5.1. Let (G, X) be a self-similar action, and let T be a normalised trace on C*(G).
Then for every 3 > log |X|, there is a KMSg state \pg  satisfying

(1—|X|e‘ﬁ)ieﬁ(k””( Yy T(59|y)) ifv=w
k=0

{yexk:gy=y}
0 otherwise.

Vpalsigss,) = (5.1)

To prove Theorem 5.1, we adapt ideas from the proofs of [14, Theorem 2.1] and [17,
Proposition 6.1]. Both involve induced representations; as in [14] rather than [17], we
apply Rieffel’s Hilbert-bimodule formulation of induced representations to the Fock bi-
module F(M €B M@, We take 7, : C*(G) — B(K,) to be the GNS-representation
of C*(G), and then Rleffel induction gives a representation

M= EB M®-Ind 7, on the Hilbert space Hn:= @ M ®c+(g) Kr. (5.2)
j=0 j=0
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To calculate with the induced representations M®-Ind 7, we need to understand the
bimodules M®I.

Lemma 5.2. Suppose that (G, X) is a self-similar action and {e, : x € X} is the orthonormal
basis for the Hilbert bimodule M constructed in §3. Fix j > 1. Then

{ev:=e, @ - ®e, ‘v e X}
is an orthonormal basis for M® with reconstruction formula
m = Z e, (e, m) forme M%. (5.3)

vexi

The left action of C*(G) on M® satisfies 84 - €, = €q.y * g, -

Proof. We prove this result by induction on j. Proposition 3.1 and the surrounding
discussion give the result for j = 1. Suppose it is true for j = k. For two words
w =ww’ and v = v;v’ in X*!, we have w’'| = p'| =k, and

<eW) ev> = <ew1 X e, €y, X ev’) = <ew’> <eww ev1> . ev’>
= 6W1 V1 <eW’3 e\,/> = 6W1 V1 ‘SW/,V/1C*(G) = 6W,V1 C*(G)y

giving orthonormality. For m = my ® m’ € M®:) = M ®@c.(g) M, we have

m= (Zex-<ex,m1)) ®m’=ZeX®(eX,m1>-m’

xeX xeX
- S e (X e fenleam) )
xeX xeXk
= ) &®e (a®e,mam),
xeX, vexk
- Z Cxv - <exw m)»
xeX, vexk

which is the right-hand side of (5.3) for j = k + 1. This formula extends by linearity
and continuity of the inner product to m € M®*V_ Finally, let w = wyw’ € X*!
and g € G. Then because the tensor product is balanced over C*(G), the inductive
hypothesis gives
dg-ew =(0g-ew,) ®en = (egw, - Sl ) ® en

= €gw; @ (Bgl,,, - €wr) = gaw; @ (€giw * d(gl, ), )

= (egw; ® €gi,w) - Byl = €gaw * Dl
and we now have the whole inductive hypothesis for j = k + 1. O

Proof of Theorem 5.1. As promised, we take the GNS representation 7, of C*(G) on K,
and consider the representation 7 of (5.2). Lemma 5.2 implies that every vector in
M® @cx(g) K is a finite sum 2 vexi & ® ky, and that the representation M®i-Ind 7, of
C*(G) is the integrated form of the unitary representation W of G on M® ®c.(g) K+
characterised by

Ul(e, @ k) = Ty(e,) @ k = (eg - 8g,) ® k = €y ® (8, ); (5.4)

we set Uy, = @ UJ. Since the {e, ® k : v € X/} are mutually orthogonal, there are
isometries Sy on #H, such that Sy(e, ® k) = e,, ®k, and these isometries form a Toeplitz-
Cuntz family. The following calculation using (5.4) shows that U and S satisfy (SSR):

Sgalgl (ev ® k) = Sgxleg v @ Te(8(g )1 )K) = €(gx)(ghov) ® Te(Bg),, K
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= eg(xv) ® nT(églxv)k - ug(exv ® k) - UQSX(eV ® k).

Now Proposition 3.2 gives us a representation mys : T(G,X) — B(#H,) such that
ﬂus(svug ) = S U S*

We now take &L to be the canonical cyclic vector for the GNS representation 7, (so
that &, is the image in KC; of the identity 1¢+(g)), and define s . : T(G, X) — Cby

Ppla) = (1 Xle ) Ze (Y (uslalle: 0t le.®&)).  (65)

zeX

Since g . is a norm-convergent sum of vector states with non-negative coefficients,
it is a positive functional; since [X/| = [XJ), summing the geometric series >l IX|e R))
shows that P (1) =1, and Vg - is a state.

To verity (5.1), we take a = s,uys},. Then

(mpe(a)(e: ® &) e @ &) = (S\UgSE(e. @ &) e, @ &)
= (UgS,(e: ® &) | S} (e ® Ed)). (5.6)

We have S} (e, ® &) = 0 unless z = wz’, and hence (5.6) vanishes unless z = wz’ =vz”,
in which case

(T[ﬁ,’t(a)(el ® E»T) | (< ® Err) = (U (ez’ ® E,T) | €, ® E.T)
(eg 2 @ T[T( )&T ’ e, & Ev’[’)

This last inner product vanishes unless g -z’ = z”, Wthh implies |z'| = |z"] and |v| =
lz| — 12| = |z| — |2"| = [w|; now z = wz’ = vz” forces v =w and z’ = z”. Thus the inner
product vanishes unless z = vz’ and g - z’ = z’. Noticing that z = vz’ implies |z| > |
and writing y for z’, we find that

=X e®( Y (mldg,)eelEd)) ifv=w

d’ﬁ;r(svugs:\;) = j=Iv| {yexi—M: gy=y}
0 otherwise.
Since (7t¢(8g), ) &< | &x) = ’t(]’é*(G)égbk*(G)) = 1(dg,), taking k = j — [v[ gives (5.1).
We show that g . is a KMSg state by checking properties (4.4) and (4.3) of Proposi-

tion 4.1. The first is straightforward. We trivially have g ((s,u4s;,) = 0 if v # w. For
g € Gand v € X/, we have

e—rsv|¢w(ug):(1_|X|e—ﬁ)e‘ﬁ'vie‘ﬁk( > T(ég\y))>

k=0 {yexk:gy=y}

which on pulling e M inside the sum becomes the right-hand side of the formula (5.1)
for g .(syugsy). For the second, we need to take g, h € G and compare

xpﬁ,T(uguh)=¢B,T(ugh)=(1—|><|e—ﬁ)ze—ﬁk( > tlogw,))  67)
k=

{yex®:(gh)-y=y}
with
p(ttnitg) = pelitng) = (1— Xl ) Z (Y xlbpgl)) 68
{zeX¥: (hg)-z=2}
The function f : X* — X* defined by f(y) = h - y is a bijection, and
(gh)-y=y+=g-(h-y)=h""-(h-y) & (hg)-(h-y)=h-y,
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so f maps the index set {y € X*: (gh) -y =y} in (5.7) onto the one {z € X* : (hg) -z = z}
in (5.8). We claim that the function f also matches up the corresponding summands.
To see this, suppose (gh) - y =y. Then because T is a trace, we have

T(S(gnyty ) = TBghyhiy) = TBniy Ogl, ) = TSy ;. Byl )-
The identity (gh) -y =y implies thath™" - (h-y) =g - (h-y), so
T (ghly) = T(Ony. 1y Ogliny) = T(S(hg)hny) = T(8(ng)lyy) )

as claimed. We deduce that Vg (uqun) = P (unug), and now Proposition 5.1 implies
that g » is a KMS;g state. O

While we have the formulas for the induced representations handy, we describe the
ground states and KMS,, states of our system.

Proposition 5.3. Suppose that (G, X) is a self-similar action. Then for every state w of C*(G),
there is a ground state ¢, on (T (G, X), o) such that

w(dy) fv=w=0

59
0 otherwise. (5:9)

d)w(svugsjv) = {

The map w — &, is an affine homeomorphism of the state space S(C*(G)) onto the ground
states of (T (G, X), o). For w € S(C*(G)), by, is a KMS, state if and only if w is a trace.

That states on C*(G) give ground states is proved in greater generality in [14, Theo-
rem 2.2]. However, as in Theorem 5.1, we can use the special features of our situation
to give specific formulas.

We begin with an analogue of [16, Lemma 8.4] which will allow us to recognise
ground states. The proof of that lemma carries over almost verbatim to this situation.

Lemma 5.4. Suppose that (G, X) is a self-similar action. A state ¢ of T (G, X) is a ground
state of (T (G, X), o) if and only if

d(ug) fv=w=0

5.10
0 otherwise. ( )

d)(svugstv) = {

Proof of Proposition 5.3. Given a state f of C*(G), we take the GNS representation ¢ of
C*(G) on K¢ with cyclic vector &, and consider the representation my s of 7 (G, X) on
@]20 M ®c+(g) K+, as in the proof of Theorem 5.1. Then we define

dr(a) = (mus(a)(es ® &) ey ® &)  for a € T(G,X).
Then ¢, is a state, and

d)f(svugs;k\;) = (Svugsj\;(eﬁ X E»f) | €y X E»f)

_ 0 unlessv =w = &
(m(ég)&f!&):f(ég) ifv=w=g.

Lemma 5.4 implies that ¢, is a ground state. The map w — ¢y is continuous, affine
and injective, and it is onto because ¢ = ¢y for f = e+ (g).

If ¢ is a KMS,, state, then ¢ is the limit of a sequence of KMSg states, and equation
(4.3) in Proposition 4.1 implies that T := ¢|c+(g) is a trace. For the converse, suppose
that T is a trace on C*(G). Then we can use weak* compactness to get a sequence {\g , -}
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which converges to a KMS,, state ¢. Since (4.4) gives g -(s,ugs}) = e Py, T(ug) we
have g < (syugsy) — 0 as B — oo whenever [v| > 0. On the other hand, (5.1) gives

Ppe(1g) = (1—yX|eﬁ(T(5g)+Ze*kﬁ( Yy T(59|y)>.
k=1

{yeX*:gy=y}

Now

0 —B

kB B —Bj Xle
‘Z"' (X )| <e Z’XP T X

= {yexk:gy=y}
converges to 0 as 3 — oo, and hence 11)(5 (ug) = T( g)- Thus the limit ¢ is the state ¢-
described in (5.9), and ¢. is KMS,, O

In the situation of [17], where the group G = Z is abelian, every state on C*(G) is
a trace, and we recover [17, Proposition 8.1]: every ground state of (7(Z% X),0) is a
KMS,, state. For nonabelian G, though, there are many states of C*(G) which are not
traces, and (7 (G, X), o) has many ground states which are not KMS, states.

6. PARAMETERISATION OF KMSg; STATES ON THE TOEPLITZ ALGEBRA

Theorem 6.1. Suppose that (G, X) is a self-similar action and 3 > log |X|. The map t — g -
in Theorem 5.1 is an affine homeomorphism from the simplex of normalised traces on the full
group C*-algebra C*(G) onto the simplex of KMSg states on (T (G, X), o).

For the proof, we need some lemmas. As in [16, §10] and [17, §7], the idea is to show
that a KMSg state can be reconstructed from its conditioning to a corner P7 (G, X)P.
Here we take

P:=1-— stsi e T(G,X).
xeX

Lemma 6.2. Suppose that ¢ is a KMSg state, and define ¢p : T (G, X) — C by

1

dp(a) = W

¢ (PaP).

Then &plcs () is a normalised trace.

Proof. The function ¢y is a positive linear functional because ¢ is, and the computation

¢(1)—W( ZS") 1—!X|f5< eﬁzd’”")

1 —[Xle®
1= IX|e—B
shows that ¢y is a state.

With a view to proving that ¢p is tracial on C*(G), we claim that ugP = Pug. Indeed,
for x € Xand g € G we have

=1

UgSxSy = UgSxSylglly = (UgSy) (UgSx) Uy = (Sgxllgl, ) (Sgxllgl ) Ug = SgxSyxllg
Thus for g € G, we have

ugP =y (1 — E sxs,’i> = Uy — E UgSxSy

xeX xeX

_ o * . o *
= U4 E SgxSgxlly = (1 E sg.xsg,x)ug,

xeX xeX
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and since 1 — 3 .\ ¢85 = P we get usP = Pug, as claimed. Now since ¢ is a KMSg
state, we have

d)(PuguhP) = d)(ugpuh) = d)(PuhGl[S (ug)) d)(Puhug) d)(PuhugP)»
which implies that ¢p|c+(g) is a trace. O

Lemma 6.3. Let (G, X) be a self-similar action. For eachn € N, the element

Pn = Z Z syPs;,
j=0 veXi
is a projection in T (G, X), and if ¢ is a KMSg state of (T (G, X),0) and a € T(G,X), then
b (pnapn) — dla)asn — oo.

Proof. Each s,Ps} is a projection, so we need to show that s, Ps} and s,,Ps, are mutually
orthogonal when v # w. Since {s, : z € X™} is a Toeplitz-Cuntz family for each m, this
is trivially true for [v| = [w|. So suppose [v| # [w|. The product Ps;s,,P vanishes unless
v = wv’ or w = vw’; since (Ps}s,,P) = Ps,,s;P, we may as well assume that [w| > |v|
and w = vw’. Then, writing w; for the first letter in w’, we have

Ps;sP = Ps,,/P = (1 — Z sxs,f) Sy P =8,/ P — sw{sjv]/sw/P =0. (6.1)
xeX
Thus each p,, is a projection.
Lemma 7.3 of [17] says that if ¢ is a state of a unital C*-algebra A, and {p,} is a
sequence of projections in A such that ¢(p,) — 1, then ¢(prapn) — $(a) for every
a € A. So we aim to show that ¢(p,) — T asn — oco. The KMS condition gives

(pr) =D D dlsPs;)=) > e Pp(P)

i=0 veXxi j=0 veXi
=(P) ) (IXleP) = (1—[Xe) Z Xle P)),
j=0 =0
which converges to 1 as n — oo. Thus the result follows from [17, Lemma 7.3] O

The following reconstruction formula is an analogue of [17, Proposition 7.2].
Lemma 6.4. Suppose 3 > log|X| and ¢ is a KMSg state on T (G, X). Then for a € T (G, X),
dla)=(1-Xle®) Y 3 e Pipo(sas). (62)
j=0 veXi
Proof. Lemma 6.3 gives

¢(a) = lim P(pnap,) = lim ZZZ > d(syPs;as,Ps},)

j=0 1=0 veXi weX!

= &gl;oi i Z Z e Pip(Ps:as,,Ps’ s,P)

j=0 1=0 veXj wex!

— T}gn Z Z e_ﬁjd)(stasVP) (using (6.1))

j=0 vexi

=(1- |X|e_ﬁ)i Y e Pdp(sias,). O

j=0 veXi
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Proof of Theorem 6.1. By an application of the monotone convergence theorem, we can
deduce from (5.1) that T — 1 is affine and weak* continuous. Since both sets of
states are weak* compact, it suffices to show that T — 1. is bijective.

To see injectivity, suppose that g . = g, and take g € G. Then the formula (5.1)
gives

bpalug) =(1=Xe ™) 3 ePrlsy,)

i=0 {yeXi:g-y=y}
=(1—Xle™®)t(dg) + (1—Xle )Y > ePrlr(gy,).
k=0 {yeX*+1:g.y=y}
We can write the index set for the last sum as
yeX:gy=yl={y':xeX, y eX, g-x=x, gk-y' =y,
and then another application of (5.1) gives

Sy et =ty Y > el

k=0 {yexk+!:gy=y} k=0 {xeX:gx=x} {y’eX¥:gl-y'=y’}
e P
= ToRel L el
{xeX:g-x=x}
Thus
Ppalitg) = (1= XeP)eton) +e P (3 palug,)). 6.3)
{xeX:g-x=x}

Similarly, we have
() = (1= Xle P8 +e (3 pplug,)). (6:4)
{xeX:g-x=x}

Since g = g, subtracting (6.3) from (6.4) shows that 1(84) = p(d4). Thus T = p,
and T — g . is injective.

To see surjectivity, suppose that ¢ is a KMSg state on 7 (G, X). Lemma 6.2 implies
that T := ¢plc+(g) is a normalised trace, and we aim to show that ¢ =g .. By (5.1), it
suffices to show that ¢ (uy) =g (ugy) forall g € G. Fix g € G. Then the reconstruction
formula (6.2) gives

Plug) = (1= Xle®) S 3 e Pipn(s]ugs,)

j=0 yexi

=(1=1Xle®)> > e Pr(s]sgyug,)

j=0 yexi
=Hm(1—Xe®)) >  ePfir(uy),
=0 {yexi : g-y=y}
which by (5.1) is precisely g «(ug). Thus ¢ =g, and T +— Pg - is surjective. O

For every discrete group G, there are at least two normalised traces on C*(G). The
usual trace T, on C*(G) satisfies

1 ifg=ce
Te(ég):{ J

0 otherwise.
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To see that there is such a trace, consider the left-regular representation A of G on ¢*(G),
and define 1. : C*(G) — C in terms of the usual orthonormal basis {{; : g € G} by
Te(a) = (M(a)&c | &). Then it is easy to check on span{$4} that T, has the required prop-
erties, and continuity does the rest. The other trace is the integrated form t; : C*(G) —
C of the trivial representation g — 1, which is a scalar-valued homomorphism, and
hence is trivially a trace.

Since T, and T; do not agree on the 5, with g # e, they are distinct traces, and hence
by Theorem 6.1 give distinct KMS states. We look at these states.

Corollary 6.5. Suppose that (G, X) is a self-similar action and 3 > log|X|. For g € G and
k > 0, we set

Fs={veX:g-v=vand g, = e}. (6.5)
Then there is a KMSg state g -, on (T (G, X), o) such that
e V(T —[X[eP)Y e PHFY ifv=w
lbﬁ;re (Svugsj\;) = é ’
0 otherwise,

where we interpret || as 0.

Proof. The state g ., is the one given by Theorem 5.1, so we just need to check the
formula for Vg . (svugss,). It is certainly 0 if v # w, so we suppose v = w. Then since
Te(de) = T and 1,(61) = 0 for h # e, the sum on the right-hand side of (5.1) collapses to

give
Pp e (Svugsy) = (1 —[X|e™ ﬁ Ze Bk+) (Z1>

yeFk
which on pulling out e PV gives the required formula. O

Corollary 6.6. Suppose that (G, X) is a self-similar action and 3 > log|X|. For g € G and
k > 0, we set

G‘; =veX:g-v=vh. (6.6)
Then there is a KMSg state g -, on (T (G, X), o) such that

e M1 —[Xle®)Yy e PYGY ifv=w
lbﬁm (Svugsi\;) = kZ !

0 otherwise.

Proof. As in the proof of the previous corollary, the second sum on the right-hand side

of (5.1) counts the number of elements of Gg, and hence this follows from Theorem 5.1.
[

Although the formulas in the last two corollaries look a bit messy, they are quite
computable, and we will later discuss ways of doing these computations using Moore
diagrams. But it is easy to give a quick example now.

Example 6.7. Consider the basilica group (B, X = {x,y}) of §2.3. The first two relations
in (2.6) imply that the generator a changes the first letter of every word, so FX = Gk =
forevery k > 1,and P . (84) = Ppr, (84) = 0. On the other hand, b f1xesxw1th b|X =aq,
and hence satisfies b - (xw) # xw for every longer word xw. Thus Fy = {yw : w € X*}
and Gf = {yw : w € X*} U {x}. We deduce that

Ppr(Bp) =(1—2e#) ) e ™2 =1(1-2¢F) ) (2¢F)* =1, and
k=0 k=0
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s —_ Qe B
Vpr, (8) = (1 —2e7F) % e P2+ =3+ %
Remark 6.8. When the group G is abelian, the normalised traces on C*(G) = C (G)
are given by probability measures on the compact dual group G. Thus in [17] (see
also §8.1 below), the KMS states with inverse temperature > B. on (7(Z4, £), o) are
parametrised by the probability measures on T¢.

When G has an abelian quotient Q, C*(Q) is a quotient of C*(G), and the probability
measures on Q give traces on C*(G) and KMS states on (7(G, X), o). This applies
in particular to the self-similar action (B, X) associated to the basilica group in §2.3,
since Proposition 2.6 implies that B has a quotient isomorphic to Z2. Thus for each
B > log|X]|, Theorem 6.1 gives a simplex S of KMSg states of (7 (B, X), o) parametrised
by the probability measures on Q = T2. The simplex Sq includes the state Vg, of
Corollary 6.6, which corresponds to the point mass at 1 € T2. However, since the trace
T, does not factor through the quotient map, Theorem 6.1 implies that Sy does not
include the state g ,, of Corollary 6.5.

7. KMS STATES AT THE CRITICAL INVERSE TEMPERATURE

In this section we describe the KMS states on 7 (G, X) at the critical inverse temper-
ature 3. = log|X|. We start by showing that we are effectively dealing with the KMS
states on the Cuntz-Pimsner algebra O(G, X).

Proposition 7.1. Let (G, X) be a self-similar action. Every KMS,og x| state of (T (G, X), o)
factors through a KMS,. x| state on O(G, X).

Proof. Suppose that ¢ is a KMS,,, x| state of (7(G, X), o). Then Proposition 4.1 implies
that ¢(s.s?) = [X|!, and hence

¢(1 -y sxs§> — 1 XX =o.

xeX

Now the argument in [16, Lemma 10.3] implies that ¢ vanishes on the ideal I generated
by 1 — 3 .« S«i. (Or one could apply the more general result in [12, Lemma 2.2] to
the family F = {s,ugs},} of analytic elements.) Corollary 3.5 says that I is the kernel of
the quotient map of 7 (G, X) onto O(G, X), and hence ¢ factors through this quotient
map. O

To state our main results about states of O(G, X), we need some information about
the sets Ff in Corollary 6.5.

Proposition 7.2. Suppose that (G, X) is a self-similar action. For g € G \ {e} and k > 0, we
consider again

Fs={veX*:g-v=vand g, =e}.
The sequence {IX!‘kIF‘;!} is increasing and converges with limit cq € [0, 1).

Proof. If v € F{ and x € X, then

g (VX) = v(9|v : X) =vx and g’vx - (g’v)’x - e|x =€,
S0 VX € F]g‘”. Thus IFSHI > [X] IFEI, and multiplying by [X|™%"! shows that {IXI’kIFSI} is
increasing. ‘
Since the action of G on X* is faithful, g acts non-trivially on some X, say g - v # v.
Then v is not in Fjg, and no word of the form vw is in any Fg. So for k > j,

[Fgl < IXI* — X[ = IX]“(1 = IX[7).
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Thus X[ ™[F| < 1 —[X|7 < 1 for k > j, and the sequence converges to a limit c,

satisfying cq < 1. O
We can now state our main theorem about O(G, X). Notice that part (3) applies in

particular when (G, X) is contracting.

Theorem 7.3. Suppose that (G, X) is a self-similar action.

(1) Every KMS state of (O(G, X), o) has inverse temperature log |X|.
(2) Take cq as in Proposition 7.2. Then there is a KMS,og x| state on O(G, X) such that

|X|*‘V|cg ifv=w

7.1
0 otherwise. (7.1)

'LI)(SVU,QS:V) = {
(3) Suppose that for every g € G\ {e}, the set{gl, : v € X*} is finite. Then the state in part
(2) is the only KMS state of (O(G, X), o).

Proof of Theorem 7.3 (1). Suppose that ¢ is a KMS state of (O(G, X), o) with inverse tem-
perature (3. Then the Cuntz relation }_ = 1 and the KMS condition give

xeX
1= =¢( ) sest) = Z Plsiss) = Y dlstoip(s))
xeX xeX xeX
=) ePhlsis) =) e P =Xe?,
xeX xeX
and hence 3 = log [X|. O

We will prove existence of the KMS,, x| state 1\ by taking a limit of KMSg states as
B — B. = log|X|. To evaluate the limit, we need the following analytic lemma.

Lemma 7.4. Suppose that {cy} is an increasing sequence of real numbers with ¢y, — c. Then

o0

ZU — 1)t —c asT— 1—.
k=0

Proof. Fix € > 0, and choose K such thatk > K= 0 <c —cx < 5. Choose & > 0 such
that

K
0<1 —r<6:>Z(1 — 1)t < 5
k=0
Then for r satisfying 0 < 1 —1 < §, wehave ) > (1 —1)r*=1,s0

’c—iﬂ —r)ckrk‘ = ‘iﬂ —r)(c—ck)rk’
k=0 k=0
K

gZ(l—r)(c—c]-)rk+(1—r c—Cx ( Z r)

-0 K—K+1
K
Z (1—r)c—c )"+ (1 =1)(c—c )™ (1 =1,
k=

which is less than € by choice of K and § (and because * < 1). O

Proof of Theorem 7.3 (2). We choose a decreasing sequence {(3,,} such that (3, — log|X]|,
and consider the KMS;, states Vg, := g, . of Corollary 6.5. By weak* compactness
of the state space, we can by passing to a subsequence assume that {1{»g,} converges
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weak* to a state 1. Proposition 5.3.23 of [3] implies that 1 is a KMS,g x| state. (Or we
could wait till we have the formula (7.1), and apply Proposition 4.1.)

We now compute the limit of g, (s,144s},). We know from (5.1) that g, (syugs},) =0
unless v = w, and satisfies

V., (svugsy) = e PM(1 —[X[e Pr) ) e Pr¥|FY]
k=0

— e P (37 (1= Xle P IXI [FE(Xle ).
k=0

Now we are in the situation of Lemma 7.4 with r = [X|e™"" and ¢, = [X[™*[F}| — c,.
Since 1, := [X|e P~ converges to 1 from below as n — oo, Lemma 7.4 implies that

Z“ —T‘n)CkTF1 — Cq asm — o0.
k=0
Thus
P(sgsy) = lim Py, (svugs)) = lim e ‘5“'V‘<Z (T —7n)cgr ) — XM,
k=0
as required. -

Proof of Theorem 7.3 (3). Suppose that ¢ is a KMS state on O(G, X). We need to show
that ¢ is the state 1 in (2). Part (1) implies that ¢ has inverse temperature log [X|. Now
Proposition 4.1 implies that it suffices for us to prove that ¢(uy) = P(uy) whenever

g #e.
Suppose that g € G \ {e}. Since {g|, : v € X*} is finite and the action of G on X* is

faithful, there exists j such that for each v € X* with g, # e, there exists u € X with
gly - u # u. We will show that

XTGP\ F [ =X [w € XV g w=w]\FJ| 50 asn—o00,  (72)

and use this to show that ¢(uy) = cq =P (uy).
We prove by induction that

IGP\FP| < (IXP—1)" (7.3)
for alln > 1. Our choice of j ensures that, for every v € G}, the set{w € X/ : g|,-w = w}
is not all of X’; thus we have (7.3) for n = 1. Assume that (7.3) holds for n. Then
IGIHINFM] = v’ sy e XY, v € X, g w' =wH\ FI|
and we have
w’ e GIINFM — v e GP \ FY and g, - v/ = V.

On the other hand, for each v € G;}j \ F’;j, we have g, # e, and thus there exists v/ € X
such that g, - v/ # v'. Thus for each v € G} \ FJ,

HV/ Sy c ngﬂ)j \Fgwr])j}‘ < |XP _ 1’
and the inductive hypothesis gives
6\ R < [ FI(XE 1) < (X0 = 1)"
Thus (7.3) holds for all n > 1. Now we have

0.< X |GV < IXITI(IXP — 1) = (1= ) =0 asm— oo,
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which gives (7.2).
To complete the proof we show that ¢(uy) = c4. For every n € N, we use the Cuntz

relation 1 = ) | u; sws}, and Proposition 4.1 to compute

dlug) =& (g > sush)

weXm
= Z $ (59wt Sy
weX™
= Z |X|_njd)(ug|w)

{weX : gw=w}

= > XMolug)+ Y XMl

weGH\Fy) weFy)
= Y X lug,) + XIYFD. (7.4)
weG\Fy)

Let ¢ > 0. By Proposition 7.2, there exists N € N such that

n>N— ]cg — |X|—nj|F31'| ’ <¢/2 and (1 — #)n < ¢e/2.

Then for n > N, (7.4) gives
plug) —cgl < D IXIMId(ug, )l + /2

nj\ g
weG4 \Fqy

< |GPNFP|IXI™ +¢/2
1 n
< <1_W> te/2 <

which implies that ¢(ug) = cg. O

Somewhat surprisingly, our construction of KMS states at the critical inverse tem-
perature gives a third trace on C*(G).

Corollary 7.5. Suppose that (G, X) is a self-similar action, and take {c4} as in Proposition 7.2.
Then there is a trace T on C*(G) such that T(d4) = ¢4 for g # e.

Proof. Proposition 4.1 (2) implies that ¢ o7, is a trace on C*(G) for every KMS state ¢ of
T(G,X) or O(G, X), and taking ¢ to be the KMS,; x| state of O(G, X) in Theorem 7.3 (2)
gives the required trace T := ¢ o . O

It will follow from Propositions 8.2 and 8.4 below that, for the self-similar actions of
the basilica and Grigorchuk groups, the trace of Corollary 7.5 is distinct from the traces
T. and Ty considered in §6.

Remark 7.6. In [25, §3.4], Planchat constructs a trace Tr on a quotient C;(G) of C*(G),
and the value Tr(p,) at a unitary generator is (in our notation) the limit limy . |X| ™G EI
of the decreasing sequence {IXI*"IGEI}. When (G, X) has the finite-state property of
Theorem 7.3 (3), the calculation (7.2) implies that IXI_kIGg! — ¢4 also, and hence our
trace coincides with the lift of Planchat’s trace to C*(G). For the groups generated
by automata studied in [25], the pair (G, X) always has this finite-state property. (To
see this, note that G is generated by a finite set S which is closed under restriction.
This generating family induces a length function 1 on G, and then the properties of
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restriction imply that 1(gl,) < l(g) for all g € G and v € X*. Since there are finitely
many words of a fixed length, it follows that each {g|, : v € X*} is finite.)

Our calculations in the next section suggest that it may be easier to compute the
values of this trace using the formula ¢, = limy_, [X|7*[Fg|.

We finish by showing that for a contracting self-similar action, the values of cy on
the nucleus determine the function ¢, and hence the KMS state at critical inverse tem-
perature. For convenience, we define c. := 1.

Corollary 7.7. Suppose that (G, X) is a contracting self-similar action with nucleus N'. For
g € G, choose k € N such that gl,, € N for every w € X*. Then

Cg = Z X *cgl,, -

{weXk: gw=w}

Proof. We let ¢ be the unique KMS, x state of (O(G, X), 0), so that in particular ¢ (uy) =
cg for all g (see Theorem 7.3 (2)). Now the result follows from the calculation in the first
three lines of (7.4). O

8. EXAMPLES

8.1. Dilation matrices. Suppose that A € My4(Z) has |detA| > 1, and consider the
associated self-similar action (Z4, £) of §2.2. We first check that the states constructed
in Theorem 5.1 are the same as the ones in [17, Proposition 6.1].

The Fourier transform gives an isomorphism of C*(G) = C*(Z%) onto C(T9); we
choose the one which takes &, to the function z — z". Traces on C*(Z%) are given by
probability measures on T¢; given such a measure p, we consider the trace T, such that
Tu(8n) = [1a 2" du(z). We want to compute the values of the state {g -, of Theorem 5.1
on an element s,,u,s}, (it vanishes on the other spanning elements). For j > 0 and
u € Y, we have

n-u=1u<=n+bju) =bj(u) & n e BZY
so{u € ¥ : n-u=u}iseither ¥ (whenn € B'Z%) or empty. [f n-u = u, thenn|, =B7n
by (2.5), so the right-hand side of (5.1) is
(1—|detAle™®) > |detAfePMHir, (55,). (8.1)
{j>0: neBizd}

Thus we have n € B'Z & B"In € B™7Z4, and writing j’ = [w| +j in (8.1) gives

Vp e, (Switnss,) = (1 —|detAle ™) > |detA] e P’ J 200 qu(z).
(72wl BMneBi'ze) e
(8.2)
The isomorphism 6 : T(Z% X) — T(M.) of Proposition 3.9 carries an element
SwlnSh, INEO Wy gy VYV™Ig ) and we can check that the right-hand side of (8.2) is
the same as the value of the state g, of [17, Proposition 6.1] on the spanning element
ub(wHB\w\nvlwlv*‘W‘u{;(W).

Proposition 8.1 ([17, Theorem 5.3]). Suppose that A € My(Z) has N :=|det A| # 0. Then
there is a KMSogn state ¢ of (O(My), o) = C*(u,V) such that

b (1, v v ) = 0 unlessk =land m=n
" "IN ifk=land m =n.

If A is a dilation matrix, then this is the only KMS state of (O(M_), o).

(8.3)
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Proof. To apply Theorem 7.3 (2) to the associated self-similar group (Z4, £), we need to
compute the numbers |F}|. Foru € ¥/, we have n-u = u < n € B'Z¢, and then
nly = BIn,son|, = 0 & n = 0. Thus F, = & for all n # 0, and the state 1 of
Theorem 7.3 (2) satisfies

0 unlessv=wandn =0

8.4
X" =N"™ jfv=wandn =0. ®4)

'LI)(SvLLnS:V) - {
We take ¢ := 1\ o 0~'. Then the elements of the form 0(s,,s?,) are the u,v*v'u! with
k =1=|w|and m = n = b(w), and (8.4) reduces to the formula (8.3) for ¢.

Now suppose that A is a dilation matrix. Then Proposition 2.4 implies that (Z¢, L) is
a contracting self-similar action, and the uniqueness follows from Theorem 7.3 (3). [

8.2. Computing using the Moore diagram. To calculate values of the KMS states ex-
plicitly, we need to compute the sizes of the sets F‘; and G‘; defined in (6.5) and (6.6).
We begin with G¥.

For each v € G§ we get the following path p, in the Moore diagram:

L (vi,v1) (v2,v2) (v3,v3) (Vieyvk)
Hy _9 EE——— g‘\n - 9’\)1\)2 > o > g|V

Notice that all the labels have the form (x, x). Every path with labels (x,x) arises this
way: given

(x1yx1) (x2,x2) (x3,x3) (xxyx1)

ni=g - hy - h, - > hy,

we have hi = (--- ((ghy)k,) )lxi = Ghyonyy, and v = x1%2 - - - Xy belongs to G'; with
i, = p. We call paths p of this form stationary, because they give elements v of X* such
that s(p) - v = v, where s(p) € G is the source of the path p. Thus G’g is in one-to-one
correspondence with the set of stationary paths in the Moore diagram starting at g.

Forv ¢ FE, we have g - v = v and g|, = e, so the last vertex on , is e. Thus the
elements of F§ are in one-to-one correspondence with the stationary paths starting at g
and ending at e.

Thus we can compute |G| and [F§| by counting stationary paths in the Moore dia-
gram. Notice that for a given g, we only need to draw the part of the Moore diagram
which consists of the stationary edges reachable by stationary paths from g. For exam-
ples of such computations, see Examples 8.3 and 8.5 below.

8.3. The basilica group. We now consider the self-similar action (B, X) which defines
the basilica group (see §2.3). In §6.7, we discussed KMS states on the Toeplitz system
(7(B, X), o) at inverse temperatures greater than the critical value . = log [X| = log 2.
At the critical inverse temperature, Proposition 7.1 implies that every KMS,, state
factors through (O(B, X), o), and we have:

Proposition 8.2. The system (O(B, X), o) has a unique KMS, » state, which is given on the
nucleus N' ={e,a,b,a”' b~ ab~! ba '} by

1 forg=e
dug) =<1 forg=>b,b"
0 forg=aa'yab',ba.



30 MARCELO LACA, IAIN RAEBURN, JACQUI RAMAGGE, AND MICHAEL E WHITTAKER

Proof. We know from Proposition 2.5 that (B, X) is contracting with nucleus N, so exis-
tence and uniqueness of ¢ follow from Theorem 7.3. In Figure 2, there are no station-
ary paths from g € {a,a”!,ab™",ba""} to e, so for such g we have F{ = & for all k and
$(uy) = cg = 0. For g € {b, b}, the only stationary paths go straight from from g to e,
and there are 257" of them; thus [X|7*|F¥| = 272" = J, and ¢(uy) = ¢4 = 3. O

Corollary 7.7) implies that these computations of the KMSy,,, state on the nucleus
suffice to determine the state. If we want to know other values of the state, we can use
the strategy outlined in §8.2. We illustrate this strategy by calculating ¢ (s,Uapas3,).

Example 8.3. By Theorem 7.3(2), &(s,Uabas),) is either 0 or 27V (ugpa). To compute
¢ (Uqgpba), we draw the portion of the Moore diagram emanating from aba with a view
to finding F¥ . From the defining relations, we calculate

aba*
aba-x =x (aba)ly = (ab)laxalk = (ab)lyb = al,eb =b
aba-y=y (aba)ly = (ab)leyalk = (ab)lke = alp.xa = alxa = ba.

We then note that ba - x = b -y = y, which forces ba - y = x, and hence there are
no stationary paths going from aba to e through ba. Now we can delete any edges in
the Moore diagram for the nucleus with unequal labels, and find that all the stationary
paths from aba to e lie in the diagram

(y,y) Q
e (%,x) (YY)
@

(x,x)
o (yv)

b «—aba
(x,x)

We deduce that |F¥_ | = 2%2 for k > 2, and hence

aba

d)(uaba) = Caba = ]}L%z_k|F];ba| = 411

Thus Theorem 7.3 (2) gives

27V ity =w

0 otherwise.

d)(svuabas;kv) = {

8.4. The Grigorchuk group.

Proposition 8.4. Let (G, X) be the self-similar action of the Grigorchuk group from §2.4. Then
(O(G, X), 0) has a unique KMSy,, , state & which is given on the nucleus N' = {e, a, b, c, d}
by

(1 forg=e
0 forg=a
d(ug) =41/7 forg=D>
2/7 forg=c
(4/7  for g = d.

Proof. We know from Proposition 2.7 that the Grigorchuk action is contracting with
nucleus N, and |X| = 2, so Theorem 7.3 (3) implies that there is a unique KMS,, ; state
¢. A look at the Moore diagram shows that there are no stationary paths starting at a,
and hence there are no stationary paths going to e through a. Thus it suffices to count
paths to e in the following diagram.
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b () (x%)
NGNS

(yy) d— ¢

! /(y;) (yy)

In particular, FX = & for all k, and ¢(u,) = ¢, = 0. From d, there are 2*"' paths of
length k which go straight to e, 2*~* which first go round the cycle once, and

P =281 4284 4. 22O where 3j +1 < k < 3j + 3.

Summing the geometric series gives

) 23 G+1) _ 1 2k+2 _ 2k—(3j+1)
|ng:zk(3l+”(( ;3_1 ): = where 3j + 1 < k < 3j + 3.
Thus
_ -G+
IX!"rF|—2krF|— 7 where 3j + 1 <k < 3j+3,
and ¢(ug) = cq = limy_,o [X[*[F5| = 2. There are similar formulas for ¢ and b:
5 ] 2k+1 _ 2kf 3j+2) ) )
[Fel =1Fg | = > where 3j +2 <k <3j+4,and (8.5)
y 2 zk _ 2k—(3j+3) ) )
[Fsl = IFg | = 7 where 3j +3 < k < 3j+5,
and these formulas imply that ¢p(u.) =c. = % and ¢(uy) = ¢, = 17 O

Example 8.5. We calculate the value of the state ¢ in Proposition 8.4 on the generator
Ucadac- We need the part of the Moore diagram emanating from cadac with stationary
edges. We calculate, using either the defining relations (2.8) or the same information
encoded in the Moore diagram of Figure 3:

cadac-x =x (cadac)ly = (cada)lka = (cad)|ya = (ca)lyba = c|yba = aba
cadac-y=y (cadac)ly = (cada)lyd = (cad)lxd = (ca)lyd = clyd = d?=e
aba-x =x (aba)ly = (ab)ly =alyjc =¢
)y = (

aba-y =y (aba)ly = (ab)lx = alxa = a.

This gets us into the nucleus. Now adding the stationary edges from the Moore di-
agram of the nucleus gives a diagram which contains all the stationary paths from
cadactoe:

(%,x)
cadac —— > aba

(y,y) (x,X)

(xx)  (y,y)
(yy)

C

(yy)




32 MARCELO LACA, IAIN RAEBURN, JACQUI RAMAGGE, AND MICHAEL E WHITTAKER

We need to count the paths from cadac to e in this diagram. They go either straight to
e, or straight to c. Using the formula in (8.5) for F., we have

2k71 - 2k7(3j+4)

[Fadacl = 27+ IF2 =2+ = where 3j +4 < k < 3j + 6,
and hence
21 _ 2—(3j+4)
X 7P el =271+ — where 3j +4 <k < 3j+6.
Thus (b(ucadac) = Ccadac = lirnkﬂoo ’X|_k’F]c(adac| = %
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