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 

Abstract—This letter presents a new Collaborative Blind 

Source Separation (CBSS) technique that uses a pair of location 

informed coincident microphone arrays to jointly separate sim-

ultaneous speech sources based on time-frequency source locali-

zation estimates from each microphone recording. While existing 

BSS approaches are based on localization estimates of sparse 

time-frequency components, the proposed approach can also 

recover non-sparse (overlapping) time-frequency components. 

The proposed method has been evaluated using up to three sim-

ultaneous speech sources under both anechoic and reverberant 

conditions. Results from objective and subjective measures of the 

perceptual quality of the separated speech show that the proposed 

approach significantly outperforms existing BSS approaches. 

 
Index Terms—Speech Processing, Blind Source Separation, 

Co-located Microphone Array 

I. INTRODUCTION 

LIND Source Separation (BSS) aims to separate speech 

mixtures containing simultaneous sources into interfer-

ence-free versions.  One approach is to exploit statistical in-

dependency among the sources, such as used in Independent 

Component Analysis [1] (ICA) initially proposed for separating 

instantaneous mixtures. Extended techniques have been pro-

posed to separate convolutive mixtures [2]. These stochas-

tic-based methods generally suffer from computational ex-

penses [3] especially for highly convolutive mixtures. 

Sparse-based approaches assume approximate W-disjoint or-

thogonality [4] of the speech signals and separate the simulta-

neous speech sources by grouping together time-frequency 

components belonging to the same speech source and are more 

computationally efficient compared to stochastic-based meth-

ods [3]. Such grouping can be based on time and phase delays 

[4] obtained from processing spaced microphone array re-

cordings or intensity-based Direction of Arrival (DOA) esti-

mates obtained from co-located (spatial) microphone record-

ings and using microphone directivities [3].  

    When the W-disjoint orthogonality of simultaneously oc-

curring speech signals is met, DOA estimates performed in the 

time-frequency domain will correspond to the location of a true 

speech source. In practice, simultaneously occurring speech 

signals are not strictly W-disjoint orthogonal for all 

time-frequencies, and the separated speech signals using these 

sparse-based approaches applied to the mixture suffer from 

musical and crosstalk distortion. This is a result of the 

non-sparse components combining in the mixture, leading to 

unpredictable DOA estimates that do not correspond to a true 
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DOA estimates, the non-sparse time-frequency component is 

discarded causing musical distortion of the separated source. 

Further, if three frontal sources of equal energy are considered, 

one directly in line with the array and two at equal angles but 

opposite sides of the array, the non-sparse components con-

tributed by the left and right sources may lead to the same DOA 

estimate as the middle source. This causes crosstalk distortion, 

where the separated sources contain spectral content from more 

than one source at the corresponding time-frequency. A similar 

problem c an exist in the LCMV [5] beamformer, where the 

distortionless constraint can be difficult to maintain when there 

are multiple overlapping time-frequency sources as investi-

gated in this paper. 

    The Collaborative Blind Source Separation (CBSS) tech-

nique proposed in this letter aims to decompose the mixture of 

non-sparse components into their corresponding sources using 

a pair of coincident microphone arrays with known location. 

This assumes that no more than two speech sources contribute 

to one time-frequency instant in the mixture. Based on the 

possible contributor source pairs for one coincident micro-

phone array, their corresponding estimated DOA for the second 

coincident microphone array is estimated. The non-sparse 

components can then be correctly decomposed by comparing 

these estimates with the DOA obtained from the second coin-

cident microphone array recordings.  

Section II of this paper verifies the sparsity of simultaneously 

occurring speech signals in anechoic and reverberant envi-

ronments. Section III presents the proposed CBBS technique. 

Simulation results are presented in Section IV, while conclu-

sions are drawn in Section V. 

II. FORMULATION OF THE PROBLEM 

A. Exploring Speech Sparsity 

    This section investigates the sparsity assumption for simul-

taneously occurring speech signals in anechoic and reverberant 

environments. For two speech signals, the sparse property of 

speech can be generally described by: 

21
( , ) ( , ) 0,    S n k S n k n,k      

    
          (1)                                                    

where S1(n,k) and S2(n,k) are the time-frequency representation 

of speech signal s1 and s2 , respectively; n is the frame number 

and k  is the frequency index. While the sparse assumption of 

the speech signal is approximately satisfied and has been 

widely used for BSS [4], non-sparse time-frequency compo-

nents lead to imperfect separation quality.  

    The analysis performed here compares the energy preserved 

when assuming one (dominant) and two (dominant and sec-

ondary) time-frequency instants with the maximum energy 

among M (2 ≤ M ≤ 5) simultaneous sources. A total of 36 sen-

tences (16 kHz) from [6] were used to simulate overlapping 

(simultaneously occurring) speech sources in an anechoic  
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Fig. 1 Averaged FEPR for 2 to 5 sources. (A: Anechoic room, S: Small 

room, L: Large room, 1: R = 1, 2: R = 2) 

environment. Each sentence is overlapped with the other M-1 

(2 ≤ M ≤ 5) sentences in the time domain resulting in M over-

lapping speech conditions. For M =2, each sentence was over-

lapped with each of the remaining 35 sentences resulting 36×35 

= 1260 combinations. For M > 2, each sentence is randomly 

overlapped 35 times with M-1 other sentences to give the same 

number (1260) combinations as for M=2. In addition, two 

simulated reverberant speech databases for a small (RT60 = 

0.2s) and a large (RT60 = 0.5s) conference rooms were formed 

by applying the image method [7] to the anechoic database. 

Note that the reverberation considered here assumes a moderate 

reverberation level where the dominance of the direct source is 

expected.  

The Frame Energy Preservation Ratio (FEPR) [8] is em-

ployed to compare the energy kept for each mixing condition 

when selecting one or two time-frequency components from 

the set of M overlapping speech signals. The averaged FEPR 

for each overlapping condition is given by: 

 ( , ) ( , )
1

rp m
k r k mn

FEPR S n k S n k
N


 
 
 
      (2)  

where    
     and        are the degraded and original 

speeches, respectively and pr (1 ≤ r ≤ R) is the time-frequency 

component selected from the set of overlapping sources based 

on energy i.e., 
1 arg max( ( , ))m

m
p S n k ,

1

2 arg max( ( , ))m
m p

p S n k


  

(the time-frequency source with the next highest energy). R is 

the assumed number of overlapping time-frequency compo-

nents, where in this work, R = 1 and R = 2 are analysed. The 

closer the FEPR is to one, the higher the sparsity. 

Fig. 1 presents results for the average FEPR over all 1260 

combinations of each mixing condition, where error bars rep-

resent 95% confidence intervals. As shown, the speech sparsity 

degrades when the number of the overlapping sources in-

creases. A significant improvement (at least 20% of FEPR) is 

achieved by assuming dominant and secondary sources for 

each time-frequency. The recording environment results in a 

statistically significant difference for the average FEPR. This is 

expected since the reverberation increases the spread of energy 

in the time domain where more simultaneously occurring 

time-frequency instants is expected. 

B. Problems of Single Spatial Microphone BSS 

    BSS techniques using single spatial microphone recordings 

have been proposed in [3], [9] where time-frequencies whose 

DOA estimates (correspond to peaks in a histogram of DOA) 

formed for a speech segment are grouped or clustered together 

to form sources. However, the results of Fig. 1, indicate  

 
Fig. 2 Illustration of Collaborative Blind Source Separation 

that over 20% of the energy in the mixed signal will arrive from 

more than one source. Hence, the cluster of time-frequencies 

based on the DOA histogram may not match the true sources. If 

the two sources case is considered, the separated sources will 

suffer musical distortions caused by losing those non-sparse 

time-frequency components. 

 Further, if three (or more) simultaneous sources are consid-

ered, the time-frequencies with the DOA close to the DOA of 

the middle source may not only come from the middle source, 

but can also be created from the non-sparse time-frequencies of 

the left and the right sources. In this case, musical distortion and 

cross-talk will be experienced in the separated speech. Re-

solving these problems is the motivation of this work.  

III. COLLABORATIVE BLIND SOURCE SEPARATION 

    The proposed CBSS approach requires a pair of coincident 

microphone arrays placed separately within the recording 

space. The locations of the arrays are assumed to be known. In 

practice, this can be achieved by measuring the microphone 

locations before commencing the recording. 

A. Speech Source DOA Estimation 

    Similar to [3], [9], the microphone array used in this work 

records in B-format and consists of one omnidirectional (W) 

and three figure-of-eight directional (X, Y, Z) channels. These 

channels are firstly transferred to the time-frequency domain 

using an MDCT [10]. The intensity based DOA estimation (in 

2D, it is the azimuth) of each time-frequency instant is: 

      1
, tan , ,n k Y n k X n k


              (3)  

Thus, the DOA of each speech source can be obtained by ex-

amining the DOA histogram of these time-frequency instants 

[3], [9]. Here the aim is to examine the BSS algorithm assuming 

perfect knowledge of the source DOAs. The DOA estimation 

used in this paper is obtained via examining the peaks of the 

DOA histogram derived for the whole 10s speech recording.  

B. Speech Source Location Estimation  

    Speech source locations can be obtained using triangulation 

based on the DOA estimations obtained by (3) for Mi and Mj of 

Fig. 2 (x and y axis are corresponding to the direction of X and 

Y channel of the B-format recording) from the peaks of the 

DOA histogram and the a priori knowledge of the microphone 

locations. For instance the location of source a in Fig. 2 can be 

estimated using αi and γj. Thus the distances di
a
 and dj

a
 from a to 

Mi and Mj can be obtained and these are used in the separation 

approach of the next section. However, as shown in Fig. 2, the 
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DOA estimates from each microphone to each source can in-

tersect at multiple locations, hence resulting in multiple possi-

ble estimates for these distances (e.g. source im, the DOA from 

Mi to Sc intersects with the DOA from Mj to Sa). To solve this 

problem, suppose Si-a and Sj-a are two initial estimates of the 

same source based on DOAs derived for each of Mi and Mj, 

respectively. These two sources are two versions of the same 

source if the energy normalised correlation [11] of the esti-

mated source pairs is the highest among other possible pairs. 

Note that while suitable for providing estimates of the source 

locations, these initial source estimates still contain musical and 

cross-talk distortion which is addressed in the next section. 

C. Proposed CBSS Scheme – Resolving Musical Distortion 

    The solution for the two source problem is presented first 

(solutions for more complex cases are based on this simpler 

case). Overlapping sources in the time-frequency domain create 

virtual time-frequency sources with a DOA estimate that 

spreads between the peaks of the DOA histogram. As illus-

trated in Fig. 2, if only two sources (a and b) are considered, the 

virtual source Svi is the vector addition of Si
a-ab

 and Si
b-ab

, which 

can be represented by orthogonal decomposition (Note that Fig. 

2 represents the relationship between the vectors for each 

time-frequency instant, where indexes are omitted): 

       , sin , , , , ,a ab b ab
vi i i i i iS n k n k f n k f n k  

   
     

(4)  

       , cos , , , , ,a ab b ab
vi i i i i iS n k n k g n k g n k  

        (5) 

where  

       , , , , , , sin ,cosl l l
i i i i i i if n k g n k S n k      

 
      (6) 

and l represents the possible sources contributing to the virtual 

source. For (4) and (5), l  [a-ab, b-ab]. For instance, 

fi
a-ab

(n,k,αi) = Si
a-ab

(n,k)·sinαi, represents the x axis orthogonal 

component of source a with DOA αi recorded by microphone i 

that contributes to the virtual source Svi with source b. Si
a-ab

 and 

Si
b-ab

 can be obtained by solving (4) and (5). Thus the 

time-frequencies with the DOA estimates between the true 

DOA of the sources can be separated. Note that this method 

requires only a single coincident microphone array. For more 

sources, since the assumption is that one time-frequency only 

has two contributors (see Section II.A), this cannot be achieved 

with one coincident microphone array (i.e. Svi can be contrib-

uted by source a and b, or a and c).  

D. Proposed CBSS Scheme – Resolving Crosstalk Distortion 

    As discussed in Section II.B, crosstalk distortion is hard to 

overcome especially for the middle source in the three simul-

taneous sources scenario. Suppose three overlapping speech 

sources are recorded using two coincident microphone arrays 

and a time-frequency virtual source Svi is located between 

source a and b as shown in Fig. 2. In addition to (4) and (5) 

where Sa and Sb are assumed to be the contributors of Svi, there 

is another hypothesis where Svi is contributed by source a and c, 

which is given by: 

       , sin , , ,  + , ,a ac c ac
vi i i i i iS n k n k f n k f n k  

  
     

(7)  

       , cos , , ,  + , ,a ac c ac
vi i i i i iS n k n k g n k g n k  

       (8) 

Based on the recovered sources Si
a-ab

 and Si
b-ab

 from (4), (5) and 

Si
a-ac

 and Si
c-ac 

from (7), (8), two possible azimuths of the cor-

responding virtual sources of microphone Mj can be estimated 

using the inverse-square law of sound propagation [12] by: 

 
   

   

2 2

2 2

, , , ,

tan

, , , ,

a b
a ab b abi i
i i i ia b

j jab
j

a b
a ab b abi i

i i i ia b
j j

d d
g n k g n k

d d

d d
f n k f n k

d d

 

 



 

 

   
     
   
   


   
     
   
   

(9) 

 
   

   

2 2

2 2

, , , ,

tan

, , , ,

a c
a ac c aci i
i i i ia c

j jac
j

a c
a ac c aci i

i i i ia c
j j

d d
g n k g n k

d d

d d
f n k f n k

d d











 

 

   
     
   
   


   
     
   
   

(10) 

where μj
ab

 (hypothesis H
ab

) and μj
ac

  (hypothesis H
ac

) are the 

possible azimuths (see also Fig. 2) for the corresponding virtual 

source of Mj. Note that for more than three sources, the number 

of hypotheses increases correspondingly. The verification of 

the above hypotheses involves the collaboration between two 

microphones (i.e. Mi and Mj). The estimated DOA μj(n,k) for 

the virtual sources of Mj can be obtained by analyzing the re-

cordings of Mj using (3). Denoting HL and μL to represent L 

hypotheses corresponding to L azimuths where H1= H
ab

 (μ1= 

μj
ab

), H2= H
ac 

(μ2= μj
ac

), etc., the correct hypothesis among HL 

is Ht if 

arg[min ( , ) ]j L
L

t n k  
                        

(11) 

Thus, the virtual source Svi of Mi can be correctly decomposed 

into the missing time-frequencies for each source. The virtual 

source and the true source having the same azimuth (i.e. the 

virtual source formed by the left and the right source and the 

real middle source) can also be differentiated. Note that this 

results in 2 components (gi
a-ab

 and fi
a-ab

) becoming zero in (9), 

i.e. μi
ab 

= i.  

IV. EVALUATION 

    Both objective and subjective evaluation is performed to 

compare the proposed CBSS approach with existing BSS 

techniques. The same speech database employed in Section 

II.A is used here to create the B-format speech mixtures con-

taining three simultaneous speakers following the recording 

configuration of Fig. 2. The distances between Mi and Mj, 

source a, b, c are 3m, 2m, 2.5m, 3.6m, respectively. The ane-

choic speech mixtures are recorded within an anechoic cham-

ber. Two reverberant mixture recordings simulating a small 

(RT60 = 0.2s) and a large (RT60 = 0.5s) meeting rooms are 

created by applying the image method [7]. For all conditions, 

the proposed CBSS approach is compared with three other 

existing approaches: (a) Spatio–Temporal ICA [2] applied 

using a single (recording from Mi using channel Wi, Xi and Yi) 

B-format speech mixture (S-ICA); (b) Spatio–Temporal ICA 

[2] applied using dual (recording from Mi using channel Wi, Xi, 

Yi and corresponding channels of Mj) B-format speech mixtures 

(D-ICA); and (c) source DOA-based BSS using single 
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Fig. 3. PESQ results (a) anechoic, (b) small room, (c) large room. Error 

bars represent 95% confidence intervals. 

coincident microphone recording (S-BSS) [9].  

A. Objective Evaluation 

    A PESQ [13] test is used to objectively measure the per-

ceptual quality of the extracted speech. The unprocessed (UNP) 

speech mixtures (W channel of the B-format recording) are also 

included in the test to indicate the worst quality. For the re-

verberant conditions, the original reference is selected as the 

clean speech with the same level of reverberation rather than 

anechoic clean speech to compare the separation performance 

only. A 10s segment of the recordings is used to perform each 

BSS technique and average PESQ scores are presented in Fig. 3 

along with 95% confidence intervals. 

From Fig. 3, the proposed CBSS approach outperforms the 

other BSS techniques based on the PESQ measure. The major 

improvement (approximately 0.5 against the second best) is 

achieved for the separation of the middle source (source b), 

which suffers from both crosstalk and musical distortion when 

using the other BSS methods. Note that the PESQ scores among 

Fig. 3 (a) to (c) are computed with different references. The 

target for this evaluation is to compare the separated speech 

using different methods under the same acoustic condition.  

B. Subjective Evaluation 

    A MUSHRA [14] test is employed to measure the subjective 

quality of the separated speech using 15 listeners. Six middle 

sources from each test group are selected for the listening test. 

The conditions are the same as the objective test except condi-

tion UNP is used as the anchor and the original speech is used 

as the hidden reference. Average MUSHRA scores are pre-

sented in Fig. 4 with 95% confidence intervals. From Fig. 4, 

significant improvement in the separation quality is achieved  

 

Fig. 4. MUSHRA results. Error bars are 95% confidence intervals. 

by applying the proposed scheme. The MUSHRA score for the 

proposed method is between „excellent‟ to „good‟ quality 

where the second best score is between „good‟ and „fair‟. The 

majority of listeners indicated that their choice for the closest 

match to the reference was based on files which contained the 

minimal amount of crosstalk and musical distortion. For other 

conditions, listeners reported that while the target speech is 

significantly separated from the mixture, there is audible 

crosstalk from other talkers with higher musical distortion.  

V. CONCLUSION 

    A collaborative BSS approach that exploits sparsity and 

direction of arrival estimates from two coincident microphone 

arrays is presented. The approach has been evaluated via ob-

jective and subjective tests for both anechoic and reverberant 

conditions. Compared with other BSS approaches, the pro-

posed approach achieved significant improvement in the per-

ceptual quality of the separated sources.  
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