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Abstract
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strongly. We evaluate the approach through an application to the well known Web spam detection problem,
and demonstrate that the general-ization performance is improved as a result. Indeed the results obtained
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Abstract. This paper introduces a novel cost sensitive weighted samples approach
to a cascade of Graph Neural Networks for learning from imbalanced data in the
graph structured input domain. This is shown to be very effective in addressing the
effects of imbalanced data distribution on learning systems. The proposed idea is
based on a weighting mechanism which forces the network to encode misclassified
graphs (or nodes) more strongly. We evaluate the approach through an application
to the well known Web spam detection problem, and demonstrate that the general-
ization performance is improved as a result. Indeed the results obtained reported in
this paper are the best reported so far for both datasets.

1 Introduction
A common property of challenging learning problems is the severely imbalanced nature
of data. The heavily skewed distribution of one pattern class versus another pattern class
in a training dataset can cause the learning algorithm to bias towards the majority class.
For instance, the number of fraudulent actions in ATM cash withdrawals is far less
than that of the valid ones. Thus, particular attention needs to be paid to the fraudulent
transactions samples in a classification model to ensure “unbiased” classifications.

The sensitivity of learning systems to imbalanced data is a desired property. It
allows such systems to be insensitive to noise under the assumption that the noisy in-
formation is a minority in the feature space. However, there are numerous situations
in which one or more classes of training patterns are a minority in the feature space.
It is necessary in such cases to alter the training algorithm so as to account for the
imbalanced nature of pattern classes in a training dataset. A number of methods for
dealing with imbalanced data have already been developed. These include: the bag-
ging or bootstrap sampling methods [1], the boosting method [2], the non-uniform cost
function method [3, 4].

This paper adopts a cost-sensitive weighted samples approach, based on an exten-
sion of the approach in [4], to deal with the data imbalance issue in a supervised learning
model which is defined for the graph input domain. Traditional approaches to learning
systems are limited to the encoding of feature vectors and sequences. A different ap-
proach is taken by Graph Neural Networks (GNNs) which can encode general types of
labeled graphs [5]. This relatively new method has already been applied very success-
fully in number of classification and regression learning problems involving graphs [6].
The learning algorithm of the GNN is based on a gradient descent method not unlike the
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one used in the training of Multilayer Perceptrons (MLPs). Recent work have shown
that several GNNs organized in layers are more robust than a single GNN on graph
learning problems [7, 8].

Based on the idea of non-uniformed weighting mechanisms [4] and layered GNN
architectures [7], this paper proposes a novel Cost Sensitive Cascade GNN (CS-GNN),
and shows that this is very effective in dealing with imbalanced data learning problems
involving graphs. A biased cost matrix is constructed based on the output of each GNN
layer. The cost matrix is then utilized in a consecutive GNN layer so that misclassified
patterns are weighted more strongly. The proposed method is then applied to two well-
known benchmark datasets which feature severely imbalanced pattern classes [9, 10].
The obtained results show convincingly the effectiveness of the proposed approach.

The rest of this paper is organized as follows: Section 2 briefly describes the GNN
learning model. Section 3 offers a detailed explanation of the CS-GNN. Experimental
evaluations are given in Section 4. Finally, some conclusions are drawn in Section 5.

2 Graph Neural Networks
Graphs are a data structure which model the dependencies between any pair of atomic
data elements. Hence, graphs are particularly useful for learning problems which fea-
ture relationships among the atomic data elements. A very large number of practical
applications can be represented as a graph. For example, document categorization prob-
lems can benefit from the document structure explicitly modelled, or in activity predic-
tion tasks in QSAR (quantitative-structure activity relationship) with the availability of
the molecular structures.

Recently a new supervised neural network known as the GNN [5] has been pro-
posed. The GNN has been very successfully applied to a number of real world prob-
lems involving graphs [6]. The GNN can encode any type of graphs including directed,
undirected, ordered, non-positional, edge-labeled, and node labeled graphs.

In the following we denote a graph G = (N,E) where N is the set of nodes and E is
the set of edges. If n ∈ N denotes a node, then ln, xn, nen, lne, xne are the label, state,
neighboring nodes, the labels of neighbors and the states of neighbors respectively. To
compute the states, the GNN engages a local transition function hw as follows:

xn =
∑

u∈nen

hw(xu, lu, ln) (1)

Thus, the states can be computed as all other quantities on the right hand side of
Eq 1 are given. Note that Eq. 1 is a recursive function. The GNN computes the stable
state of xn by recursively executing Eq. 1 and through carefully designing hw which
incorporates a contraction mapping idea to force the convergence of Eq 1 (see [6] for
details). Note that xn is a consolidation of information that a system has about a node
and its neighbors in a graph. Thus, a GNN encodes graph data structures by processing
each node via the recursive function shown in Eq. 1. The network output on can be
computed as follows:

on = gw(xn, ln), (2)

where gw is said to be an output function. The GNN realizes both, hw and gw by an
MLP so that its learning algorithm can adopt the back-propagation method for com-
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puting the network weights w [6]. Assuming that the learning data is denoted as
L = (G, ni, ti), i = 1, . . . , p, where ti is the desired network output of node ni and
p is the number of nodes in a given graph G, then the learning process aims at minimiz-
ing the cost function E =

∑p
i=1(ti − o(ni))

2.
The learning algorithm involves two steps [6]: in the feed-forward phase, all the

nodes’ states are calculated recursively to obtain the stable point of Eq. 1 using the
Almeida-Pineda algorithm [11]. Then, the network output is computed according to
Eq. 2. The cost function is evaluated using the predicted outputs and the targets for all
nodes. In the back-propagation phase, the gradient ∂E

∂w is computed in order to update
the weights w by following the well-known gradient descent approach.

A composite model that encompasses several GNNs is called a Layered GNNs ar-
chitecture [7]. In this case the GNNs are stacked so that the output of one GNN is
utilized to re-label the nodes of the input graphs before training the next GNN in the
stack. This model was shown to outperform a single GNN [7].

3 Cost-Sensitive cascade GNNs
Cost-sensitive classification assumes different costs (or penalties) when samples are
misclassified [3, 4]. For example, in a two-class classification problem, we can use +1
and −1 to denote the positive class and the negative class respectively, and N+ and
N− to denote the number of positive and negative samples respectively. The data is
said to be unbalanced if N+ ≪ N−. Moreover, it may be known that the +1 samples
are more important than the −1 ones. For example, in the web spam detection problem,
there are only a few spam hosts and there are many normal hosts. The requirement may
be to capture as many spam hosts as possible even if this should come at the cost of
some misclassified normal hosts. Thus the cost w+ associated with misclassifying +1
samples should be much higher than the cost w− of incorrectly classifying the −1 sam-
ples, and no cost is associated with correctly classified samples. Our novel algorithm
for finding new weights in the context of cascade GNNs is shown in Algorithm 1.

In the algorithm, we optimize the threshold of a F1 measure to balance the preci-
sion (P) and recall (R) values of the retrieval performance. The F1 measure is defined
as the harmonic means of P and R. The optimization of the threshold T could be formu-
lated as a support vector machine formulation [12]. However in our implementation,
we used an initial condition of weighing the ratio of the weights associated with the
positive samples and the negative samples by the inverse ratio of the number of positive
samples N+ to the negative samples N−, and then use a greedy algorithm to find the
approximate threshold T which maximizes the F1 measure. The CS-GNN algorithm
uses a graph G0 as input. A GNN0 is trained on G0 and an output GNN0 is obtained.
The output is used to compute a cost-matrix of all the nodes and to re-label the nodes
to obtain a modified graph G1, which is then used to train a GNN1, and so on. Thus,
the cost-matrix is constructed for each GNN layer. The node with the corresponding
higher cost value will be associated with the error at the output layer of the GNN. The
approach forces the GNNs to gradually improve on the residual classification errors.
The algorithm terminates when no further improvement can be obtained. Hence, the
approach optimizes the classification rate which results in a general improvement of
the classification performance.
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Algorithm 1 CS-GNNs
Input:
k = 1, GNNk denotes the k-the GNN trained on the Gk-the graph.
N nodes of the original graph G1. Nodes may be labeled by feature vectors.
Costs of nodes wi, i = 1, 2...N .
Training target of node ni: Targi = 1 if ni ∈ +1 class, Targi = 0 if ni ∈ -1 class.
PC, a constant weighting the positive class.
NC, a constant weighting the negative class.

Train GNN1 on G1 to obtain prediction values Predi ∈ R, i = 1, 2...N
repeat

Build a new graph Gk+1 with nodes labeled by Pred
Compute threshold T that maximize F1 on the training dataset.
for i = 1 to N do

if (Targi = 1) AND (Predi < T ) then
wi = |Targi − Predi| × PC

else
if (Targi = 0) AND (Predi > T ) then
wi = |Targi − Predi| ×NC

end if
else

wi = 1
end if

end for
Train GNNk+1 with the cost-error driven approach represented in error function
E =

∑N
i=1[(Targi − Predi)× wi]

2

Update prediction values Pred
until K specified maximum training time is reached or no improvement is observed on training dataset.

4 Experimental Evaluation
Web spam detection problems are known to be one of the most challenging real-world
machine learning problems. This paper uses the UK2006 [9] and UK2007 [10] web
spam datasets to evaluate the proposed algorithm. Table 1 presents the information
on the two datasets. The number of spam hosts account for only 25.8% and 0.5%
of all labelled hosts in the UK2006 and UK2007 datasets respectively. It is known
that the classification of a host depends on the content of the host or on the hyperlink
structure or both. The dataset provides a 275-dimensional feature vector describing
each host. There are 96 content-based, 41 raw link-based and 138 transformed link-
based features [9, 10], as well as the hyperlinks between the hosts. We use all available
information during the experiments.

Table 1: Detailed information of the two web spam detection datasets
Properties UK2006 UK2007
Number of hosts 11,402 114,529
Labeled hosts 7,473 6,479
Training set 5,622 4,275
Test set 1,851 2,204
Number of hyperlinks 730,774 1,885,820
Average links per node/host 64 16

The key evaluation method used is the Area under the receiver operation (ROC)
curve (AUC). The AUC reflects the probability that a learning model assesses a ran-
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Table 2: The best training and corresponding testing AUC performance on the UK2006
and UK2007 datasets.

Features Models UK2006 UK2007
TrainAUC TestAUC TrainAUC TestAUC

L1 Regular CS-GNNs 0.975 0.956 0.821 0.798
(100 features) Layered GNNs 0.972 0.951 0.819 0.787

GNN 0.970 0.948 0.816 0.795
MLPs 0.971 0.911 0.789 0.758

L1 feature+PM-GraphSOM output CS-GNNs 0.982 0.965 0.922 0.853
(102 features) Layered GNNs 0.974 0.956 0.900 0.846

GNN 0.973 0.951 0.899 0.847
MLPs 0.969 0.913 0.855 0.792

Content+RawLink CS-GNNs 0.969 0.940 0.801 0.789
(137 features) Layered GNNs 0.959 0.934 0.768 0.769

GNN 0.956 0.925 0.763 0.779
MLPs 0.965 0.879 0.722 0.743

Content+TranLink CS-GNNs 0.981 0.945 0.742 0.763
(234 features) Layered GNNs 0.976 0.940 0.736 0.740

GNN 0.971 0.936 0.734 0.738
MLPs 0.979 0.900 0.752 0.736

domly chosen positive sample higher than a randomly selected negative one.
Intuitively, not all the features are useful in the classification task, as a result, we

applied the L1 regularization method which is considered a continuous function ap-
proach for feature selection [13]. We apply this method in a cross validation approach
to reduce the 275 features to ≈ 100 features.

We conducted three sets of experiments by using three different sets of input fea-
tures, namely Content + Raw link based features, Content + Transformed link based
features, and L1 features and the results are as shown in Table 2. In Algorithm 1, the
parameters PC and NC are set to 10 and 3 respectively, and spam nodes are referred to
as +1 samples, and normal hosts are referred to as -1 samples. It is observed that the re-
sults show that the CS-GNN has better generalization performance than those of MLP,
or a single stage GNN, using the cost sensitive weighting as proposed in this paper.
However, when we compare the results with those of the winning entries respectively
in the UK2006 and the UK2007 competition, it is noted that our proposed algorithm
is competitive on the UK2006 dataset – the winning entry [14] obtained AUC = 0.956,
using some additional knowledge about the given set of hosts –, but it falls well short of
the winning entry of the UK2007 dataset – the winning entry [10] by Geng et al used a
balancing approach with C4.5 base learner, obtained AUC = 0.848.

We surmised that this might be due to the long term dependency issue [15] in the
training algorithm. Consequently, we deploy a learning algorithm involving an unsuper-
vised learning frontend – PM-GraphSOM [16] followed by GNN [8] and then extended
it to be followed by GNNs as proposed in this paper and re-run the L1 regularization
[13] to select the number of features to be deployed 1. It is observed in this case, to-
gether with the proposed algorithm, the CS-GNNs obtains the best AUC result (AUC =
0.853, so far. Thus, a side benefit of this work is to show that deploying GNN-type al-

1The PM-GraphSOM is trained with L1 feature and graph topology.
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gorithm on the UK2006 dataset, the effect of long term dependency is less pronounced
than that of the UK2007 dataset; an observation which was never made previously.

5 Conclusion
In this paper, we have introduced a novel learning architecture that relies on the ideas of
cost-sensitive learning together with a cascade style arrangement of GNNs. The model
is capable of dealing with imbalanced data as it applies a non-uniform distribution on
the weight matrix. The samples of important misclassified classes are weighted more
strongly. The effectiveness of this approach has been demonstrated on two challenging
benchmark datasets, viz., the web spam detection problems. For future research, we
believe that a boosting approach to GNNs could further enhance the GNN’s abilities on
learning problems. Applications of the proposed algorithm to other real-world problems
can also be considered.
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