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Abstract

The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life
history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most
energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the
highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However,
many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to
resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost
of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in
7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we
forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during
natural molt revealed an energy conversion efficiency of just 6.9% (60.57) close to values reported for similar-sized birds
from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82%
(65.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not
coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship
between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern
(Efficiency (%) = 35.720N1020.494BMRm; r2 = 0.944; p = ,0.0001), there appears to be concomitant physiological costs
entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the
protracted molt period of WPHE significantly reduces these added costs on a daily basis.
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Introduction

Variations in life-history patterns are thought to represent a

given species’ maximization of lifetime inclusive fitness within a

particular environment [1,2]. The channeling of available

resources during a specific time period into a single, resource-

demanding activity is the most widely recognized, and perhaps

most common pattern of resource partitioning [2]. Accordingly,

widespread theoretical and empirical investigation reveals that the

annual cycle of birds living in north temperate and high latitudes is

characterized by pronounced temporal separation of the most

intense phases of molt, breeding and migration, with little or no

overlap between these activities at the individual level [3–7].

Indeed, birds that initiate molt during their final stages of breeding

(in either naturally or experimentally induced late breeding pairs)

often experience considerable fitness costs as parents [8–11, but

see 12], as do their offspring [13–15]. Partitioning of molt from

other life history stages is therefore assumed to be an adaptation

that minimizes physiological stress while maximizing the allocation

of productive energy [16].

Maintenance of the aerodynamic, insulative and signaling

functions of avian plumage is of paramount importance and

requires annual feather replacement in most bird species. During a

complete molt, a bird must synthesize almost one-quarter of its

total body protein in the form of feathers and other epidermal

structures [17,18]. This places a high demand on energy and

nutrients, especially protein [19]. Therefore, detailed knowledge of

the relative energy requirements of molt is integral for gaining

insight into avian life history strategies.

Feather production costs, estimated from measurement of

increases in basal metabolic rate throughout the molt period,

show up to ten-fold variation between species. Small passerines,

such as bluethroats (Luscinia s. svecica; 17 g), and redpolls (Carduelis f.

flammea; 13 g) expend between 862 and 709 kJ?g dry feathers–1

[20], respectively, compared with 69 and 116 kJ?g dry feathers–1

for the kookaburra (Dacelo novaeguineae; 335 g; [21]) and the long-

eared owl (Asio otus; 280 g; [22]), respectively. Much of this size-

related variation in molt cost is thought to be a consequence of

mass-related differences in metabolic rate, which predicts that the

smallest birds, with the highest mass-specific metabolic rates

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16230



(BMRm), will have the highest molt costs and hence lowest energy

conversion efficiencies in feather production [20,23,24].

It is difficult, however, to reconcile predictions of high molt costs for

small passerines with the observation that molt and breeding are often

coincident in opportunistically breeding small passerine species living

in unpredictable habitats [7,25–27]. This is especially true of Australia’s

old-endemic passerines living in arid zones. Because erratic rainfall and

periodic droughts are characteristic of this habitat [28], resource

availability does not correspond with annual variation in photoperiod,

in marked contrast with many temperate locations [29]. Consequently,

residents of arid zones initiate breeding opportunistically, in order to

match finite periods of favorable environmental conditions [26,30,31].

Molt in these birds, however, shows surprisingly little inter-annual

variation in its schedule [26], despite vast irregularities in available

resources and reproductive status [32]. Clearly, in these birds, breeding

and molt are not temporally incompatible.

The coincidence of molt/breeding overlap in individuals of

some species, but not in others, provokes the question: Is molt an

inherently costly and inefficient process, or are costs dependent

upon other life history characteristics? We examined these

questions by measuring molt costs in the White-plumed honey-

eater (WPHE; Lichenostomus penicillatus), an old-endemic Australian

species that includes populations inhabiting the arid zone. These

populations display a flexible breeding schedule that corresponds

with unpredictable flushes of lerps, the larvae of a psylid insect

associated with the River Redgums (Eucalyptus camaldulensis) on

which adults forage [33]. In stark contrast, molt follows a regular

schedule regardless of environmental conditions, and molt/

breeding overlap is a regular occurrence [26,32]. We aimed to

see if their ability to molt and breed concurrently was associated

with lower costs of molt. We also investigated whether the

reported energetic inefficiency of feather production during molt

was due to feather replacement per se by measuring the energetic

consequences of feather replacement following artificial removal of

25% of feathers by mass in a separate group of honeyeaters. We

found that energetic expenditure during natural molt in WPHE

was surprisingly similar to expectations based on birds from more

predictable north-temperate environments, but that these increas-

es in energy expenditure were not coincident with the peak period

of feather replacement in naturally molting or plucked birds.

Methods

Ethics statement
The animals used in this study were captured under license from

the New South Wales National Parks and Wildlife service

(S11320). All experimental procedures were carried out under

approval from the University of Wollongong Animal Ethics

Committee (AE04/12), in accordance with the Australian Code of

Practice for the Care and Use of Animals for Scientific Purposes.

Feathers were plucked while birds were under methoxyflurane

anesthesia, and all efforts were made to minimize any suffering

throughout the study. Birds were released at the site of capture

following completion of the study.

Study animals
White-plumed honeyeaters (WPHE) were caught in mist nets at

Fowler’s Gap Arid-Zone Research Station, New South Wales

(31uS, 142uE) in August, and brought to the University of

Wollongong (34u259S, 150u549E), where they were held in

constant temperature (25uC) rooms under natural photoperiod.

Birds were housed two per cage (ca. 40660660 cm), and were

provided with commercial honeyeater food (Wombaroo Pty. Ltd.

– min crude protein 13%) and water ad libitum.

Metabolic measurements
Birds were held for two weeks to habituate to captive conditions

before determining pre-molt basal metabolic rate (BMR). By

definition, BMR represents minimum metabolic rates while

animals are post-absorptive, in the rest-phase of their daily cycle;

and exposed to thermoneutral temperatures. Furthermore, BMR

requires there to be an absence of energetically demanding

activities, such as growth, reproduction, or molt. We therefore

refer to metabolic rate measurements taken under these conditions

during molt as minimum resting metabolic rate (RMRmin). Each

individual’s RMRmin was then measured weekly until the

completion of feather regrowth. Birds were fasted for approxi-

mately 2 h before being removed from cages between 16:30 and

18:00, weighed, and then placed in individual 4-L respirometers.

Respirometers were held in a constant temperature cabinet

overnight, set at 33uC (6 1uC), verified to be thermally neutral

for this species [personal obs., 34]. Air provided to the

respirometers passed through a desiccant (Drierite) and was

regulated at 400 mL/min by calibrated mass-flow controllers

(Tylan Corp.). Respirometers were removed from the cabinet

between 08:00 and 09:00, at which time birds were reweighed and

assessed for molt (see below). Oxygen consumption rates ( _VVo2; ml/

min) were evaluated by comparing measurements of O2 content of

the inlet and outlet air for each chamber using an Oxzilla oxygen

analyzer (Sable Systems), sampled every 5 seconds. Each bird’s

BMR was measured sequentially for 15 min out of every 36 min

throughout the night. Because basal metabolism is characterized

by extended periods of stable _VVo2 [35], RMRmin was calculated as

the mean of the two lowest five-minute running averages of _VVo2

measured, usually between 02:00 and 05:00. Metabolic rates ( _VVO2
)

were converted to kJ?d21 using the conversion 1 L O2 = 20.08 kJ

[36]. All reported values of oxygen consumption represent STP

conditions, and volume effects on gas concentrations due to

inequalities in respiratory quotient have been addressed using an

equation appropriate to the measurement system [37]:

_VVO2
~ _VVI FI O2{FeO2ð Þ= 1{FeO2ð Þ

where _VVI represents air flow rate corrected to STP conditions,

FIO2 represents fractional O2 content in inlet air after removing

CO2 and H2O, and FeO2 represents fractional O2 content in

excurrent chamber air after removing CO2 and H2O.

Energetic cost of molt
Five individuals were euthanized prior to the onset of molt and

all feathers plucked, divided into 10 regions: head, neck, dorsal

body, ventral body, dorsal covert, ventral covert, cloacal, primary,

secondary and rectrices. The feathers were then dried overnight at

80uC and weighed to the nearest mg. The total energy content of

the plumage was calculated assuming that dry feathers have an

energy content of 26.4 kJ?g21 [19]. The total cost of molt in each

individual (below) was taken as the total increase in BMR above

pre-molt levels over the molt period, plus the energy contained in

the new plumage.

Energetic cost of feather replacement
A further 24 birds were randomly assigned to one of two

treatments. ‘‘Plucked’’ birds (n = 12), once anaesthetized (me-

thoxyflurane), had 25% of their body feathers, by weight, removed

from each of the seven body regions outlined above, along with

two feathers each from the secondaries (s6 and s7) and primaries

(p7 and p8) of each wing and two centre rectrices. Plucking took

Molt & Feather Replacement Costs in Honeyeaters
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place in the first week of October. Control (‘‘sham plucked’’) birds

(n = 12) were also anaesthetized, but then simply handled for one

minute and allowed to recover. Metabolic rates and feather

growth rates (mm?day–1 [38]) were recorded weekly for each

individual until they had fully replaced their artificially removed

feathers (6 weeks). These measurements were continued for the

duration of natural molt in the sham-plucked birds. The natural

molt data are based on measurements of seven control birds due to

the death of three birds following an equipment failure, and the

inability of two birds to fully adjust to captive conditions (as

evidenced by large fluctuations in body mass).

Statistical Analyses
Differences in individual metabolic rates between different time

periods were analyzed using repeated measures ANOVA using

JMP 7 (SAS). Comparison of metabolic rates, metabolic increases

and feather growth rates between natural molting and plucked

individuals were conducted using one-way ANOVA, again using

JMP 7. All values given below represent mean (�xx) 6 1 S.E. unless

otherwise stated.

Interspecific variation in molt cost
We compiled data on the cost of molt per gram of feathers

replaced for all species studied using respirometry (indirect

calorimetry), and used these to calculate conversion efficiency

(energy contained within the plumage as a percentage of energy

expended during its growth; Table S1). Using a tree pruned from

Hackett et al. [39] and the regressionv2.m package [40] in

MATLAB (R2007b), we first fitted the best of several models of

evolution to the efficiency of feather production data, including

species values (ordinary least squares, no phylogenetic signal),

Brownian motion (phylogenetic generalized least squares), Orn-

stein–Uhlenbeck process (OU, drift about a fitness peak) or with

branch lengths transformed using Pagel’s l parameter. We then

tested for a relationship between these traits and metabolic

intensity (BMRm). The OU and Pagel’s l fitting procedures

calculate branch length transformation parameters, d for the OU

process that is a function of time and l for Pagel’s transformation,

which is constant across the tree, by restricted maximum

likelihood (REML). Values close to 1 indicate a significant

phylogenetic signal, whereas values close to 0 suggest the trait in

question is independent of phylogeny.

Results

Molt phenology
White-plumed honeyeaters initiated molt on 13 October (66.0

days, range 27 September - 14 November; n = 7). This appeared

similar to the onset of molt in the wild, with birds at Fowler’s Gap

Research Station displaying the same range of molt stage as those

in captivity in Wollongong in early January (personal obs.).

Feather replacement lasted for 168 days (6 5.21; range = 143–

196 days), from the loss of the innermost primary until the

completion of feather replacement in all tracts.

Energetic cost of molt
Pre-molt BMR, measured at least 30 days prior to the loss of the

first primary, averaged 23.0 kJ?d21 (6 0.65, n = 7). An individual’s

highest RMRmin during the molt period was recorded 30 days

(6 3.7) after molt onset, and was 18.43 kJ?day21 (6 1.14) above

their pre-molt BMR, representing an 82% (6 5.59) increase. Each

individual’s highest RMRmin value during molt was significantly

greater than both pre-molt BMR and RMRmin measured at the

time of their most intense feather replacement (F2,5 = 97.41;

P,0.0005; Table 1). The pattern of RMRmin throughout the molt

period, however, did not gradually rise preceding an individual’s

maxima, nor show a graded decline thereafter. Instead, each bird’s

RMRmin, both during and outside the molt period, appeared to

oscillate stochastically, with multiple peaks and troughs evident.

Importantly, the pattern and size of these oscillations did not

directly correspond with molt stage (Figure 1).

The most intense period of feather replacement occurred 56

(6 13.7) days after molt onset, at which time metabolic rates were

not significantly higher than an individual’s pre-molt BMR

(Table 1). Furthermore, individuals yet to molt displayed very

similar RMRmin profiles with respect to calendar date to their

molting conspecifics, irrespective of their molt schedule (Figure 1).

Because the post-molt BMR averaged 13% (65.7) higher than

pre-molt levels (t = 2.46; d.f. = 6; P = 0.049), the BMR ‘‘baseline’’

used to judge molt costs on a given date was based on an

interpolation between pre- and post-molt BMR measurements for

each individual. These values were not adjusted for body mass as

variation in individual mass accounted for less than 5% of the

overall variation in RMRmin during molt (F1,186 = 8.93; r2 = 0.046;

P = 0.0032). Integrating the daily increases in metabolic rate above

this baseline throughout each bird’s molt period produced an

average energetic cost of feather synthesis of 453.4 kJ?bird21

(666.6). The energetic cost of molt (Cf; kJ.g21 dry feathers)

represents the sum of synthesis costs and the energy contained in

the replacement plumage. Given an average total plumage mass of

1.28 g measured in non-molting birds and an energy content of

26.4 kJ?g21 [19], the Cf in WPHE averaged 380.6 kJ?g dry

feathers21 (649.3). Thus, the energy content of the newly

synthesized plumage represented just 6.9% (60.57) of the energy

expended for feather renewal.

Energetic cost of feather replacement
There was no significant difference in natural molt initiation

date between plucked and sham-plucked (control) WPHE

(F1,21 = 0.713; P = 0.682). Primary feather growth rates were linear

until feathers approached their full length, after which time growth

rates slowed. Growth rates for the linear part of plucked feather re-

growth were indistinguishable from those of corresponding

primaries in sham-plucked (naturally molting) WPHEs

(P.0.200; Table 2). Plucked birds also grew their naturally

molted primaries (one and two) at rates that were statistically

indistinguishable from sham-plucked birds (P.0.200; Table 2).

The metabolic rate profiles of plucked birds did not differ

significantly from those of naturally molting conspecifics in

relation to calendar date, despite the overlap of naturally molted

Table 1. Minimum resting metabolic rates during molt and
replacement of plucked feathers.

Natural molt Plucked

Pre molt 23.04 60.65 23.41 60.54

Peak feather replacement 30.77 65.41 29.51 61.22

Maximum RMRmin 40.84‘ 64.22 39.26 61.14

Minimum resting metabolic rates (kJ?d21) at various stages of feather
replacement in captive White-plumed honeyeaters undergoing natural molt
(n = 7) compared to conspecifics undergoing natural molt while simultaneously
replacing an additional 25% of their plumage that was plucked during the
experiment (n = 12; means 6 SE).
‘ indicates significantly higher values within treatments (p,0.05); there were no
significant differences between treatments at any stage.

doi:10.1371/journal.pone.0016230.t001

Molt & Feather Replacement Costs in Honeyeaters
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and plucked feather regrowth in the 10 plucked individuals. The

RMRmin of plucked birds prior to molt, during the peak phase of

feather regrowth, and at the individual maxima were not

significantly different to RMRmin measured contemporaneously

in sham plucked (naturally molting) birds (P.0.05 Table 1).

Interspecific variation in molt cost
Our estimate of the energetic cost (and hence efficiency) of molt

in WPHE adds to a growing body of evidence suggesting that these

traits differ markedly between certain species (Table S1). The

efficiency of energy conversion to new feathers during molt

showed no relationship to either relative feather mass (P = 0.36) or

molt rate (P = 0.06). Efficiency was, however, highly correlated

with metabolic intensity (mass-specific basal metabolic rate,

BMRm, kJ.g21.d21; r2 = 0.944, P = ,0.0001; Figure 2) such that:

Efficiency~35:719:10{0:494BMRm

Phylogenetic regression revealed a strong phylogenetic signal in

the relationship between BMRm and conversion efficiency during

molt (Table S2), yet the relationship between BMRm and

efficiency remained highly significant (r2 = 0.884). Models based

on phylogenetic relationships alone (null model) were equally

parsimonious as the metabolic intensity model, however this is not

unexpected given that efficiency was almost synonymous with

BMRm (r2 = 0.944).

The average daily cost of molt (total cost (kJ)/duration (days)) of

WPHE was equivalent to 13% of their pre-molt BMR; the lowest

daily molt cost of all species studied (Table S1). There was no

apparent phylogenetic signal in the interspecies variation in these

average daily costs (Table S3).

Discussion

White-plumed honeyeaters experience a considerable increase

in RMRmin during the population’s molt period, despite living in

an environment with unpredictable resource availability and often

experiencing molt/breeding overlap. Maximum increases in

Figure 1. Minimum resting metabolic rate of individual White-
plumed honeyeaters during molt. Minimum resting metabolic rate
(RMRmin in kJ?d21) of 7 captive White-plumed Honeyeaters preceding,
during, and following the period of natural molt. Numbers indicate
individual identifiers. Grey shaded areas represent a given individual’s
molt period, dashed vertical lines represent the individual’s period of
peak feather replacement.
doi:10.1371/journal.pone.0016230.g001

Table 2. Primary feather growth rates during molt and
replacement of plucked feathers.

Feather Natural molt Plucked t d.f. p

Primary 1 2.70 60.13 2.74 60.16 20.732 10 0.732

Primary 2 2.83 60.13 2.97 60.18 21.087 9 0.293

Primary 7 2.65 60.07 2.57 60.07 0.876 12 0.393

Primary 8 2.60 60.19 2.35 60.18 1.277 12 0.232

Feather growth rates (mm/d 6 S.E.) of selected primaries in captive White-
plumed honeyeaters undergoing natural molt compared to conspecifics
undergoing natural molt while simultaneously replacing an additional 25% of
their plumage that was plucked during the experiment.
doi:10.1371/journal.pone.0016230.t002

Molt & Feather Replacement Costs in Honeyeaters
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RMRmin during a molt cycle have been shown to be as little as

10% of pre-molt levels in large birds such as the 280 g long-eared

owl [22], and as high as 111% and 106% in bluethroats (17 g) and

redpolls (13 g), respectively [20]. White-plumed honeyeaters

showed some of the highest reported increases in metabolic rate,

averaging 82% above individual pre-molt levels (Table S1).

Increases in RMRmin were not, however, coincident with the

temporal stage of feather replacement in either naturally molting

or plucked birds. Surprisingly, individual WPHE reached their

metabolic maxima relatively synchronously with respect to

calendar date, regardless of their molt stage (Figure 1). Further,

RMRmin maxima were no higher in the plucked birds than in

naturally molting conspecifics (Table 1), despite replacing an

additional 25% of their plumage at the same rate as naturally

molting birds (Table 2). White-crowned sparrows have also been

shown to replace substantial amounts of plucked feathers without

experiencing a rise in RMRmin [41], demonstrating that feather

replacement per se can not explain the increased energy demands

measured during the molt period. Moreover, weekly measures of

RMRmin in individual WPHE did not follow a graded rise and a

steady decline about the period of feather replacement maxima.

Large RMRmin fluctuations were measured periodically, suggest-

ing that coincident physiological processes are of a cyclical nature.

Importantly, such week-to-week fluctuations would be overlooked

in studies with less frequent metabolic measurements.

Efficiency of energy conversion during molt (energy contained

in the feathers produced as a proportion of energy expended) is

enigmatically low in all birds studied and, with the exception of

kookaburras [21], remains the most inefficient form of protein

conversion described in vertebrates [42]. The energetic cost of the

molt period in WPHE was remarkably similar to values reported

for other small passerines from more predictable north-temperate

environments [e.g. 23]. Furthermore, the WPHE values are

consistent with accumulating evidence that metabolic rate

increases during molt scale to a species’ metabolic intensity

(BMRm: kJ?g21?d21) consistently across all species examined

[20,23,24]. This predicts that the smallest birds with the highest

mass-specific metabolic rates will have the highest costs, and hence

the lowest conversion efficiencies (Figure 2). Although there

appears to be a phylogenetic component to this relationship,

interpretation of the influence of phylogeny on the costs entrained

in the molt period is hindered by the complete lack of data from

small (i.e. high metabolic intensity) non-passerine species and large

(i.e. low metabolic intensity) passerine species. Given the tight

relationship between molt efficiency and mass-specific metabolic

rate in all species studied to date, regardless of life-history pattern,

there appears to be underlying costs entrained in the molt period

that are proportional to metabolic intensity, but are not due to

feather replacement per se. Efficiency may, therefore, be an artifact

of the assumption that metabolic increases during molt are solely

fueling feather synthesis.

There is ample evidence that molting birds undergo extensive

physiological changes beyond the production of feathers alone,

including plasma volume expansion [43,44], and organ hypertro-

phy [45]. In addition, there is increasing evidence that immune

processes are altered during the molt period, with evidence of

energetically- and nutritionally-demanding acute-phase and in-

flammatory responses being down-regulated during this period of

the annual cycle (Table 3; [46–48]). This would reduce the

competition between immunity and molt for nutritional resources,

thus permitting birds to maintain consistent feather growth rates

when immune challenged [49] and, perhaps more importantly, to

ensure feathers of a consistently high quality are grown [50].

Indeed, it could be hypothesized that the high cost of molt is not

primarily due to the quantity of nutrients/protein directly needed

for feather synthesis, but instead represents the cost of ensuring a

constant supply of these materials during feather replacement,

even when confronting immune challenges. There is experimental

evidence that protein turnover during molt is 3.5 times that

expected for peak rates of feather synthesis in white-crowned

sparrows [51]. Given the consistent relation between rates of

protein turnover and metabolism in endotherms of very different

sizes [52], if molt provokes similar proportionate increases in

protein turnover in all birds, it follows logically that molt costs will

scale with metabolic intensity rather than the actual amount of

feathers being replaced. Furthermore, such protein turnover may

well follow a cyclic pattern, which would be in accordance with the

metabolic profiles observed in molting WPHE and their lack of

Table 3. Published accounts of immune system alterations
measured during the molt period.

Tissue Change Species Reference

Spleen mass increase Willow tit [54]

Monocytes increase House sparrow [55]

Red Knot [47]

Total immunoglobulins increase King penguin [56]

Great tit [57]

Humoral immunity decrease Red knot [47]

Domestic Chicken [46]

Inflammatory response decrease House sparrow [48]

Red knot [47]

Domestic chicken [46]

doi:10.1371/journal.pone.0016230.t003

Figure 2. Feather production efficiency during molt. Feather
production efficiency (%; 100?kJ content?[kJ expended + content]21)
during natural molt in relation to mass specific BMR (kJ?g21?d21)
measured using indirect calorimetry for different species of birds. Filled
circle represents our white-plumed honeyeater (Lichenostomus penicil-
latus; 4), unfilled circles represent long-eared owl (Asio otus; 1),
kookaburra (Dacelo novaeguineae; 2), European kestrel (Falco tinnuncu-
lus; 3), bluethroat (Luscinia s. Svecica; 5), European stonechat (Saxicola
torquata rubicula; 6), East African stonechat (Saxicola torquata axillaries;
7), white-crowned sparrow (Zonotrichia leucophrys gambelii; 8), chaf-
finch (Fringilla coelebs; 9), and redpoll (Carduelis f. Flammea; 10). Values
and sources in Table S1.
doi:10.1371/journal.pone.0016230.g002
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correspondence with feather growth (Figure 1). Additional indirect

evidence for the high cost of such quality assurance mechanisms

comes from studies of molting waterfowl. These birds character-

istically show a brief period of simultaneous flight feather

replacement, at a purportedly high cost when considering the

relatively small mass of feathers being replaced [53]. Such costs

may be necessary to ensure high quality, particularly for flight

feathers. Unfortunately we did not compare the quality of feathers

formed following plucking to those formed during natural molt.

Regardless of the physiological mechanisms underpinning the

metabolic costs entrained in the molt period, a key factor that

modulates the physiological burden on the individual is the rate at

which these costs are incurred [38,42]. Decreased rates of molt

should decrease the daily costs to an individual while also

minimizing any potential disparity between resource requirements

and the availability of these substrates in the diet. As such, relative

molt costs, in the form of average daily costs as a proportion of

pre-molt BMR, provide a more appropriate conceptual framework

when considering both the physiological burden placed on an

individual, and how this may differ between species. Molt duration

appears to contract with increasing latitude in parallel with the

decreasing summer duration. For example, bluethroats breeding

and molting in the arctic undergo a complete molt in 62 days,

practically twice as fast as East African stonechats (123 d), and

almost three times as fast as WPHE (168 d, Table S1).

Consequently, although the total cost of molt in WPHE is differs

little from same-sized birds with much faster molt rates, their

protracted molt period substantially reduces these molt costs on a

daily basis to an extent that their daily molt costs are the lowest for

all species studied. Interestingly, their prolonged molt appears to

be mediated through a direct decrease in the rate at which each

feather is grown, rather than a reduced frequency of feather

shedding compared to north-temperate species [38]. These

patterns are particularly beneficial for species living in environ-

ments with unpredictable resource availability, where breeding

and molt schedules are likely to overlap.
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