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Most invasive bacterial infections are caused by species that more commonly 

colonize the human host with minimal symptoms. Although phenotypic or 

genetic correlates underlying a bacterium’s shift to enhanced virulence have 

been studied, the in vivo selection pressure governing such shifts are poorly 

understood. The globally disseminated M1T1 clone of group A Streptococcus 

(GAS) is linked with rare but life-threatening syndromes of necrotizing fasciitis 

and toxic shock syndrome1. Mutations in the GAS control of virulence 

regulatory sensor kinase (covRS) operon are associated with severe invasive 

disease, abolishing expression of a broad spectrum cysteine protease (SpeB)2,3 

and allowing the recruitment and activation of host plasminogen on the bacterial 

surface4. Here we describe how bacteriophage-encoded GAS DNase (Sda1), 

which facilitates the pathogen’s escape from neutrophil extracellular traps 

(NETs)5,6, serves as a selective force for covRS mutation. The results provide a 

paradigm whereby natural selection exerted by the innate immune system 

generate hypervirulent bacterial variants with increased risk of systemic 

dissemination. 

 

GAS is estimated to cause ~700 million cases of self-limited throat or skin infection 

each year worldwide7. Invasive GAS disease occurs in approximately 1/1,000 cases, 

with associated mortality of 25%7. Epidemic invasive disease is associated with the 

emergence of the globally disseminated GAS M1T1 clone1,8, which is distinguished 

from related strains by acquisition of prophages encoding virulence determinants such 

as superantigen SpeA and DNase Sda19,10. In the M1T1 GAS clone, the transition 

from local to systemic infection can be linked to mutations in the two-component 

covRS regulator. The effect of these mutations is a distinct shift in the transcriptional 
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profile of invasive GAS isolates compared to mucosal (throat) isolates3. The covRS 

mutation and changes in gene expression are recapitulated upon subcutaneous 

challenge of mice and analysis of GAS disseminating to the spleen in comparison 

with those in the original inocolum3. Prominent changes in the transcriptional profile 

of invasive GAS isolates include a strong up-regulation of the DNase gene sda1, and 

a marked decrease in expression of the gene encoding the cysteine protease SpeB3.  

Sda1 is a virulence factor that protects GAS against neutrophil killing by degrading 

the DNA framework of NETs5,6. Abolishment of SpeB expression allows 

accumulation and activation of the broad spectrum host protease plasmin on the GAS 

bacterial surface4. A clinical correlation of GAS invasive disease severity and 

diminished SpeB expression has been established2.  

 

To elucidate the selection pressure for the rapid loss of SpeB expression in vivo, we 

have compared the human M1T1 GAS isolate 5448 and its isogenic animal passaged 

SpeB-negative variant 5448AP11. DNA sequence analysis shows 5448AP contains a 

single adenine base insertion at position 877 of the covS gene (Fig. 1a) and lacks 

SpeB production (Fig. 1b). Whilst equivalent to wild-type (WT) 5448 in expression 

of plasminogen receptors α-enolase12 and GAPDH13, 5448AP exhibits higher levels 

of the fibrinogen-binding M1 protein14,15 and streptokinase (Fig. 1c). Although 

washed 5448 and 5448AP cells bind identical levels of human plasminogen (Fig. 1d), 

5448AP accumulates significantly higher levels of surface plasmin activity following 

growth in human plasma (P < 0.05; Fig. 1e). The observed phenotypes of 5448AP 

parallel those seen upon allelic replacement of the speB gene in the parent strain 

(mutant 5448ΔspeB4), indicating that surface plasmin acquisition by 5448AP reflects 

the loss of SpeB. Additionally, other gene expression changes, such as the increase in 
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streptokinase expression associated with covRS mutation3, may also contribute to 

surface plasmin acquisition by 5448AP (Supplementary Fig. 1). Compared to WT, 

the 5448AP strain was found to be hypervirulent in a humanized plasminogen mouse 

subcutaneous infection model (P < 0.05; Fig. 1f and Supplementary Fig. 2). Isogenic 

mutagenesis of 5448AP was undertaken to construct a streptokinase-deficient strain 

(5448APΔska), which showed reduced virulence in comparison to 5448AP (P < 0.05; 

Fig. 1f). This observation is consistent with the reduced virulence of ska-deficient 

GAS previously reported16. Enumeration of bacterial counts in the site of infection, 

blood, spleen and liver of humanized plasminogen mice, suggest that the enhanced 

virulence of strain 5448AP is as a result of a widespread systemic infection following 

breakout from the site of local infection, immediately prior to the death of the mice 

(Fig. 1g). These humanized animal model data reflect observations made in the 

clinical setting for GAS M1T1 strains, where mutations in covRS correlate with 

human invasive disease severity2,3. 

 

Next, infection chambers were implanted subcutaneously in mice and inoculated with 

either GAS 5448 or 5448AP. After 24 h, bacteria were recovered and analyzed for 

SpeB and Sda1 expression. Quantitative real-time PCR analysis reveals speB 

expression is down-regulated over 10,000× in 5448AP, when compared to WT 5448 

(Fig. 2a). In contrast, an over 5× up-regulation of sda1 gene expression was observed 

by 24 h in 5448 following in vivo growth, which matched the increased DNase 

expression levels seen in vivo for 5448AP (Fig. 2b and Supplementary Fig. 3a). 

DNA degradation by 5448AP was increased compared to the GAS 5448 parent strain 

(Fig. 2c and Supplementary Fig. 3b), consistent with both the up-regulation of sda1 

expression and the known ability of SpeB to degrade Sda111. Compared to the 5448 
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parent strain, the enhanced DNase activity of 5448AP was associated with clearance 

of NETs (Fig. 2d and Supplementary Fig. 4a) and increased resistance to neutrophil 

killing (Fig. 2e). Neither streptokinase nor M1 protein contribute to NET clearance 

(Supplementary Fig. 4b). 

 

Neutrophils and NET-mediated extracellular killing play a pivotal role in antibacterial 

clearance at the initial site of infection5,17. We hypothesized that acquisition of the 

potent bacteriophage-encoded DNase Sda1 by the M1T1 clone provides the selective 

force for loss of SpeB expression in vivo, since the cysteine protease is capable of 

degrading this important neutrophil survival factor. To examine this possibility, we 

subcutaneously challenged C57BL/J6 mice separately with 5448 and the isogenic 

5448Δsda1 mutant, predicting that absence of Sda1 would reduce the selective 

advantage for mutation to a SpeB-negative phenotype. Loss of SpeB expression in 

vivo during subcutaneous mouse infection was abrogated in the isogenic 5448Δsda1 

mutant compared to WT 5448 (Fig. 2f; 1/500 SpeB-negative 5448Δsda1 colony 

versus 76/500 SpeB-negative 5448 colonies; P < 0.05). DNA sequence analysis of 10 

selected SpeB-negative 5448 colonies suggests that mutations in covRS have resulted 

in loss of SpeB expression (Supplementary Table 1), as previously reported3. We 

used reverse complementation to replace the mutated chromosomal locus in 

5448Δsda1 with the WT allele to construct 5448RCsda1+. This complemented mutant 

regained the capacity to switch to the SpeB-negative phenotype (Fig. 2f; 45/500 

SpeB-negative 5448RCsda1+ colonies; P = 0.39). The isogenic mutant 5448Δsmez, 

derived in a manner identical to 5448Δsda1, was found to retain the capacity to phase-

switch similar to the WT strain 5448 (Fig. 2f; 33/500 SpeB-negative 5448Δsmez 

colonies; P = 0.11). These observations suggest that the phase-switching phenotype is 
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due to allelic replacement of the sda1 gene and not due to the methodology used to 

construct an isogenic GAS mutant in strain 5448. The M1 serotype GAS strain SF370 

is known not to encode Sda19,10. SF370 was found to have minimal capacity to switch 

to the SpeB-negative phenotype compared to 5448 (Fig. 2f; 2/500 SpeB-negative 

SF370 colonies; P < 0.05) consistent with the absence of Sda1 and thus lack of 

selective advantage for mutation to the SpeB-negative phenotype.  

 

The globally disseminated Streptococcus pyogenes M1T1 clone emerged in the mid-

1980s as a major cause of severe GAS invasive disease. Recent genome-scale 

analyses have found that in comparison to other M1 strains, the M1T1 clone has 

acquired two lysogenised bacteriophage genomes encoding Sda1 and SpeA, 

respectively9,10. While the introduction of SpeA into the GAS population increases the 

propensity to cause streptococcal toxic shock, this study has shown that positive 

selection pressure in vivo is placed upon the bacteriophage-encoded virulence 

determinant Sda1. Loss of SpeB spares Sda1 from degradation11 and improves GAS 

resistance against neutrophil clearance. In vivo, the phase-shift in SpeB expression is 

abrogated by isogenic mutagenesis of sda1. The genetic basis for loss of SpeB 

expression has been previously described3. Loss of SpeB has also been shown to 

result in increased invasive propensity of M1T1 by the accumulation of surface-bound 

plasmin activity4. Therefore, we hypothesize that the bacteriophage-mediated 

acquisition of the sda1 gene by the ancestral M1T1 has provided evolutionary 

selection pressure for increased neutrophil resistance via SpeB loss, which results in a 

hyperinvasive phenotype and can lead to severe invasive disease progression (Fig. 3). 

The evolution of bacterial pathogens principally occurs either through deletion events 

or horizontal gene transfer and acquisition18, which is exemplified by the 
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bacteriophage-mediated acquisition of the sda1 gene by M1T1. These data provide a 

paradigm for bacteriophage-mediated acquisition of virulence determinants and 

development of severe disease by otherwise benign human pathogens. 
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Figure legends: 

 

Fig. 1. Molecular and phenotypic analyses of GAS strains 5448 and 5448AP. (a) 

DNA sequence comparison of GAS strains 5448 and 5448AP confirms the presence 

of a 1 base adenine addition at the 3’ end of covS (nt position 877) encoded by 

5448AP (unfilled arrowhead). Primers used for DNA sequence analysis are indicated 

by filled arrowheads (p1 to p12). This insertion mutation results in the truncation of 

the CovS open reading frame at amino acid 300 from the CovS methionine start 

codon. Putative conserved CovS domains are indicated in lower panel: HAMP: 

Histidine kinases/adenylyl cyclases/methyl-binding proteins/phosphatases; HisKA, 

Histidine kinase domain (phosphoacceptor); HATPase: Histidine kinase-like ATPase. 

Scales, in base pairs (bp; upper panel bar) and amino acids (aa; lower panel bar), are 

indicated. (b) In comparison to GAS strain 5448, secreted SpeB protease activity is 

abrogated in 5448AP (n = 3; mean ± SD). Asterisk indicates statistically significant 

difference from 5448, where P < 0.05. (c) Western blot analysis of cell wall extracts 

indicates that equivalent amounts of α-enolase (unfilled arrowhead) and GAPDH 

(unfilled arrowhead) are produced by strains 5448 and 5448AP, whereas higher 

amount of M1 protein (unfilled arrowhead) is produced in cell wall extracts and 

streptokinase (unfilled arrowhead) is secreted into culture supernatants by strain 

5448AP, in comparison to 5448. Molecular mass markers (MWT) are given in kilo-

Daltons (kDa). (d) Washed 5448 and 5448AP cells bind equivalent amounts of human 

plasminogen (n = 3; mean ± SD). (e) Following overnight growth at 37 oC in human 

plasma, 5448AP accumulates significantly higher levels of surface plasmin activity (n 

= 3; mean ± SD). Asterisk indicates statistically significant difference from 5448, 

where P < 0.05. (f) Survival curves following subcutaneous infection of humanized 
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plasminogen transgenic mice (n = 10) with GAS strain 5448 (3.2 × 108 colony 

forming units/dose; solid line), 5448AP (1.6 × 108 colony forming units/dose; dashed 

line) and 5448APΔska (1.5 × 108 colony forming units/dose; dotted line). (g) 

Enumeration of bacterial counts in the site of infection, blood, spleen and liver of 

humanized plasminogen mice (n = 5) subcutaneously infected with GAS strain 5448 

(2.6 × 107 colony forming units/dose; open circles) and 5448AP (4.9 × 107 colony 

forming units/dose; filled circles). 

 

Fig. 2. Relative expression of (a) the speB gene and (b) the sda1 gene, as determined 

using quantitative real-time PCR (n = 3; mean ± SD). RNA was extracted from GAS 

either immediately prior to inoculation (0 h) or 24 h post-inoculation of subcutaneous 

infection chambers. Asterisk indicates statistically significant difference from 5448 (0 

h), where P < 0.05. (c) DNase expression in GAS mid-logarithmic phase culture 

supernatants as assessed by degradation of calf thymus DNA (control). (d) Clearance 

of NETs by GAS. Neutrophils were visualized using bright field microscopy, whilst 

NETs were visualized using Sytox Orange staining. Scale bar = 100 μm. (e) Killing of 

GAS by human neutrophils at a multiplicity of infection (GAS:neutrophils) = 1:10 (n 

= 3; mean ± SD). Asterisk indicates statistically significant difference from 5448, 

where P < 0.05. (f) The capacity of GAS strains 5448, 5448Δsda1, 5448RCsda1+, 

5448Δsmez and SF370 to phase-shift to a SpeB-negative phenotype was examined 3 d 

post-subcutaneous infection of mice. 

 

Fig. 3. Model for group A streptococcal invasive disease initiation and progression. 

(a) Following entry via the skin, GAS (blue) are able to express SpeB (required 

during the early stages of the infection process; black dots). An innate immune 
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response is mounted by host neutrophils and entrapment of GAS in NETS (orange) 

begins. (b) Within the GAS population, a mutation in covRS occurs (green), resulting 

in loss of SpeB expression and improved resistance to killing by neutrophils. (c) 

Selection pressure by neutrophils results in an increase in the proportion of covRS 

mutant phenotype GAS within the bacterial population, improved NET clearance and 

neutrophil resistance. (d) Loss of SpeB expression allows the accumulation of surface 

plasmin activity leading to systemic infection.  
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Supplementary Figure 1

Surface plasmin activity of 5448AP, 5448AP ska and 5448AP emm1
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Supplementary Table 1. CovRS DNA sequence analysis of selected GAS 
M1T1 strain 5448 SpeB-negative derivatives isolated 3 d following 
subcutaneous infection of C57BL/J6 mice. 
 
GAS strain Mouse ID Tissuea Mutationb Consequencec 
5448-APD1 OS41B Blood C to T nt 838 covS H to Y aa 280 covS 
5448-APD2 OS41B Lesion C to T nt 838 covS H to Y aa 280 covS 
5448-APD3 OS41B Lesion C to T nt 838 covS H to Y aa 280 covS 
5448-APD4 OS45R Blood C to T nt 838 covS H to Y aa 280 covS 
5448-APD5 OS45R Blood C to T nt 838 covS H to Y aa 280 covS 
5448-APD6 OS46L Lesion Δ nt 83 covS Truncation in CovS 
5448-APD7 OS46L Lesion Δ nt 83 covS Truncation in CovS 
5448-APD8 OS46L Lesion G to A nt 331 covR A to T aa 111 covR 
5448-APD9 OS322B Lesion Δ nt 406-1503 covS Truncation in CovS 

5448-APD10 OS492L Lesion C to T nt 838 covS H to Y aa 280 covS 
aMouse tissue from which GAS strain was isolated 3 d post-subcutaneous 
infection. 
bMutation positions are based upon nucleotide (nt) position in the covR or 
covS genes, relative to each ATG start codon.  
cSubstitutions in CovR and CovS are based upon amino acid (aa) position in 
each open reading frame, relative to each start codon. 



 

Supplementary Table 2. Oligonucleotide primers used in this study for 
construction of recombinant GAS strains. 
 

Primer Direction bp Sequence 
RCSdapHY304Fwd Forward 29 GGGCTGCAGCTTAAACGTTGGTATTTTTA 
RCSdapHY304Rev Reverse 28 GGGGAATTCGGATAGCTTACAACTAGTG 
SdaF2 Forward 21 ATGTCTAAACATTGGAGACAT 
SdaR4 Reverse 20 ATCAGATGATAAAGCAGACA 
SmeZ-UpF Forward 20 TGGCTGACAACTGTCAGGAA 
SmeZ-UpR Reverse 54 GGTGGTATATCCAGTGATTTTTTTCTCCATAAATAGCCT

CTTTTCAGGAGTTAT 
SmeZ-DownF Forward 54 TACTGCGATGAGTGGCAGGGCGGGGCGTAATTCAATTT

TTCAATATAACTTTTA 
SmeZ-DownR Reverse 20 AACGACACCTCTTTCAGCGA 
Emm1-dis-F-BamHI Forward 30 GCGGATCCTAGTCCTGACTCGCTTGGTCTA 
Emm1-dis-R-XbaI Reverse 30 GCATCTAGACTTGCAGCAAACAATCCCGCA 
M1ska-dis-F-BamHI Forward 30 GCGGATCCAACATCACAACCTGCTCACGGA 
M1ska-dis-R-XbaI Reverse  GCGTCTAGACGCGCACATGTCCCTTTAACAA 
T7-For Forward 21 GTAATACGACTCACTATAGGG 
Emm1out-R Reverse 24 GAGGTTAAGGCTAACGGTGATGGT 
M1skaout-R Reverse 24 TTGAGCCCTGGTCTGAAATCGTCA 



 

Supplementary Table 3. Oligonucleotide primers used in this study for 
covRS PCR and sequence analysis. 
 
Primer Direction bp Sequence 
p1 Forward 19 GCTATTCCGGTACAGGTCT 
p2 Forward 19 GTCAATGGTCGTGAAGGGT 
p3 Forward 22 GATGTCTATATTCGTTATCTCC 
p4 Forward 22 GATGATTTTTACCACAGATAAC 
p5 Forward 20 GCATATTGGTCTCTTACAAC 
p6 Forward 21 GCAAATTGTAGATGGGTATCA 
p7 Reverse 20 GCGGAAAATAGCACGAATAC 
p8 Reverse 20 AGGCAATCAGTGTAAAGGCA 
p9 Reverse 21 CTTGTGCCAAATAACTCAACA 
p10 Reverse 21 ATCAAAAGCCTGCTCAAATGA 
p11 Reverse 21 CTTTCATGTCATCCATCATTG 
p12 Reverse 19 TTGCTCTCGTGTGCCATCT 
 



 

Supplementary Materials and Methods 

 

Culture of group A streptococci. S. pyogenes strains were routinely propagated at 37 

°C on horse blood agar (BioMérieux) or in static liquid cultures of Todd-Hewitt broth 

(Difco) supplemented with 1% (w/v) yeast extract (THBY). Invasive GAS isolate 

5448 (M1T1) and the isogenic animal-passaged SpeB-negative variant 5448AP have 

been described previously11. The isogenic mutants 5448Δsda15, 5448ΔspeB11 and 

GAS strain SF37019, have also been described previously.  

 

Construction of recombinant GAS strains. Allelic exchange was used to precisely 

replace the deleted sda1 chromosomal locus in 5448Δsda1 with the WT sda1 gene to 

construct strain 5448RCsda1+. The technology employed to construct 5448RCsda1+ 

was similar to that used in the construction of 5448Δsda15. The PCR primers 

RCSdapHY304Fwd and RCSdapHY304Rev were employed for amplification of 

flanking DNA upstream and downstream of sda1 in the 5448 chromosome 

(Supplementary Table 2). Following amplification, the sda1 gene was cloned by 

PstI/EcoRI digestion and T4 ligation into the temperature-sensitive plasmid pHY3045. 

The resulting plasmid (pHYsda1) was transformed into 5448∆sda1 by 

electroporation. Integration of pHYsda1 into the chromosome via single-crossover 

was achieved by culture at the permissive temperature for plasmid replication (30 ˚C).  

Following subculture at 37 ˚C, single-crossover chromosomal insertions were selected 

using chloramphenicol (∆sda1) and erythromycin (pHY304). Double-crossover was 

achieved by serial passage at 30 ˚C, and double-crossover reverse-complemented 

mutants were identified following removal of antibiotic selection. The reverse-

complemented strain 5448RCsda1+ was characterized as sensitive to both 



 

chloramphenicol and erythromycin; confirmed as sda1 PCR-positive using the 

forward primer SdaF2 and reverse primer SdaR4 (Supplementary Table 2); and able 

to express Sda1 upon assaying for DNase activity (as described below).  

 

The isogenic 5448Δsmez mutant was constructed in a manner identical to 5448Δsda1, 

as previously described5. A precise, in-frame allelic exchange replacement of the 

smeZ gene in GAS strain 5448 with a chloramphenicol acetyltransferase (cat) 

antibiotic resistance cassette was generated. The specific primer sets used for 

amplification of the flanking DNA upstream and downstream of smeZ in the 5448 

chromosome are given (Supplementary Table 2). The primers SmeZ-UpR and 

SmeZ-DownF contain a 25 bp 5’ extension corresponding to the 5’ and 3’ ends of the 

cat gene, respectively. 

 

Integrational mutagenesis of ska and emm1 was performed essentially as previously 

described20. Internal fragments of the genes ska and emm1 were PCR amplified from 

GAS strain 5448 using specific primer pairs (Supplementary Table 2) and cloned by 

BamHI/XbaI digestion and T4 ligation into the temperature-sensitive plasmid 

pVE600721. The resultant plasmids were transformed into 5448AP by electroporation 

and chloramphenicol resistant transformants were grown at the permissive 

temperature for plasmid replication (30 ˚C). Single-crossover Campbell-type 

chromosomal insertions were selected by shifting to the non-permissive temperature 

(37 ˚C), while maintaining chloramphenicol selection. Integrational knockouts were 

confirmed by PCR using the forward primer T7-For and reverse primer emm1out-R 

or M1skaout-R (Supplementary Table 2). Confirmed integrational knockouts were 

designated 5448APΔemm1 and 5448APΔska. 



 

 

Molecular and phenotypic analysis of GAS. To screen GAS strains for mutations in 

the covRS locus, we designed 12 primers for PCR and DNA sequence analysis 

(Supplementary Table 3 and Fig. 1a). Firstly, primers p1 and p12 were used to PCR 

amplify the intact covRS locus from genomic DNA which was extracted by phenol-

chloroform. Then, an ABI PRISM 7700 Sequence Detection System (Applied 

Biosystems) was used to directly sequence the amplified PCR product with the 12 

primers and the sequence assembled by the use of Sequencher version 4.5 (Gene 

Codes Corporation). Using BLASTN analysis, the assembled sequences were aligned 

against GAS genomes and a single adenine base insertion mutation was identified at 

position 877 in the 5448AP covS gene, using numbering relative to the ATG start 

codon of 5448 covS. Other in vivo-derived, SpeB-negative GAS strain 5448 

derivatives were analyzed for covRS mutations in an identical manner. 

 

SpeB-positive and SpeB-negative isolates were routinely identified by the Columbia 

skim milk agar assay22. Quantitative SpeB assays were undertaken as previously 

described23. Bacterial surface plasmin acquisition from human plasma assays and 

western blot identification of α-enolase, GAPDH, streptokinase and M1 protein, were 

conducted essentially as previously described4, with exception that cross-specific 

rabbit M53 protein-specific serum was used to identify M1 protein. GAS strain 

NS113324 was used as an internal control for bacterial surface plasmin acquisition 

assays4 undertaken by incubating bacteria overnight in human plasma. Plasminogen-

binding assays were conducted as previously described24. 

 



 

Virulence of GAS in a humanized plasminogen transgenic mouse model. 

Transgenic humanized plasminogen AlbPLG1 mice heterozygous for the human 

plasminogen transgene16 were backcrossed greater than n = 6 with C57BL/J6 mice 

(Animal Resources Centre, Perth, Australia). GAS strains 5448 and 5448AP were 

harvested at logarithmic phase (OD600 approx. 0.4), washed twice with sterile 0.7% 

saline and diluted to the required dose. The number of viable bacteria was determined 

by counting colony forming units (CFU) after plating a dilution series onto blood 

agar. The SpeB expression status of 5448 and 5448AP was also determined as 

described above (n = 50). The 5448AP inoculum was found to be 100% SpeB-

negative, while the 5448 inoculum was 100% SpeB-positive. Groups of AlbPLG1 

mice (n = 10) were subcutaneously infected with GAS and mortality was monitored 

for 10 d. Alternatively, groups of AlbPLG1 mice (n = 5) were subcutaneously infected 

with either 5448 or 5448AP for 48 h and the lesion (site of infection), blood, spleen 

and liver harvested. Lesion, spleen and liver samples were homogenized in 2 ml of 

sterile 0.7% saline. The number of viable bacteria was determined by counting CFU 

after plating a dilution series onto blood agar.  

 

Isolation of mRNA and real-time PCR analysis. In order to isolate in vivo-derived 

RNA, we utilized the subcutaneous Teflon chamber model25. Teflon chambers were 

inserted surgically under the skin of 6-week-old female BALB/c mice. Three weeks 

after surgery, tissue chamber fluid (TCF) was collected and tested for sterility. Mice 

that had contaminated TCF, or those that had open surgical wounds, were excluded 

from further experimentation. To prepare inocula, bacteria were grown overnight in 

THBY, checked for SpeB phenotype as detailed above, then subcultured for 18 h in 

THBY. Bacterial pellets were washed twice in sterile phosphate buffered saline (PBS) 



 

and resuspended in sterile PBS to 1 × 109 CFU/ml. We injected 100 μl of this 

bacterial suspension into the subcutaneous chambers using sterile 25-gauge needles. 

At 24 h post-injection, sterile 25-gauge needles were used to collect the TCF to 

analyze bacterial content and SpeB status, and to extract RNA from recovered 

bacteria11, 25. This 24 h time point was chosen as WT 5448 GAS recovered from 

mouse infection chambers were > 95% SpeB-positive (data not shown), whereas after 

3 d in vivo the WT subcutaneous bacterial population contain a significant proportion 

(up to 74%) of SpeB-negative phenotype4. 5448AP cells recovered from 24 h 

infection chambers were uniformly SpeB-negative. RNA was extracted from bacterial 

pellets using RNeasy kits (Qiagen), treated with DNase (Ambion) for 1 h to remove 

contaminating genomic DNA, and then recovered using RNeasy columns (Qiagen). 

The absence of genomic DNA in the RNA samples was confirmed by PCR using 

primers specific for the speB gene11 (data not shown). The intactness and purity of 

isolated RNA was assessed using an Agilent Technologies Bioanalyzer (data not 

shown). Superscript II (Invitrogen) was used to reverse transcribe RNA into cDNA, 

following the manufacturer’s protocol; cDNA was immediately diluted with four 

volumes of sterile water then aliquoted for real-time PCR reactions. We performed all 

Sybr-Green real-time quantitative PCR reactions using an ABI PRISM 7700 

Sequence Detection System (Applied Biosystems) and calculated relative expression 

amounts using the delta-delta CT method11. All real-time PCR reactions were 

performed using biological triplicates; product specificity was confirmed by the 

presence of a single peak in dissociation curves. Fluorescence in all real-time 

quantitative PCR reactions was measured at 75 ˚C, a temperature at which any 

potential primer dimers would melt, ensuring that the PCR product measured was the 



 

expected product. Primers used for real-time PCR analysis of speB and sda1 have 

been previously described11, 26. 

 

DNase activity assays. Supernatants were collected from mid-logarithmic (OD600 = 

0.4) or stationary phase cultures of GAS strains grown in THBY. Calf thymus DNA 

(1.0 μg/μl) was combined with bacterial supernatant (2.5 μl) in final volume of 50 μl 

buffer (300 mM Tris, 3 mM CaCl2, 3 mM MgCl2) for 15 min at room temperature. To 

halt DNase activity, 12.5 μl of 0.33 M EDTA was added to the reaction. Visualization 

of relative DNA degradation was undertaken by side-by-side comparison of DNA 

using 1% agarose gel electrophoresis. 

 

Live cell imaging for visualization of NETs. NETs were visualized as previously 

described5. Briefly, neutrophils were seeded at 2 × 105 per well in 96-well plates in 

RPMI without phenol red (Invitrogen). GAS were added to the wells at a multiplicity 

of infection of 1:100 (GAS:neutrophils) and Sytox Orange (Molecular Probes) added 

to a final concentration of 0.1 μM. Cells were visualized without fixation or washed 

using a Zeiss Axiovert 100 inverted microscope with appropriate fluorescent filters, 

and images captured with a CCD camera. For quantitation, NETs were enumerated 

for each treatment by counting three fields of view after staining from three 

independent wells; a NET was defined as a discrete area of bright orange fluorescence 

larger in size than a neutrophil. Presented data are representative of experiments 

undertaken on three separate occasions. 

 

Neutrophil killing assays. Neutrophil killing assays were performed as previously 

described5. Briefly, human neutrophils were isolated and purified from venous blood 



 

using the PolyMorphPrep kit (Axis-Shield) as per the manufacturer’s instructions and 

seeded into 96-well plates at 2 × 105 cells/well. Logarithmic-phase bacteria grown in 

THBY were diluted to the desired concentration in RPMI media containing 2% heat 

inactivated autologous human plasma, then added to neutrophils at a multiplicity of 

infection of 1:10 (GAS:neutrophils). Plates were centrifuged at 500 × g for 10 min 

then incubated at 37 °C in 5% CO2. Following incubation for 1 h, neutrophils were 

lysed with 0.02% Triton X-100 and the contents of the well serially diluted and plated 

on Todd-Hewitt agar for overnight incubation and enumeration of CFU. Internal 

control wells without neutrophils were used to determine baseline bacterial counts at 

the assay endpoints. Percent survival of GAS was calculated as ([CFU/ml 

experimental well] / [CFU/ml control well]) × 100%. All assays were performed in 

triplicate. 

 

Monitoring the in vivo phase-shift of GAS strains.  Separate cohorts of C57BL/J6 

mice (n = 10) were inoculated subcutaneously with a non-lethal dose of GAS to 

examine the in vivo phase-shift of SpeB during infection. The inocula used in these 

experiments were plated out onto blood agar plates then individual colonies tested for 

SpeB expression status as described above (n = 50). The 5448, 5448Δsda1, 

5448RCsda1+ and 5448Δsmez inocula were found to be 100% SpeB-positive. On day 

three post-infection, mice were sacrificed by CO2 asphyxiation and representative 

bacteria isolated from skin lesions4. The SpeB status of individual colonies (n = 50) 

was determined as described above.  

 

All animal experiments were conducted according to the Guidelines for the Care and 

Use of Laboratory Animals (National Health and Medical Research Council, 



 

Australia) and were approved by the University of Wollongong Animal Ethics 

Committee. 

 

Statistical analyses. Statistical analysis of SpeB expression and status, plasminogen-

binding, surface plasmin activity, quantitative real-time PCR, human neutrophil 

killing assays, and NET quantification were performed using a one way ANOVA with 

a Dunnett’s Multiple Comparison Test. Differences were considered statistically 

significant at P < 0.05. Differences in survival of humanized plasminogen transgenic 

mice infected with GAS strains 5448, 5448AP and 5448APΔska were determined by 

the log-rank test. All statistical tests were performed using GraphPad Prism version 

4.02.  
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