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Young mammalian herbivores are more vulnerable to harsh winter conditions than adults, especially 
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vs. 343 min per day). High mass-specific food intakes of calves indicate higher requirements for 
maintenance of body tissue than adults, which could be related to a larger intestinal tract in young 
muskoxen. Notably, cows and calves maintained a constant body mass throughout, indicating that they 
were feeding at maintenance levels and that the relatively higher intakes of calves were not related to 
growth. Together, these data suggest that limited food availability due to snow cover or high animal 
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1
Abstract2

Young mammalian herbivores are more vulnerable to harsh winter conditions than adults, 3

especially among large circumpolar species like the muskox (Ovibos moschatus). We 4

compared feeding responses of muskox calves (body mass 95 kg) with those of mature, 5

non-reproductive females (body mass 227 kg) in mid-winter when air temperatures fell to 6

-40°C. Food intakes (1.8 to 2.2 kg digestible dry-matter d-1), digesta fill (27 to 32 kg wet 7

mass) and digestibility of hay (52 to 58% of dry matter; 49 to 55 % of gross energy) were 8

similar between age groups even though calves were much smaller than adults. Calves 9

fed more frequently (12 vs. 8 feeding bouts per day) and thus spent more time feeding 10

each day than adults (387 vs. 343 min per day). High mass-specific food intakes of calves 11

indicate higher requirements for maintenance of body tissue than adults, which could be 12

related to a larger intestinal tract in young muskoxen. Notably, cows and calves 13

maintained a constant body mass throughout, indicating that they were feeding at 14

maintenance levels and that the relatively higher intakes of calves were not related to 15

growth. Together, these data suggest that limited food availability due to snow cover or 16

high animal density may reduce the survival of muskoxen in their first winter.17

18
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Introduction1

The population dynamics of large herbivores are often dominated by the survival of 2

juveniles through their first year of life (Gaillard et al., 1998). This phenomenon has been 3

observed for numerous species, among ungulates (Gaillard et al., 2000), and also among 4

kangaroos (Bayliss, 1985; Dawson, 1995). Juvenile mortality is influenced by four 5

factors: disease, predation, environmental exposure and nutrition. Risks of predation and 6

disease are highest for neonates and decline progressively with age. Juveniles are also 7

most vulnerable to adverse conditions, such as prolonged drought (e.g. kangaroos in 8

Australia; Bayliss, 1985; Robertson, 1986) or severe winters (e.g. red deer in Norway,9

Loison and Langvatn, 1998; elk in North America, Garrott et al., 2003). Nutrition 10

contributes to all three factors because lack of sufficient energy stores (body fat), low 11

food abundance, poor food quality, and digestive constraints (e.g. limited gut capacity 12

and/or digestive efficiency) debilitate juveniles and increase their vulnerability to other 13

causes of mortality.14

Muskoxen (Ovibos moschatus) are large (> 200 kg) ruminants whose population 15

biology is heavily influenced by calf survival (Thing et al., 1987; Aastrup and Mosbech, 16

2000; Reynolds et al., 2002). Juvenile muskoxen face extreme winters with ambient 17

temperatures (Ta) that are frequently below -40°C, and as low as -80°C with wind chill 18

(Blix, 2005). The principal foods of muskoxen are grasses and sedges, which are low in 19

both abundance and quality in winter (Klein and Bay, 1991; Ihl and Klein, 2001; Larter 20

and Nagy, 2001). Muskoxen calve shortly before spring, which allows the young to 21

continue growing when forage availability and quality are highest in autumn (Reynolds et 22

al., 2002). Newborn muskoxen weigh 6-8 kg and are well equipped to deal with the 23
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challenging thermal environment. In addition to being extremely well insulated, neonates 1

use brown fat for non-shivering thermogenesis (Blix et al., 1984) in the first few weeks 2

postpartum (Adamczewski et al., 1995), as do most large mammals (Alexander, 1979). 3

Young muskoxen continue to grow rapidly through spring and summer and by the onset 4

of winter in October they are normally around 70-80 kg body mass, or around 1/3 the size 5

of adults (200-250 kg) (Knott et al., 2004; Peltier and Barboza, 2003). By this stage, 6

calves are normally weaned, though lactation can extend through winter depending on the 7

body condition and nutritional status of calf and mother (Adamczewski et al., 1998; 8

White et al., 1987; White et al., 1989; Parker et al., 1990).9

Winter mortality of muskox calves has been associated with prolonged and severe 10

cold, particularly when combined with wind, and deep or hard-packed snow 11

(Forchhammer and Boertmann, 1993; Reynolds et al., 2002). A small body size could 12

impact directly on their costs for thermoregulation. Small animals have higher surface 13

area to volume ratios and generally lose heat more readily than larger animals with 14

similar insulation. Moreover, muskoxen calves enter their first winter carrying less body 15

fat than adults (Adamczewski et al., 1995; Peltier and Barboza, 2003), providing them 16

with less tissue insulation against low Tas and fewer energy reserves to combat food 17

shortages (Larter and Nagy, 2001).18

For herbivores like muskoxen, body size is particularly important because of the 19

time required for fermentative digestion. Small herbivores usually have smaller absolute 20

gut sizes and faster rates of food passage, which can limit microbial action on forage and 21

reduce digestive efficiency (Demment and Van Soest, 1985; Robbins, 1993), although 22

this view has recently been challenged by Clauss et al. (2007). Nonetheless, smaller 23



5

herbivores are usually less able to exploit fibrous, low-quality diets (Demment and Van 1

Soest, 1985; Cork, 1994), such as those available to muskoxen in winter (Klein and Bay, 2

1991; Ihl and Klein, 2001; Larter and Nagy, 2001; Reynolds et al., 2002). Additionally, 3

with shorter legs and lower chest heights, muskox calves may struggle with increased 4

locomotor costs in deep snow, or they may have higher costs associated with digging 5

through hard-packed ice crusts to access the forage below (Fancy and White, 1985; 6

Forchhammer and Boertmann, 1993; Ihl and Klein, 2001). 7

In this study we compared the feeding patterns and forage digestion for captive 8

juvenile and adult muskoxen during mid-winter. We controlled several important factors 9

that confound field observations: food quality and accessibility of food, disease and 10

predation. By removing these confounding factors, we were able to directly compare 11

nutritional responses of muskox calves with mature, non-reproductive cows under the 12

same environmental conditions. We experienced two extremes of winter conditions 13

during the study, a relatively warm week (Ta ca. -5°C) and a cold week (Ta ca. -30°C), 14

which allowed us to compare cow and calf feeding patterns and digestion in relation to 15

their thermal environment.16

17

Materials and Methods18

Animals19

Muskoxen were studied at the University of Alaska Fairbanks, R.G. White Large Animal 20

Research Station (LARS; Fairbanks Alaska; lat 65 N, long 146 W). Animals were 21

studied through mid-winter, between December 20th 2004 and January 24th 2005. Mature 22

female (Cows; n = 6) were not pregnant, at least 10 years old (mean  SEM = 13.4  0.8) 23
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and had a mean (  SEM) body mass of 227.5  2.4 kg at the beginning of the study. 1

Calves (n = 3; 2 male, 1 female) were born between April 8th and May 17th 2004. At the 2

beginning of the study the mean (  SEM) calf age was 7.8  0.4 months, and they had 3

mean (  SEM) body mass of 95.2  5.0 kg. Individual cows and calves were identified 4

using reflective ribbon (2 cm x 50 cm) braided into a small patch of fur. 5

Calves were separated from their mothers and weaned on December 1st 2004. The 6

mothers of those calves were not used in this experiment. Thereafter the calves were held 7

together in one pen (0.2 ha) that was directly adjacent to the pen (0.5 ha) for cows. Snow 8

(water) and long (unchopped) Brome grass hay (Bromus sp.; Table 1) was provided ad 9

libitum. All animals were fed a daily ration of a supplement containing milled grain and 10

alfalfa with minerals and vitamins (Alaska Pet and Garden, Anchorage Alaska; Table 1). 11

Cows and calves consumed 200 g and 100 g air-dry mass d-1 of pelleted supplement 12

respectively, which was equivalent to 3.0 g dry matter kg-0.75 d-1 for both groups. The 13

pellet rations were always completely consumed. All animals were trained to regular 14

handling and restraint using a squeeze chute that was housed in a large barn. Animals 15

were herded through the barn and chute daily between 0800 h and 0900 h, weighed (  0.5 16

kg; Tru-Test Model 703 scale; San Antonio, Texas) and fed the ration of pellets. 17

18

Weather19

We recorded ambient temperature (Ta), wind speed, wind gust speed and solar radiation 20

every 10 min  (HOBO Weather Station, Bourne, Massachusetts). Wind speeds and Ta21

were measured at the height of adult female muskoxen (110 cm). Snowfall was recorded 22

3 km south of LARS at the Agricultural & Forestry Experiment Station. 23



7

1

Animal Behaviour and Feeding Patterns2

Behavioural observations of captive muskoxen were carried out in two 5-day bouts in 3

early January 2005. The first bout (WEEK 1) commenced at 0900 h on January 3 and was 4

terminated on January 8 at 0800 h. The second bout (WEEK 2) commenced at 0900 h on 5

January 9 and was terminated on January 14 at 0800 h. Thus, during WEEK 1 and 6

WEEK 2 animals were observed continuously for 23 h d-1. Observations were not 7

recorded between 0800 and 0900 h daily as the animals were disturbed for collection of 8

faeces, body mass weighing and other procedures (see below).9

Animals were observed from a tower (height 4.3 m) overlooking both pens. Hay 10

was provided in a feeder that was located within 15 m from the base of the tower. Fresh 11

hay was offered at irregular times each day to prevent entrainment of feeding patterns. 12

When there was sufficient daylight animals were easily observed and identified by the 13

naked eye or by using binoculars. Under low light conditions, animals were identified 14

using a hand-held night-vision scope (Infra-red Imager, Rostov Cyclops 8M, Russia). We 15

used a point-sampling technique (Dunbar 1976) for the quantitative recording of specific 16

behaviours, including lying, feeding, standing without feeding, moving (walking or 17

running), playing and other (e.g. eating snow, scratching). Play behaviour was recorded 18

as interactions such as head shaking, head butting and body pushing that were observed 19

away from the feeder. Total activity was calculated as the sum of time spent on all 20

recorded events excluding lying. Point sampling scans were made every 10 minutes. The 21

times of initiation and termination of each feeding bout was recorded for each animal to 22

calculate total feeding time.23
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Faecal Output and Hay Digestibility 1

Faecal output was estimated in WEEK 1 and WEEK 2 by continuous dosing with an 2

indigestible marker, Chromium (Cr), fed to each animal as Chromium oxide (Cr2O3; 3

Brandyberry et al., 1991; see also Musimba et al., 1987). The Cr2O3 marker was packed 4

into gelatine capsules (Gel-cap, Size #0, 0.68 mL; Torpac New Jersey) to  0.01 g. The 5

Cr2O3 was fed to each animal daily between 0800 h and 0900 h by mixing capsules with 6

their daily pellet ration. Doses for Cr2O3 were 1.0 g and 0.75 g d-1 (i.e. 0.7 g and 0.5 g Cr) 7

for the cows and calves respectively. We dosed animals each day for 14 days before the 8

experiment (WEEK 1) to equilibrate the contents of the digestive tract with Cr2O3. 9

Dosing continued for a further 15 d throughout the observation period. Fresh faecal 10

samples (ca. 100 – 200 g wet-mass) were collected before dosing each morning and 11

frozen for subsequent analysis. Faecal dry matter (DM) output by each animal was 12

calculated from the concentration of indigestible Cr in the faeces according to 13

Brandyberry et al., (1991):14

DM)g(mgCr  Faecal
)d(mgdoseCr )dDM(goutput Faecal 1-

-1
1- (1).15

Dietary Cr (Table 1) provided less than 0.001% of the daily marker dose for either cows 16

or calves.17

Apparent DM and gross energy digestibility from the grass hay were estimated 18

using the naturally occurring micronutrient manganese (Mn). Absorption and secretion of 19

Mn in the gut of vertebrates is negligible and it has been used as a digestibility marker for 20

numerous species (e.g. Kaufman et al., 1976; Dawson et al., 1994; Rosen and Trites, 21

2000). Digestibility was estimated according to (Barboza et al., 2006):22
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100
/
/

-1(%)ity digestibilApparent  
ff

dd

CM
CM

(2);1

where Md = concentration of Mn in the hay diet; Cd = concentration of component (DM 2

or energy) in the hay diet; Mf = concentration of Mn faeces; and Cf = concentration of 3

component (DM or energy) in faeces. The pelleted ration did contain a quantity of Mn 4

that was excreted in faeces along with that from hay. Daily intakes of Mn from the 5

pelleted ration amounted to 14.8 mg and 7.4 mg for the cows and calves respectively. 6

This represented a constant influx of Mn and, assuming that it was 100% indigestible, 7

daily faecal Mn (g d-1) outputs were corrected for each animal by subtracting 14.8 or 7.4 8

mg as appropriate. This provided an estimate of the faecal Mn that was eliminated solely 9

from the hay, which was then used to calculate apparent DM and energy digestibility.10

11
12

Dry Matter and Energy Intake13
14

Daily dry matter intake (DMI) and gross energy intake (EI) from grass hay were 15

estimated from the apparent digestibility and total faecal output of each component 16

according to:17

)itydigestibilapparent -(1outputFaecal  Intake (3);18

where intakes and faecal outputs were g DM d-1 or kJ d-1, and apparent digestibility is 19

fraction of intake. Apparent DM and energy digestibility were then to estimate digestible 20

dry matter intakes (DDMI) and digestible energy intakes (DEI) respectively.21

22
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Rates of Food Passage and Mean Retention Time1

At the end of WEEK 2, the passage (ROP) of fluid and particulate markers through the 2

entire gastrointestinal tract was measured over 5 days. Passage of solutes was measured 3

using a pulse dose of cobalt-ethylenedinitrilotetraacetic acid (Co-EDTA) (Udén et al., 4

1980). Doses were 2.0 g and 1.5 g Co-EDTA for cows and calves respectively. Doses 5

were administered using gelatine capsules (Gel-cap, Size #00 for cows and #0 for calves, 6

Torpac New Jersey), which are known to dissolve in water within a few minutes. 7

Capsules (  0.01 g Co-EDTA) were offered to animals along with their pelleted ration. 8

All animals ingested the markers within 5 min, except two cows that consumed the entire 9

dose over 40 min, but this did not appear to affect the appearance of the fluid marker in 10

their faeces- see results). One cow refused the Co-EDTA. Thus, passage of the fluid 11

marker was measured in n = 5 cows and n = 3 calves.12

The passage of particulates was measured using ytterbium (Yb) mordanted to 13

plant cell walls as a marker and offered in a pulse dose (Udén et al., 1980). Cell walls 14

(neutral-detergent fibre) were prepared by neutral detergent washing (Van Soest et al., 15

1991) of previously collected muskoxen faeces dried at 50 C for 48 h and coarsely 16

ground (Barboza et al., 2006). After neutral-detergent washing, faecal fibre was separated 17

into size classes by wet sieving and particles between 500 m and 1000 m were retained 18

for mordanting (Udén et al., 1980). The Yb-mordant was packed into gelatine capsules (19

0.01g; Gel-cap, Size # 000, 1.37 mL; Torpac New Jersey) and offered to animals along 20

with their pellet ration. Doses of the Yb-mordant were 3.2 g for adults (8 capsules) and 21

1.6 g for calves (4 capsules). Only three animals (two calves and one adult) ingested the 22

entire dose in capsule form. In all other cases, the dose was mixed directly with the pellet 23
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ration and as such actual doses were unknown. Even when mixed with a pellet ration, n = 1

3 cows refused the dose. Thus, passage of the particulate marker was measured in n = 3 2

cows and n = 3 calves.3

After dosing, all animals were released to their respective pens and fresh faecal 4

samples were collected directly from the ice/snow at approximately 4, 8, 12, 24, 48, 72, 5

96 and 120 h post dose. Samples were immediately stored frozen for later analysis (see 6

below Sample Preparation and Analysis). Mean retention times (MRT) of each marker 7

were calculated according to Thielemans et al. (1978; see also Warner, 1981): 8

ii

iii

TC
TTC )((h)MRT (4);9

where Ci is the concentration of marker (Co or Yb) in faeces collected at the ith 10

defecation post dose at time Ti and Ti is the interval between subsequent samples.11

12

Gastrointestinal Tract Fills13

Total DM in digesta (i.e. dry gut fill) for cows (n = 3) and calves (n = 3) was calculated 14

from the MRT of particulate marker, the average faecal output and the average DM 15

digestibility (Holleman and White, 1989). Indigestible fill (VN; g DM) was calculated as:16

MRTN FV (5);17

where F = faecal output (g DM h-1) and MRT = particle MRT (h). Total digestive tract 18

fill (V; g DM), was then calculated as the sum of the indigestible and digestible fill 19

according to:20

)1(2
N

N A
AVVV (6);21
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where A = fractional apparent DM digestibility and assuming that the absorption of 1

ingested food occurs linearly (see Holleman and White, 1989). It should be noted that the 2

marked particles used to measure particle MRT may not have represented the full range 3

of digesta particle sizes, but our results provide a useful index of total DM digesta 4

contents (see also Gross et al., 1996). Total wet-matter contents of the entire 5

gastrointestinal tract were then estimated assuming digesta moisture was 88% (after 6

Knott et al., 2004).7

8

Sample Preparation and Chemical Analysis9

Food and faeces were dried in a forced convection oven at 55°C (Robertson and Van 10

Soest, 1981) until constant mass. Dry faeces were bulked separately for WEEK 1 and 11

WEEK 2 for each animal by randomly selecting 5 pellets from each day’s collection. Dry 12

feed (hay and pellets) and bulked faeces were then ground through a 1.25 mm mesh (#20) 13

using a Wiley Mill (Arthur Thomas Co., Scientific Apparatus, Philadelphia, USA) before 14

analysis for gross energy and mineral contents (Cr, Mn, Co and Yb). Energy contents 15

were determined in duplicate by combusting sub-samples (0.7 g) in an adiabatic bomb 16

calorimeter (Parr Instruments, Boleen, IL.). Mineral contents of hay, pellet ration and 17

bulked faeces (WEEK 1 and WEEK 2) were determined by directly coupled plasma 18

spectrometry (DCP; Peltier et al., 2003).19

20
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Statistical analysis1

All statistical tests were performed using Minitab for Windows 12.1 (1998; Minitab Inc., 2

PA, USA) and JMP for windows (JMP 5.1.2 SAS Institute Inc, NC). Means are reported 3

± 1 standard error (SEM). 4

We used repeated measures general linearised models (GLM) to compare specific 5

behaviours as proportion of all recorded behavioural events within and between weeks. 6

Proportional data were arcsine transformed prior to analysis. Other behaviours, including 7

feeding time, number of feeding bouts and bout length, were also analysed using repeated 8

measures GLMs with animal (i.e. subject) as a random factor. Play (%) was compared 9

within and between weeks using Friedman’s tests, a non-parametric ANOVA for 10

repeated measures (Zar, 1999). Significant differences detected by Friedman’s test were 11

further investigated using equation 11.3 from Zar (1999) with standard error adjusted for 12

repeated measures and critical q = 0.05 (Zar, 1999).13

We used repeated measures GLMs to compare body mass, faecal output (DM and 14

energy), apparent digestibility (DM and energy) and whole animal feed intake (DMI, 15

DDMI, EI and DEI) within and between ages from WEEK 1 and WEEK 2, with animal 16

(subject) as a random factor. Digestibilities were arcsine transformed prior to analysis. 17

The MRTs for the digesta markers (Co and Cr) were compared within age classes using 18

paired 2-tailed t-tests, and between ages using unpaired 2-tailed t-tests. At the beginning 19

of WEEK 2, one calf refused further Cr2O3 doses and its faecal output for WEEK 2 was 20

estimated as a missing data point according to Snedecor and Cochran (1989) for a 21

randomised block design (Hume, 1974).22
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The small sample size for calves when combined with a repeated measures design 1

did not provide sufficient degrees of freedom for an analysis of co-variance to examine 2

body size effects on intakes (dry matter or energy). Consequently, we compared intakes 3

(DMI, DDMI, EI and DEI) by cows and calves within and between weeks on an 4

allometric basis. For this we used a body mass exponent of 0.75 (Kleiber, 1975; Schmidt-5

Nielsen, 1984; Hayssen and Lacy, 1985; Nagy et al., 1999). 6

Assumptions for statistical analysis were tested using the Kolmogorov-Smirnov 7

test for normality (  = 0.05) and Levene’s test for homogeneity of variances (  = 0.05). 8

To account for violation of normality or homogeneity of variances, allometrically-9

adjusted DDMIs (g kg-0.75 d-1g), energy intakes (kJ kg-0.75 d-1) and DEIs (kJ kg-0.75 d-1) for 10

cows and calves were log10 transformed prior to analysis. There were no significant 11

interactions between animal age and week for any response variable. 12

13

Results14

Weather15

Ambient conditions during the study are summarized in Table 2. Average ambient 16

temperature dropped by 28°C from WEEK 1, a relatively “warm” period, to WEEK 2, 17

which we defined as a “cold” period. The ensuing period for measures of rate of passage 18

was 8°C warmer than WEEK 2. Wind and solar radiation were low throughout the study 19

(Table 2). Snow fell only during WEEK 1 for a total accumulation of 28.5 cm between 20

days 1 and 4. 21

22
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Feeding Patterns and Other Behaviour1

Feeding bouts (min) were similar between age classes, but bouts were 5-10% longer in 2

the cold week (WEEK 2) than in the warm week (WEEK 1) for both age groups (Table 3

3). Consequently, total amount of time spent feeding was increased by 22 min d-1 for 4

cows and by 30 min d-1 for calves between the warm week (WEEK 1) and the cold week 5

(WEEK 2; Table 3; P < 0.05). Calves had an average of four additional feeding bouts 6

each day compared with cows in both WEEK 1 and WEEK 2. Calves spent more time 7

feeding than the cows in WEEK 1 and WEEK 2 by 34.3 min d-1  and 44.7 min d-1, 8

respectively (Table 3; P <0.05).9

Differences in the feeding patterns of cows and calves were reflected in their time 10

budgets. Calves spent also more time feeding than cows when examined as a proportion 11

of all recorded behaviours (Table 4). The proportions of time spent feeding by cows and 12

calves were also greater in WEEK 2 than in WEEK 1 (Table 4). When not feeding, cows 13

and calves spent the bulk of their time lying; this comprised 60-70% of all recorded 14

behaviours. On average, cows spent more time lying than calves in both weeks (Table 4). 15

All other behaviours such as moving, standing and playing each comprised 5% or less of 16

all recorded observations (Table 4). The calves did exhibit play behaviours that were not 17

observed for the cows in either week (Table 4). There were no significant differences in 18

the proportion of time spent playing by calves between WEEK 1 and WEEK 2 (P > 0.05; 19

Table 4). The proportion of time active did not differ between the warm and cold weeks 20

for each age group (Table 4).21
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Faecal Output and Forage Digestibility1

Faecal Cr concentrations reached a plateau in cows and calves by the commencement of 2

WEEK 1; the average concentration of Cr from bulked daily faecal samples for all 3

muskoxen was 381 ± 18 g g-1 DM for WEEK 1. Faecal DM (kg d-1) or energy (MJ d-1) 4

outputs were not significantly different between cows and calves in either WEEK 1 or 5

WEEK 2. There were also no significant differences in faecal DM or energy outputs 6

within each age class between weeks (Table 5). There were no significant differences 7

between cow and calf apparent digestibilities for DM or energy from the grass hay diet 8

(Table 5). However, the apparent digestibility of DM from hay was significantly lower in 9

WEEK 2 compared with WEEK 1 for both the cows and calves, by around 4-5 percent (P10

= 0.05; Table 5).11

12

Dry Matter and Energy Intakes13

Calves consumed as much gross DM and digestible DM as cows in both the warm 14

(WEEK 1) and the cold (WEEK 2) weeks (Table 5). There were no significant 15

differences within each age class between weeks for either gross DMI or DDMI. 16

Similarly, we found no significant differences in whole-animal gross energy intakes or 17

DEIs between age classes in either WEEK 1 or WEEK 2, and no significant differences 18

between weeks within ages (Table 5). On an allomteric basis, DDMI and DEIs by calves 19

(kg-0.75 body mass d-1) were 1.8-1.9 times greater than those of the cows (P < 0.001; Table 20

6). 21
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Feed Passage and Mean Retention Time1

Patterns of elimination for both fluid (Co) and particulate (Yb) markers from cows and 2

calves were similar, but passage rates were generally faster among calves (Fig. 1). Cows 3

retained markers (i.e. MRTs) longer than calves; 13 h longer for fluids and 6 h longer for 4

particles (Table 7). Within each age class, retention of the fluid marker was shorter than 5

that of marked particles (Yb), by around 10 h for cows and 15 h for calves (Table 7).6

7

-------Insert Fig. 1 near here------8

9

Gastrointestinal Fill10

Absolute fill (kg) of digesta in the gastrointestinal tract was similar between cows and 11

calves for both wet and dry mass (Table 8). However, per unit of body mass the ingesta 12

(dry and wet) content of calves was twice that of cows (P < 0.01). On an allometric basis 13

(i.e. per kg0.75), calves digesta content was 1.6 times greater than that of cows (P < 0.01; 14

Table 8).15

16

Discussion17

Seasonal activity and movement of free-ranging muskoxen are lowest in mid-winter 18

compared with other seasons. Wild animals usually travel less than 1.0 km d-1 and spend 19

the greater portion of their time lying (resting, sheltering or ruminating; Forchhammer, 20

1995; Reynolds et al., 2002). Similarly, in our captive study, cows and calves spent the 21

greater portion of their day lying (ca. 70%), with little activity other than feeding (ca. 23-22

30%). However, our captive muskoxen spent half as much time feeding (5.3-6.5 h d-1; 23
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Table 3) as comparably aged free-ranging animals during mid-winter (10-12 h d-1; 1

Forchhammer, 1995). Animals in the field therefore spend more time, and presumably 2

more energy, on feeding. Additional costs would include movement within and between 3

feed patches and also that for digging through ice-crusts to access forage. More 4

importantly, we found that calves spent more time feeding than did cows, and they 5

required more daily feeding bouts (Table 3) to achieve the same levels of feed intake (kg 6

DM d-1; Table 5).7

The smaller body size of the muskox calves could influence their feed intakes via 8

several paths. A small body size is usually associated with faster rates of food passage 9

(Robbins, 1993), which is particularly important for herbivores because it may limit the 10

time available for microbial fermentation. Whether such generalisations apply to 11

juveniles within species is uncertain, but recent analyses have argued that MRT is less 12

affected by body size in adult herbivores than was previously thought, both between and 13

within species (Clauss et al., 2006; Clauss et al., 2007). Nonetheless, food passage for 14

both fluid and particulate markers was faster for our muskoxen calves compared with 15

cows (Table 7). Whether this difference was less than expected given their 3-fold 16

difference in body mass is difficult to say. More information on the intraspecific scaling 17

of gut size, feed intake and body mass for muskoxen is required and particularly using 18

animals across the full range of ages and sexes.19

The MRTs for both fluid and particle markers for our muskox cows were 20

comparable to those previously reported for castrated males fed grass hay in mid-winter 21

(ca. 44 h for fluids and 49 h for particles; Barboza et al., 2006). Consequently, forage 22

digestibility might be expected to be lower for the muskoxen calves compared with 23
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adults, but that was not the case here. We found that the apparent digestibility of DM 1

from brome hay was similar for cows and calves within both the warm and cold week 2

trials (range 52-58%; Table 5), and was comparable to that reported for castrated males 3

fed brome hay in mid-winter (ca. 50%; Peltier et al., 2003). Interestingly, DM 4

digestibility by cows and calves was slightly lower in the cold week than the warm week 5

(Table 5). Ingestion of cold food may reduce fermentation rate in muskoxen even though 6

their ruminal microbes are apparently tolerant of cold shocks (Crater and Barboza, 2007). 7

Regardless, the relatively higher feed intakes and greater number of feeding bouts by 8

calves were not related to a lesser ability to digest the grass hay diet.9

Passage of digesta is less variable than digesta fill in muskoxen. Seasonal 10

increases in food intake of adults by 74% is associated with an increase in rumen turnover 11

of only 10%, but a gain in digesta fill of 58% (Barboza et al., 2006). Retention in the 12

intestines is much longer and more variable than in the rumen for muskoxen. 13

Consequently, high food intakes and digesta fill of calves in winter may be associated 14

with a greater role for post-ruminal digestion and colonic fermentation in calves than in 15

adults. Lichen consumption in winter has been associated with an increase in post-16

ruminal fermentation in reindeer (White et al., 1984; Sormo et al., 1999). However, an 17

absolutely smaller rumen could constrain the amount of food calves can ingest during a 18

single feeding bout; rumen size (empty wet tissue mass) per unit body mass in 60-day old 19

muskox calves was comparable to that of adults (Knott et al., 2004). In other words, 20

rumen fill and overall processing capacity, rather than digestibility of forage, may dictate 21

feed intake patterns of calves in mid-winter. 22
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The levels of wet-ingesta fill for the muskoxen cows in this study were somewhat 1

lower than those previously reported for wild cows. In our study, wet-ingesta were 2

around 14% body mass, compared with 25% for wild cows (Adamczewski et al., 1995). 3

The animals in Adamczewski et al.’s (1995) study, however, were collected feeding on 4

natural diets outside of winter, and both forage quality and season can affect ingesta loads 5

(Barboza et al., 2006). These data suggest that our captive females possessed reserve gut-6

capacity in mid-winter. Adult herbivores in other species have been shown to posses 7

reserve gut capacity when nutritional demands are minimal (e.g. non-reproductive ibex; 8

Gross et al., 1996) or when food quality is high (e.g. non-reproductive kangaroos; Munn 9

and Dawson, 2006). Food intake of pregnant muskoxen is probably the same as that of 10

non-pregnant females. Pregnancy does not affect food intakes of caribou in winter11

(Parker et al., 2005), and most of the demands of pregnancy are met by body fat and 12

protein in caribou and reindeer (Barboza and Parker, 2006; Barboza and Parker, 2007)13

and also in muskoxen (Rombach et al., 2002). However, an apparent “spare capacity” in 14

reproductive females could support higher food intakes for lactation during late winter 15

and early spring (Jenks et al., 1994). Muskoxen can also increase winter gut-fluid 16

volumes to autumnal levels at low ambient temperatures, indicating that they can use 17

their reserve capacity as conditions demand (Crater et al., 2007). Our muskox calves, on 18

the other hand, did not appear to possess similar reserve gut-capacity. Wet-ingesta 19

contents of the calves were ca. 28% body mass, comparable to that of wild juveniles in 20

autumn (ca. 25% body mass; Adamczewski et al., 1995) when feed intakes and growth 21

rates are highest (Peltier et al., 2003; Knott et al., 2005). This would suggest that the 22
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calves in our study were feeding at or near the maximum capacity of the digestive tract, 1

which is similar to reports for other young herbivores (Munn and Dawson 2006). 2

On an allomteric basis, gross DM and gross energy intakes by the cows in our 3

study were comparable to those previously reported for mature, free ranging 4

(Forchhammer, 1995) and captive, non-pregnant (Adamczewski et al., 1994) cows in late 5

winter. Notably, the calves in our study had the same DMI and DDMI as cows that were 6

more than double their body mass (Table 5). Thus, on an allometric basis (i.e. kJ kg-0.75 d-7

1) calves ingested 1.8-1.9 times as much digestible DM and digestible energy as adults 8

(Table 6). In general, high DEIs of juvenile mammals compared with adults are usually 9

attributed to the additional costs of growth (Brody, 1945). But muskox calves routinely 10

stop growing through mid-winter (Peltier and Barboza, 2003), as was the case here, 11

making their relatively higher intakes somewhat perplexing. The calves must have 12

experienced higher energy costs, relative to adults, via some pathway other than growth. 13

Additional energy costs for thermoregulation are one possible explanation. 14

 During winter, muskoxen can face temperature gradients between the 15

environment (Ta) and the body core in excess of 70°C (Blix, 2005). For calves, their 16

higher surface area to volume ratio could impact their daily energy budgets, particularly 17

in light of their more numerous foraging bouts and concomitant exposure to prevailing 18

conditions. However, if calves experienced relatively higher thermal costs then they 19

might have been expected to increase energy intakes more so than cows as Ta’s declined, 20

but that was not the case here. At Tas as low as -40°C (WEEK 2), gross and digestible 21

energy intakes (MJ d-1) by calves and cows were not significantly different (Table 5). 22

More importantly, DEIs by either cows or calves were not significantly higher in the 23
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colder week than in the warmer week (Table 5). Given the exceptional protection offered 1

by muskoxen’s winter underwool, or qiviut (Rowell et al., 2001), it is not surprising that 2

the Tas seen here may not have overly challenged our animals. Other northern ungulates 3

are known to have lower critical temperatures of -20°C (e.g. bighorn sheep; Chappel and 4

Hudson, 1978) and even -40°C (e.g. Svalbard reindeer; Nilssen et al., 1984), but the 5

thermoneutral range has never been measured for adult muskoxen.6

Alternative to higher costs for thermoregulation, muskoxen calves may need to 7

support higher activity levels. Juveniles spent 6% more time on activities than adults, 8

which was mainly allocated to play behaviours (Table 4). Rates of energy demand (kJ 9

min-1) for play interactions such as head butting were probably greater than the average 10

rate of expenditure for all other activities. Small differences in activity budgets may 11

therefore contribute to the higher energy intake of calves, but still cannot explain the 12

large difference in allometrically adjusted DEIs between age groups  (kJ kg-0.75 d-1) 13

(Table 6).14

Overall, the higher DEIs by muskox calves in our study could not be completely 15

explained by extra demands for growth, thermal costs or activity, and are therefore 16

suggestive of intrinsically higher maintenance (and/or basal) energy requirements (MER) 17

compared with adults; MERs being the level of intake needed simply to maintain body 18

mass under thermoneutral conditions (Robbins, 1993). Although our animals may not 19

have been at thermoneutrality, all animals maintained body mass throughout (Table 5) 20

and consequently their energy intakes are reflective of winter MERs. Why calves might 21

have higher intrinsically energy requirements compared with adults is unclear, but our 22

data suggest it may be related to a relatively large gut system, at least in part.23
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Among adult herbivores gastrointestinal size (capacity) usually scales 1

isometrically with body mass (i.e. per kg1; Demment and Van Soest, 1985). However, the 2

calves in our study had wet- and dry-ingesta loads that were approximately twice that of 3

the mature cows (kg kg-1 body mass; Table 7), suggestive of a relatively larger gut system 4

overall. Knott et al. (2004) found total gastrointestinal tissue (g kg-1) in young muskoxen 5

(age 60 days) was 1.8 times that of adults. This was largely explained by the calf small 6

intestine being 4.8 times heavier (g kg-1) than that of adults. Although 60-day calves 7

ingest significant forage by this stage, a larger small intestine is probably related to milk 8

consumption and utilization. That muskox calves can prolong weaning until after their 9

first winter (Adamczewski et al., 1998; White et al., 1989; Parker et al., 1990), suggests 10

that they may retain a relatively long small intestine through winter. The herbivore gut, 11

however, is arguably the most expensive organ system (Stevens and Hume, 1995) and 12

maintaining such a large gut may be decisively costly for young muskoxen during their 13

first winter.14

15

Conclusions16

Like many large herbivore species worldwide, muskoxen are a culturally and 17

economically important for local communities (Gunn, 1995). Predicting how large 18

herbivores might respond to a changing climate is especially difficult (e.g. Coulsen et al., 19

2005) because there is insufficient information about the ecological physiology of 20

juveniles for most species. Here we have shown that even without the additional costs or 21

risks associated with free-living, there were fundamental differences in the relative 22

energy intakes and feeding patterns of juvenile and adult muskoxen in mid-winter. We 23
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suggest that juvenile muskoxen may face a trade-off between having a large mass of 1

intestine to support rapid growth and fat build-up during the spring/autumn (Baldwin et 2

al., 2004; Knott et al., 2005), but they may be energetically constrained to supporting this 3

during their first winter, when forage is limited (Klein and Bay, 1991; Ihl and Klein, 4

2001; Larter and Nagy, 2001) but when suckling and thus milk intake is still possible 5

(Parker et al. 1990; White et al., 1997). 6

7
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Table 1: Dry matter (DM), energy and minerals composition (mean  SEM) of grass hay 

(Bromus sp.) and pellet supplement offered to muskoxen in mid-winter Alaska.

Grass hay Pellets

Dry matter (g 100 g-1 wet-mass) 83.7  0.4 88.7  0.01

Energy (kJ g-1 DM) 18.4  0.01 17.4  0.02

Cobalt ( g g-1 DM) Trace (< 0.1) 0.2  0.2

Manganese ( g g-1 DM) 62.1  3.2 83.4  2.5

Chromium ( g g-1 DM) Trace (< 0.1) 3.4  0.4

Table 1



Table 2: Weather conditions during WEEK 1, WEEK 2 and the food passage trial.

WEEK 1

(n = 5 days)

WEEK 2

(n = 5 days)

Passage trial

(n = 5 days)

Ambient temperature ( C)

Average (  SEM) -4.3  0.1 -32.2  0.3 -24.3  0.1

Maximum -0.3 -13.8 -16.2

Minimum -10.2 -41.1 -28.1

Median -4.4 -34.2 -25.3

Wind speed (km h-1)

Average (  SEM) 1.5  0.1 0.1  0.0 0.02  0.01

Maximum 15.1 4.1 2.7

Minimum 0.0 0.0 0.0

Median 0.0 0.0 0.0

Wind gust speed (km h-1)

Average (  SEM) 7.0  0.4 1.4  0.1 1.5  0.1

Maximum 46.6 13.7 9.6

Minimum 0.0 0.0 0.0

Median 2.7 0.0 1.4

Solar radiation (Watts m-2)

Average (  SEM) 1.1  0.1 4.2  0.3 7.1  0.7

Maximum 16.9 56.9 106.9

Minimum 0.6 0.6 0.6

Median 0.6 0.6 0.6

Table 2



Table 3: Feeding behaviour of mature female (Cow; n = 6) and young-of-the-year (Calf; 

n = 3) muskoxen during a warm (WEEK 1) and a cold (WEEK 2) week in mid-winter 

Alaska.

WEEK 1 WEEK 2
Age Effect

P-value

Feeding bouts (d-1)

Cow 8  0.3A 8  0.5A P < 0.01

Calf 12  0.2A 12  0.4A

Bout length (min bout-1)

Cow 32.1  3.0A 35.5  2.9B NS

Calf 26.8  1.5A 28.0  1.8B

Total feeding time (min d-1)

Cow 319.9  15.6A 342.6  13.1B P < 0.05

Calf 354.2  4.7A 387.3  13.8B

Results are mean (  SEM); Means with different superscript letters denote significant 

differences between WEEK within age groups, a-b P  0.05. 

Table 3



Table 4: Specific behaviours as a proportion (%) of all recorded behaviours for mature 

female (Cow; n = 6) and young-of-the-year (Calf; n = 3) muskoxen during a “warm” 

(WEEK 1) and a “cold” (WEEK 2) week in mid-winter Alaska.

WEEK 1 WEEK 2
Age Effect

P-value

Feeding (%)

Cow 22.8  1.4A 25.5  0.6B P < 0.05

Calf 25.6  0.6A 30.1  1.9B

Lying (%)

Cow 70.2  1.6A 68.0  0.9A P < 0.001

Calf 63.4  0.3A 60.4  2.5A

Moving (%)

Cow 0.9  1.2A 1.2  0.3A NS

Calf 1.6  0.4A 1.0  0.2A

Standing (%)

Cow 5.1  0.4A 4.4  0.3A NS

Calf 3.5  0.2A 4.3  0.6A

Playing (%)

Cow 0.02  0.02A 0.2  0.1A P < 0.001

Calf 4.3  0.6A 2.9  0.4A

Other (%)

Cow 1.0  0.3A 0.7  0.1A P < 0.05

Calf 1.7  0.3A 1.3  0.3A

Active (%)

Cow 29.8  1.6A 32.0  0.9A P < 0.001

Calf 36.6  0.3A 39.6  2.5A

Results are means (  SEM); Letters denote significant differences between WEEK within 

age groups, a-b P  0.05.
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Table 5: Body mass (kg), whole-animal faecal outputs, apparent digestibility and intakes of 

grass hay (Bromus sp.) by mature female (Cow; n = 6) and young-of-the-year (Calf; n = 3) 

muskoxen during a “warm” (WEEK 1) and a “cold” (WEEK 2) week in mid-winter 

Alaska. (DM = Dry matter; DMI = Dry matter intake; DDMI = Digestible DMI; DEI = 

Digestible energy intake)

WEEK 1 WEEK 2
Age Effect

P-value

Body mass (kg)

Cow 228.7  2.3A 227.4  2.4A P < 0.001

Calf 95.5  5.2A 95.9  5.2A

Faeces (kg DM d-1)

Cow 1.7  0.9A 1.7  0.6A NS

Calf 1.6  1.6A 1.5  1.6A

Faecal energy (MJ d-1)

Cow 33.2  1.8A 33.7  1.2A NS

Calf 31.1  3.3A 29.2  3.1A

Apparent DM digestibility (%)

Cow 56.1  1.9A 51.8  1.1B NS

Calf 58.1  0.9A 53.4  3.5B

Apparent energy digestibility (%)

Cow 53.0  2.1A 48.8  1.2A NS

Calf 55.4  0.9A 50.7  3.6A

†
DMI (kg d-1)

Cow 3.9  0.3A (4.1) 3.6  0.1A (3.8) NS
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Calf 3.8  0.4A (3.9) 3.3  0.4A (3.3)

†
DDMI (kg d-1)

Cow 2.2  0.2A (2.4) 1.9  0.8A (2.1) NS

Calf 2.1  0.2A (2.2) 1.8  0.3A (1.9)

†
Gross Energy intake (MJ d-1)

Cow 71.7  5.6A (75.2) 65.8  2.2A (69.3) NS

Calf 69.6  6.9A (71.3) 59.7  7.3A (61.4)

†
DEI (MJ d-1)

Cow 38.5  4.1A (41.1) 32.2  1.4A (34.8) NS

Calf 38.5  3.8A (39.8) 30.5  5.1A (31.8)

Results are mean (  SEM); Letters denote significant differences between WEEK within 

age groups, a-b P  0.05; †Values in parenthesis are means including component intake 

(DM or energy) from the pelleted supplement, and assuming digestibility of DM and 

energy of pellets were comparable at 76% (Barboza, et al. 2006; see text).



Table 6: Allometrically-adjusted (per kg0.75) feed intakes by mature female (Cow; n = 6) 

and young-of-the-year (Calf; n = 3) muskoxen fed grass hay (Bromus sp.) during a 

“warm” (WEEK 1) and a “cold” (WEEK 2) week in mid-winter Alaska. (DMI = Dry 

matter intake; DDMI = Digestible DMI; DEI = Digestible energy intake)

WEEK 1 WEEK 2
Age Effect

P-value

†
DMI (g kg-0.75 d-1)

Cow 66.2  4.8A (69.2) 61.1  2.0A (64.1) P < 0.001

Calf 122.9  8.7A (125.8) 106.1  12.5A (109.0)

†
DDMI (g kg-0.75 d-1)

Cow 37.6  3.6A (39.9) 31.7  1.4 A (34.0) P < 0.001

Calf 71.4  5.4A (73.7) 57.3  9.5A (59.6)

†
Gross Energy intake (kJ kg-0.75 d-1)

Cow 1218  89A (1269) 1124  37A (1175) P < 0.001

Calf 2261  160A (2312) 1950  227A (2001)

†
DEI (kJ kg-0.75 d-1)

Cow 654  66A (693) 549  25A (588) P < 0.001

Calf 1253  93A (1292) 999  168A (1038)

Results are mean (  SEM); Letters denote significant differences between WEEK within 

age groups, a-b P  0.05; †Values in parenthesis are means including component intake 

(DM or energy) from the pelleted supplement, and assuming digestibility of DM and 

energy of pellets were comparable at 76% (Barboza et al., 2006; see text).
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Table 7: Mean retention times (MRT; h) for solute (Co) and particle (Yb) markers after a 

pulse dose in mature female (Cow) and young-of-the-year (Calf) muskoxen.

MRT (h)

Solute (Co) Particle (Yb) 

Cow 39.4  0.7A (n = 5) 48.3  0.9B (n = 3)

Calf 27.6  0.7A (n = 3) 42.7  1.4B (n = 3)

Age Effect

P-value
P < 0.01 P < 0.05

Results are mean (  SEM); Letters denote significant differences between digesta 

markers (Co vs Yb) within age groups, a-b P < 0.01.

Table 7



Table 8: Estimated gastrointestinal tract fill (gut fill) of dry and wet ingesta for mature 

female (Cow) and young-of-the-year (Calf) muskoxen fed brome hay ad libitum.

Dry ingesta Wet ingesta

(kg) (g kg-1) (g kg-0.75) (kg) (g kg-1) (g kg-0.75)

Cow (n = 3) 3.7  0.3 16.2  0.8 62.9  3.1 32.3  1.9 142.2  6.6 551.8  28

Calf (n = 3) 3.1  0.3 32.1  2.6 100.4  8.5 27.1  2.8 281.4  23 880.7  74

Age Effect 

P-value
NS P < 0.01 P < 0.01 NS P < 0.01 P < 0.01

Results are mean (  SEM).

Table 8
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