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ABSTRACT: The paper presents a comparative study performed by the Centre of Medical 
Radiation Physics (CMRP) on three multichannel Data Acquisition Systems (DAQ)  based on 
different analogue front-ends to suit a wide range of radiotherapy applications. The three front-
ends are: a charge-to-frequency converter developed by INFN Torino, an electrometer and a 
charge-to-digital converter (both commercial devices from Texas Instruments). For the first two 
(named DAQ A and B), the CMRP has designed the read-out systems whilst the third one 
(DAQ C) comes with its own evaluation board. For the purpose of the characterization DAQ A 
and DAQ B have been equipped with 128 channels while DAQ C has 256 channels. In terms of 
performances, the DAQs show good linearity over all the dynamic range. Each one has a 
different range of sensitivity ranging from less than 1 pC up to 13 nC, which makes the three 
front-ends complementary and suitable for use with different radiation detectors for different 
radiotherapy applications, or in a mixed solution which can house different front-ends. 

KEYWORDS: Front-end electronics for detector readout; Data acquisition concepts; Dosimetry 
concepts and apparatus. 
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1. Introduction  

New radiotherapy cancer treatment techniques such as Intensity Modulated Radiation Therapy 
(IMRT), Volumetric Modulated Arc Therapy (VMAT), Tomotherapy and Stereotactic 
Radiosurgery (SRS) use a radiation beam to target the treatment of the affected volume within 
the body of the patient. The increasing complexity of treatment delivery has enabled the 
escalation of the target dose, a reduction in the margins of the treatment field sizes and increase 
in the dose per fraction, while maintaining side effects to the surrounding organs-at-risks at an 
acceptable level [1]. However, such higher conformity and hypofractionation have also created 
the conditions for more severe undesired effects in the case of a malfunctioning medical 
accelerator or human error during the planning phase or the patient treatment. Therefore, the 
role of quality assurance (QA) and treatment is becoming extremely important. 2D dose 
distributions are generally evaluated by several means including passive (e.g. radiochromic 
films, TLDs) and active systems (e.g. electronic portal imaging devices or electronic equipment 
based on small volume ionising chambers or silicon diodes). The electronic devices for 2D or 
3D QA in external beam radiotherapy are based on multichannel pixellated detector connected 
to a front-end which feeds the analog to digital data converters. The requirements for the 
detectors are high spatial resolution and high sensitivity. The readout system needs also to have 
a wide dynamic range and good linearity. 

Currently there are multiple commercially available instruments which have been designed 
for 2D and 3D dose mapping for External Beam Radiation Therapy (EBRT) such as Octavius 
4D from PTW, ArcCHECK from Sun Nuclear and Delta4 from ScandiDos.  Octavius 4D is a 
rotating phantom which can house a detector plate based on ionising chambers [2]. It has the 
capability to keep the detector always perpendicular to the beam using an inclinometer placed 
onto the LINAC gantry as an independent position monitoring of the head. The system has no 
dead time and it communicates with the PC via RS232 or Ethernet protocol. The minimum 
acquisition time frame of the sensor array is limited to 200 ms. ArcCHECK instead has a built-
in helical grid of SunPoint diode detectors; the angle of the gantry is measured by an 
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inclinometer and embedded in the calculations performed by the software [3]. Delta4 represents 
another example of QA equipment based on silicon diodes; sensors are arranged in two 2D 
arrays of 1069 elements distributed across 20x20 cm2 of sensitive area. The orientation of the 
phantom can be adjusted by the user but the 3D dose measure is calculated by the software. The 
acquisition frame is synchronised with the LINAC and integration of the current is performed 
only during the beam pulse (i.e. 360 Hz for a Varian 2100 EX linear accelerator). The system 
communicates to the PC via a proprietary protocol through a Cat-5 cable. All the commercial 
instruments are competitive for an end-user clinical environment, but most of their Data 
Acquisition Systems (DAQ) do not allow access to the information at a very low level, such 
single channel response of the detector as a function of time, or the use of different detectors, 
important features for research purposes. The Centre of Medical Radiation Physics (CMRP) has 
designed a custom DAQ.  Several multichannel architectures have been investigated, each one 
based on different analogue front-end to suit a wide range of applications in radiotherapy, from 
pre-treatment QA in a phantom to intra-operative beam monitoring device such as MagicPlate 
[4]. The aim of this study is the characterisation and comparison of the performance of three 
solutions based on research grade and commercial electrometer chips for use in 2D/3D and 4D 
dose mapping in EBRT. The DAQ ultimate goal is the readout of two 2D MagicPlate detectors, 
each of them constituted by an array of 11×11 CMRP p-type diodes with a sensitive volume of 
0.6x0.6x0.05 mm3 and detector pitch of 10 mm. The detector has been fully characterised by 
Wong et al. [4] with reproducibility within 1.1%, percentage depth dose compared to ionisation 
chamber within 0.7% and good dose linearity. The detector is inserted in a rotating phantom that 
follows the movements of the head of the LINAC to be always perpendicular to the beam and 
avoid complex correction algorithms of the diode’s angular dependence. The second detector is 
instead mounted on the LINAC accessory tray for online beam monitoring during the treatment. 

The DAQ has 256 channels and is controlled by a custom designed FPGA Master Board 
(FPGA MB) communicating with the PC through a USB2.0 link. 

Figure 1 shows the schematic block diagram of the DAQ architecture. The FPGA MB 
houses a Xilinx XC3S400 and the Cypress USB interface. The MB drives the inclinometer, 
located on the accessory tray with the MagicPlate beam monitoring detector, and gives the 
position of the gantry head to align the phantom with the beam. A proportional-integral-
derivative (PID) controller module has been designed and implemented in the FPGA to set and  

 
Figure 1: DAQ schematic block diagram; The IB module identifies the three options of the 
front-end electronics investigated in this work 
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Table 1: Data Acquisition Systems Specifications 
Parameter Description DAQ A DAQ B DAQ C 

(evaluation 
board) 

Unit 

Num. of 
channels 

Number of channel acquired 128/256 128/256 256  

Resolution Analog to Digital conversion 16 16 16/20 bit 
Dead Time Time needed for data transfer  14/28 67 / µs 
Minimum 
IT 

Minimum Integration Time 1 0.014 0.166 ms 

MSR Maximum frame sampling rate 1 10 6 kHz 
MCR Maximum conversion rate 10 1 0.003 MHz 
BW Bandwidth of the DAQ 23 160 3  kHz 
control the position of the phantom based on the information that the inclinometer and the 
optical encoder provide. A Graphical User Interface (GUI) has been custom designed by CMRP 
and provides the operator with all the controls to acquire the data from the detector, to manage 
the phantom rotation and to monitor the LINAC gantry position, in real time. Three 
multichannel devices have been characterised and tested for the use with MagicPlate: the 
TERA06 charge-to-frequency converter (DAQ A), an ASIC developed to readout an array of 
ionisation chambers used in radiation therapy [5]; the commercial electrometer named AFE0064 
(DAQ B) from Texas Instrument (TI) and the multichannel charge-to-digital converter from TI 
called DDC264 (DAQ C). For the purpose of the comparison with the TERA and the AFE, the 
DDC264 has been tested in terms of full scale range, noise and resolution using its own 
evaluation board DDC264EVM (TI) [6], which is equipped with a Xilinx Spartan3 FPGA and a 
USB FDTI interface. 

2. Materials and Methods 

In order to compare the performances of the three DAQ architectures (Tab.1) an array of 128 
resistors polarised by a waveform generator has been used to simulate the current generated by a 
pulsed radiation source such as a medical LINAC [7]. For this set of measurements, the 
following parameters have been defined: integration time (IT) as the interval of integration of 
the input current; acquisition frame (frame) as each set of 128/256 channels read 
simultaneously; dead time (DT) as the time interval required for the acquisition of the data 
during which the analog front-end is disabled. 

For all the three architectures, the DAQ has been placed into a metallic enclosure with an 
aperture for the input resistor array to simulate the normal conditions of operation where the 
detector connected to the electronics is exposed to the beam. The DAQ is then connected to a 
laptop by 25 meters long USB2.0 extension cable.  

2.1 Graphical User Interface 
The GUI, named RadX-DoseView, has been entirely designed by CMRP. It has been compiled 
under the C++ developing suite Nokia QT rev4.0. The GUI manages the USB link using 
dynamic language libraries (DLL) specifically developed for the Cypress chip interface. It 
initializes the USB-link, sends the firmware to the FPGA and acknowledges if the device is 
connected and fully operating. The operator masters the acquisition settings and the relevant 
parameters such as integration and the acquisition time and all the complementary signals 
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necessary for the operation of each specific analogue front end. Commands are sent through the 
USB using specific endpoints defined into the firmware and dedicated to the communication of 
the triggers, the data, the channel headers and parity bits. Once the acquisition runs, the FPGA 
stores the data into an internal First-In First-Out memory stage (FIFO) and triggers the GUI to 
start the download of the data in burst-mode. The size of the burst can be user-defined and 
optimised based on the CPU computation load of the host computer to minimise the USB 
latency which varies between 2 to 3 ms. Data losses are avoided by the use of a dual, cascade 
FIFO buffer stage of 17 Kbyte of RAM.  

As the detector is comprised of multiple diodes each with its own intrinsic response to 
radiation, an important feature of the GUI is to acknowledge and take into account these minor 
intrinsic differences and to equalize the response. This is done by irradiating the detector with a 
20x20 cm2 broad beam by a 6 MV photon beam at a depth of 10 cm in solid water. In this 
condition, the flatness of the LINAC beam is guarantee within the 2% fluctuation [8] and 
equalisation is then performed by using the response of the central detector as reference. 

Though the GUI, the user can load the firmware into the FPGA; select the integration time, 
the duration of the acquisition, and the number of channels to be read out, the frequency of the 
readings (frames) and synchronised or asynchronous acquisitions by an external or an internally 
generated trigger, respectively. The limits of each parameter depend on the front end in use and 
are automatically updated by the interface after the handshake with the instrument. Data are 
decoded and stored in a file, named by the user, and each channel can be displayed in real-time 
or by a post-process analysis tab. The visualization can be changed according to the detector 
used and can be a histogram with counts versus channel, frame-by-frame integral, or in a colour 
mapping mode for 2D visualization. The measurement can also be visualised in playback as a 
colour map calibrated in dose (Gy) or counts. RadX-DoseView provides also the visualisation of 
the position of the LINAC gantry and of the rotatable phantom in real time. 

2.2 Front end TERA06 

The DAQ A houses two TERA06 chips to readout 128 channels simultaneously [9]. The 
interface board (IB) consists of a buffer shifter to match the TTL logic levels required for the 
TERA chip and provides the power supply rails. Each channel of the TERA06 is a charge to 
frequency converter, followed by a 16-bit counter. The input current from the detector (Iin) is 
integrated using an operational amplifier configured as an integrator with a capacitance Cint. 
When the output of the integrator exceeds a given threshold Vth, a fixed amount of charge Qc 
(named reset charge) is subtracted from the capacitor Cint and a pulse is sent to the counter. The 
frequency of the pulse follows the relation f=Iin/Qc. As important feature, the subtraction of the 
Qc reduces the output of the amplifier and resets the comparator without affecting the 
acquisition [8, 10]. The values of Vth and Qc are settable by the user through external 
potentiometers. The output of the TERA06 is a 16 bit digital number. When the FPGA sends a 
latch signal to the TERA06, it simultaneously stores the values of all the counters in a shift 
register and makes the output of the shift register available to be readout. A digital reset can be 
used for zeroing the counters. The TERA06 can be read in two modalities: Single Sampling 
(SS) and Double Sampling (DS). In SS, counters are reset after each read-out cycle, thus 
introducing a dead time during the transmission of the channels of approximately 14 µs for 128 
channels. In DS, counters continuously accumulate the number of events, the value read must be 
subtracted by the previous sample and overflow will occur without notice. The two modalities 
have been investigated to estimate their effect on the measure of the charge.  
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2.3 Front end AFE0064 
The DAQ B houses two AFE0064 chips; each of them has 64 parallel input channels and two 
differential outputs. Once the appropriate command signals are sent to the chip, all the channels 
integrate the input current simultaneously. The charge accumulated for each channel is then 
converted in a voltage level and stored in an analogue buffer until the command for output 
sampling is sent and the information becomes available to be converted by the ADC. The 
differential outputs can be read in simultaneous mode, which means that they show a new value 
each clock pulse or in sequential mode, with the analogue outputs available alternatively every 
clock cycle [11].  

The sequential mode has been chosen to match the sampling rate of the ADC which is a 
fully differential four channels 16-bit ADC from TI and which works in parallel with two AFEs. 
The architecture allows to readout all the channels in 133 clock cycles. When the outputs are 
enabled, the integrators are reset, thus introducing a total DT of about 70 µs using a 2 MHz 
clock. The FPGA drives both the AFEs and the ADC, synchronising the devices by a custom 
designed internal clock manager. The ADC provides two distinguished serial outputs [12] with 
an effective output rate of 1 MSPS. 

Modern medical LINACs are based on a pulsed radiation beam with repetition rate ranging 
from 200 Hz up to 400 Hz [7]; the electron gun trigger pulse, during which the beam is fired, 
lasts for 3.7 µs with a pulse period width of few milliseconds. The AFE0064 presents the major 
advantage to be able to sample the detector only when the beam is on, by the synchronisation of 
the detector sampling and the analogue to digital conversion with the LINAC. This modality has 
the double advantage of minimising the effects of electronic noise and leakage current, and 
managing the dead time by reading out the integrators while the beam is off. The DAQ B has 
been synchronised by the means of the synch signal provided by the LINAC which is a TTL 
signal synchronous with the maximum repetition rate of the electron gun trigger corresponding 
to the highest dose rate of the accelerator; this approach guarantees the pulse falls within the 
integration time avoiding any loss of charge. To give more flexibility to the system and be able 
to use it with LINACs from different manufacturers (Elekta, Varian or Siemens), the frequency 
can be adjusted by the user and goes up to 5 kHz. Dynamic range is also adjustable by the GUI 
by changing the full range scale from 0.13 pC up to 9.6 pC in eight steps. DAQ B has been 
tested using an array of 10 MΩ (1% accuracy) resistors polarized with a fixed current of 18 nA 
and readout at the largest scale range available.   

2.4 Front end DDC264 
The DAQ C is based on the DDC264 EVM evaluation board provided by TI and equipped with 
256 channels. The evaluation board has been modified and integrated into the architecture of the 
DAQ to be readout by the FPGA and controlled by the GUI. 

The operator interface allows the selection of the frequency of the acquisition, the full 
scale range and the IT, it shows the results in real-time and provides data analysis features. The 
evaluation board comes also with a set of 256 resistors (10 MΩ) which can be polarized using 
an external voltage signal. The DDC264 provides two integrators for each channel; when the 
first is active the second is off and transfers the value of the potential generated by the charge 
accumulated during the IT across the integration capacitor to the digitalisation stage.  Therefore, 
DAQ C does not have dead time during the acquisition, which is particularly important for 
application where the radiation source is not pulsed. The full scale range extends from 12.5 pC 
up to 150 pC, making the DAQ C very promising for high dose rate applications. 
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3. Experimental results and discussion 

TERA06 have been set to have a conversion factor of 200 fC per count has suggested by the 
manufacturer for maximisation of the dynamic range. The possibility to use the TERA06 with 
two different sampling modalities (SS or DS) requires a test to compare the performance of the 
chip varying the integration time. For the purpose to measure the effect of the DS and SS 
especially at very short IT, a fixed current of 2.65±0.01 nA has been generated by applying a 
fixed voltage across a set of 128 resistors, each 1 GΩ. Figure 2a shows the charge measured in a 
single frame as function of the integration time. The chip has a good linearity of the response 
and there is an excellent agreement between the two modalities. Figure 2b shows the total 
charge, obtained as the sum of all the frames, for different integration times. At high sampling 
frequency (IT below 1 ms) there is a strong discrepancy between the measured and the expected 
total charge which is even more pronounced when the DS modality is used. 

The sampling frequency of 1 kHz, corresponding to 1 ms of IT seems to be the higher limit 
for a reliable operation of the TERA06. The chip seems to be unresponsive for higher sampling 
frequencies with the digital output occasionally frozen. This effect is much more evident when 
the DS mode is adopted.  In DS mode, the response for the n-frame is calculated by the 
subtraction of the counts of the (n-1) frame. If the digital output freezes there are occasionally 
frames which have null response and cumulating the response across the total acquisition time 
produces a lack of charge measured. Overall the two sampling modalities show comparable 
performances resulting on the selection of the SS mode as standard setup in order to decrease 
the computational load of the GUI. 

Figure 3 shows the linearity of the DAQ B as a function of the integration time. The 
minimum selectable value is 14 µs, limited by the AFE0064, whilst the maximum value is 
limited only by the full scale range. The constant current adopted for the measurement 
corresponds to 18.3±0.02 nA. The response of the system is linear over all the dynamic range; 
the experimental measurement overestimates the expected value of 2% with an uncertainty 
produced by the noise fluctuation of ±0.75%. 

  
Figure 2. a-left) Charge measured in a single frame as a function of the IT (logarithmic scale); 
b-right) Total charge as a function of the IT in one second total acquisition time. Error bars have 
been calculated considering two standard deviations of the distribution of the response around 
the expected value.  
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Figure 3: DAQ B linearity 

The DAQ C (fig. 4) shows an excellent linearity as a function of the input current; the 
agreement between expected and measured values is within 0.88%. 

  

Figure 4: DAQ C linearity 

 Figure 5 summarises and compares the full scale ranges for the DAQ A, B and C as a 
function of the input charge. Data have been collected using the 1 GΩ resistors for DAQ A and 
10 MΩ for DAQ B and C. By changing the voltage across the resistors and the integration time, 
each DAQ has been forced to measure from its lowest value up to the full scale. This 
characterisation is particularly useful to identify the specific range of use of these three front-
ends in radiotherapy quality assurance. By selecting the largest range for both the AFE0064 and 
the DDC264, corresponding to 9.6 pC and 150 pC full scale, respectively, the DAQ become 
complementary covering a dynamic range from less than 1 pC up to tens nC including also the 
TERA06. Specially for applications such as stereotactic body radiotherapy where a massive 
amount of dose per fraction (20 Gy/f) [13] is delivered in a small area for treatment of tumours 
of brain, spinal cord and lung, a wide dynamic range DAQ with high temporal (fast acquisition  
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Figure 5: Linearity of the three Data Acquisition Systems 

 
time) and spatial (large number of channels) resolution are stringent requirements for a quality 
assurance instrumentation. QA procedures also for standard Stereotactic Radiosurgery and 
IMRT treatments require dose profile at large depth where a high sensitivity and high spatial 
resolution are essential requisites of the detector DAQ. 
Figure 6 shows the characterisation of the noise tolerance of the DAQ. The contribution of the 
thermal noise due to the resistors (1 GΩ for DAQ A and 10 MΩ for DAQ B and C) used for the 
calibration of the devices has been evaluated as function of the integration time and displayed 
against the noise acquired. The peak shown by the TERA06 front end at IT of 5 ms and 50 ms 
can be explained by the influence of the electromagnetic background noise (at 50 and 100 Hz), 
when the period of the overlapping noise causes an increase of the standard deviation of the 
measured outputs. For longer IT instead, the background noise is averaged, as many periods are 
picked up and averaged. Even in the worst case, the contribution of the noise is less than 4% of 
the lowest charge measured by the TERA06 front end, so it does not compromises the 
performances of the DAQ. DAQ B and C show a linear increase of the noise versus the 
integration time. The detailed datasheets, provided by the manufacturer, predict the noticed 
behaviour with graphs showing a slightly linear increase for both the devices. The trend is 
emphasized by the resetting procedures, which do not take in account the duration of the IT, and 
by the contribution of the noise current integrated over a longer integration time which results in 
a higher baseline. At IT longer than 500 µs DAC B evidences the effect of the saturation: as the 
chip begins to saturate, the value read by the ADC is capped by the full scale value, thus 
decreasing the standard deviation of the value read. DAQ C instead does not seem to be 
sensitive to any trigger or electromagnetic noise interference due to its peculiarity to have an 
embedded digital interface which minimises the effects of noise perturbation of the weak 
analogue input signals. 
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Figure 6: DAQ A, DAQ B and DAQ C noise characterization 

4. Conclusion  

All three front-ends present specific characteristics which make them suitable for different 
applications in QA for radiotherapy. Each DAQ is modular and can be easily adjusted to read 
multiple detectors with a large number of channels. DAQ A, based on the TERA06 chip is 
already used in dosimetry instrumentation to readout ionising chamber arrays up to 1024 
channels and sensitive volume of the order of 0.13 cm3. Due to the procedure used by DAQ A 
for the data transfer, an increase of the number of channels causes an increase of the dead time 
of about 14 µs per additional chip, 64 channels each. A trade off between number of channels, 
acceptable dead time and computational and data handling load is necessary in order to achieve 
the best performances from the read-out front end. A new generation of detectors for QA in 
radiotherapy has been designed by the CMRP with high spatial resolution and small sensitive 
volumes based on pixellated silicon detectors (equivalent sensitive volume is approximately 0.1 
mm3). The number of channels required for such devices is greater than 1024 and the gain of the 
front-end is very high to overcome a weak signal generated by the radiation into the small 
sensitive volume of the detector. To suit the new application, the DAQ B, based on the 
AFE0064 chip, was introduced and was proved to cover the range between 0.2 pC and 10 pC 
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with integration time as small as 14 µs. The system is designed by a modular approach allowing 
combinations of 128, 256 or 512 channels modules with, virtually, no limitations in terms of 
number of modules readout in parallel. It shows a good linearity across the whole dynamic 
range and excellent timing performance with a sustainable sampling rate of 10 kHz. Data rate 
and death time of the system are not affected by increasing the number of channels because the 
DAQ B is designed adopting a parallel architecture to readout the modules. The gap of dynamic 
range and reliable integration time range left by the two architectures has been filled in by the 
DDC264, which has been successfully tested in terms of linearity and noise performance. It 
shows a dynamic range from approximately 5 pC up to 150 pC over an integration time ranging 
from 0.5 ms to 10 ms. Despite the different internal architectures, the DAQ A and C show a 
comparable noise immunity with less than 0.5 pC at 5 ms integration time, while the DAQ B is 
particularly good for very low noise applications with 0.13 pC at 0.5 ms integration time which 
corresponds to 260 pA/channel at room temperature. The flexibility of the platform developed 
for this work, comprehends by the FPGA back-end interface (front-end data handler and 
USB2.0 interface), the software and host drivers, makes the design of a mixed analogue front-
end architecture (for example DAQ B and C) feasible. The DAQ B and C have similar timing 
requirements (20 MHz clock frequency) and they can be easily interfaced to the FPGA by two 
parallel and hence independent, communication protocols based on chip specific control and 
data signals. This approach is convenient for applications where different channels must have 
different dynamic ranges. This is particularly true when the dose rate across the radiation field 
changes over few orders of magnitude and the detector array has sensitive elements with the 
same volume size (such as in Microbeam Radiation Therapy [14]) or for specific detector array 
where the sensitive volume of the sensor varies in dimensions to achieve a finer resolution in 
specific areas (such as for the semicircular array detector developed for dosimetry in 
brachytherapy of the melanoma eye cancer [15]). 
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